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Abstract

Presented is the design, implementation and evaluation of a sys-
tem for computing with non-enumerative set representations. The
implementation is in the form of a set assembly language (Sal)
whose operations correspond to an implementation of the algebra
of sets, with minimal added syntactic sugar; a compiler (Salc) for
validation and static optimization of Sal definitions; and a virtual
machine architecture (Svm) for executing Sal definitions.

Sal/Svm has turned out to be a surprisingly versatile frame-
work for a growing number of problems. One such application, as
a framework for declaratively specifying computational problems
with the same level of precision that traditional machine languages
enable the specification of computational algorithms, is presented.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Language Classifications—
Macro and assembly languages, Nonprocedural languages, Spe-
cialized application languages; D.3.4 [Programming Languages]:
Processors—Interpreters

General Terms
Algorithms, Languages

Keywords
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1 Introduction

Sets play an important role in many areas of computing systems.
Their uses range from application in symbol tables for compilers, to
representing preferred system set-points in runtime systems; from
representing system configurations in analog and digital design au-
tomation, to the representation and solution of multi-objective opti-
mization problems [18]. Across these varied application domains,
set representations may be either enumerative—with all members
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Figure 1. (a) explicit enumerative, (b) non-enumerative and (c)
implicit enumerative representations of sets.

encoded in the set’s representation—or non-enumerative. Non-
enumerative sets represent their elements with a method for iden-
tifying the set’s members, rather than with a representation (e.g., a
list, tree, or encoded representation thereof), of the collection of set
members.

Most examples of sets in the computing systems milieu are enu-
merative set representations—they list members of a set, as illus-
trated in Figure 1(a). Non-enumerative set representations on the
other hand have fewer realizations in the literature and in practice.
This is partly due to the fact that computation has traditionally been
a more expensive resource than storage; it has therefore typically
been a better tradeoff to store the elements of a list, rather than
compute them when needed. Recent technology trends are however
leading to a shift in performance bottlenecks from computation to
memory accesses. As accessing a single word in main memory is
now easily several orders of magnitude more costly than execut-
ing most arithmetic operations, it may be more efficient, in some
instances, to compute the elements of a set, than to retrieve those
same elements from memory.

Enumerative representations of sets may be further classified
into implicit enumerations versus explicit enumerations. An exam-
ple of an explicit enumeration of a set is a list of elements, while an
implicitly enumerated set would be a representation of the same list
of elements, using, say, a compact representation such as a binary
decision diagram (BDD). The qualifier “implicit” captures the fact
that the elements of the set cannot be seen directly by inspection of
the representation, even though the representation “stores” the ele-
ments, and thus grows with increasing set size. Figure 1(c) shows
the BDD representation of the set of integers {1, 3, 7, 9}, the indi-
vidual members of which can be represented with 4-bit integers. In
the BDD of Figure 1(c), the circled nodes labeled n are associated
with properties of the n’th least-significant bit of the set member.



A dashed edge along a path denotes a 0 decision, and a solid edge
a 1. The sequence of decisions along a path from the root, (0), to
the terminal , indicate a bit vector that belongs to the set repre-
sented by the BDD. Edges that skip one or more levels in the BDD
indicate the bit positions in question can take on any value. Thus,
for example, the leftmost path in the figure corresponds to the bit
pattern 00X1, where X here denotes a logical “don’t care”. The 4-
bit vectors along the paths from the root to the terminal , ie.,
00X1, = {119, 310}, 0111 = 719, and 1001, = 91q, are an implicit
enumeration of all members of the set. As more items need to be
added to the set, the representation grows in size (even if only at 2"
boundaries for a set that can be mapped into 7 bits).

A non-enumerative representation of a set, on the other hand,
does not represent the members of the set, and will have a size in-
dependent of the number of elements in the set. It instead embodies
some property that holds only for members of the set (Figure 1(b)).
One example of the representation of such properties is as charac-
teristic functions (Boolean predicates or set comprehensions). Non-
enumerative set representations are of particular interest when set
membership is defined by a property of individual members, or re-
lations between tuples of members. Such representations of sets
may either occur due to constructive properties of a set to be rep-
resented (e.g., “the set of odd positive integers less than 100”), or
may result from derivative properties deduced via, e.g., regression
analysis. An example of the latter is a representation of a set of
measurements of a system which has been curve fit to an analytic
function of the system’s parameters.

Both enumerative and non-enumerative set representations may
be handled symbolically, e.g., by Boolean algebra operations in the
case of BDD representations, and by symbolic algebraic manipula-
tion operations in the case of characteristic functions.

1.1 Contributions and outline

This paper presents the design, implementation and prelimi-
nary evaluation of a system for constructing and manipulating non-
enumerative set representations. The implementation is in the form
of a set-algebra representation assembly language (Sal), a virtual
machine (Svm) for executing Sal definitions, and a compiler for Sal
(Salc), which validates, optimizes and generates an intermediate
executable form of Sal definitions, for execution on Svm.

Section 1.2 outlines the terminology used in the remainder of
the article. Section 2 presents a description of the Sal language and
the virtual machine, Svm, for its execution. Section 3 details the
Svm internal architecture, by providing an overview of the internal
representations used to facilitate Svm’s implementation of the Sal
semantics. Section 4 briefly outlines the properties of the current
implementation of the compiler and runtime system, and presents a
preliminary performance evaluation.

One of the applications for which Sal is currently being used,
is in exploring execution platforms for future device technologies
(e.g., technologies that will eventually replace CMOS). Section 5
presents an application in this context, using Sal as a problem spec-
ification language to facilitate energy-efficient computation by tak-
ing advantage of particular device characteristics. Related research
is presented in Section 6, and the article is concluded in Section 7
with a summary and a discussion of ongoing and planned research
directions.

1.2 Terminology and definitions
The following terminology is used in the remainder of this arti-
cle:

* Universe, U,: a collection of possible basis values that may be
taken on by the elements of a set. Universes may be ordered
or unordered; ordered universes will be denoted with (...),
and unordered universes with {...}.

* Dimension, U,[i]: When a product universe of multiple
one-dimensional universes is formed, each constituent sub-
universe in the multi-dimensional product space U, is re-
ferred to as a dimension. Each k-th sub-dimension of an n-
dimensional universe is notated as U,[k], 1 < k < n. Thus,
in the following, the term dimension will sometimes be used
interchangeably with the term universe.

* Predicate, P,: a Boolean predicate on one dimension.

* Predicate Tree, T,: a tree of predicates, each of which may
act on a separate dimension.

e Set, S;*: A set is a particular collection of instance elements
drawn from a single or multi-dimensional universe. It is rep-
resented by a pairing of a predicate tree T, with a universe
U,; the superscript will be omitted when the set’s universe is
either obvious or irrelevant.

* Boolean values will be represented with words in small
capitals—TRUE and FALSE—and operators (Boolean and
arithmetic) in small capital boldface, e.g., AND (logical
AND), POW (exponentiation).

* Equality in expressions will be denoted with ==, and assign-
ment with =.

Predicate trees may contain parameters, which may be either
bound or free, defined as follows:

DEFINITION 1  (BOUND PARAMETERS IN A PREDICATE TREE).
A parameter p is said to be bound in a predicate tree T,, if the
meaning of T, is unchanged by the uniform replacement of p by
another variable g, not occurring in T,. Each bound variable
is bound by a quantifier in the closest enclosing scope. Bound
variables have a type, embodied in one of the sub-dimensions of
the predicate tree in which they reside.

DEFINITION 2 (FREE PARAMETERS IN A PREDICATE TREE).

A parameter p is said to be free in a predicate tree T,, if the
meaning of T, is unchanged by (possibly non-uniform) replacement
of any occurrence of p by another variable q. Free variables have
a type, embodied in one of the sub-dimensions of the predicate tree
in which they reside'.

2 Sal language and Svm virtual machine

Sal is an assembly language for describing computations on
non-enumerative sets (as defined in the preceding section). It is
termed a set assembly language since it provides only the basic
low-level primitives essential to define computations of interest,
and does not provide the variety of constructs typically found in
a high-level programming language; the complete Sal grammar in
EBNF form is listed in Appendix A. The execution model for Sal is
the Set virtual machine (Svm), described in more detail in Section 3.

Sal is not used to represent programs in the traditional sense—
i.e., it does not describe a series of computations. Instead, Sal is
best thought of as a language for representing computational prob-
lems using set-theoretic constructs. These problem representations
are formulated in terms of operations on the state represented in the
Svm virtual machine. Sal is thus in principle a form of declarative
assembly language. Unlike traditional declarative higher-level lan-
guages, which can be used to express algorithms, and, e.g., achieve
computation as a side effect of goal-directed evaluation, Sal is pur-
posefully restricted to problem definitions. This separation of prob-
lem definition from particular solution of problems via algorithms
is key to enabling the applications described in Section 5.

INote the difference of this definition from definition of free
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Figure 2. A set of 28 points in the plane; the four dark points
define the convex hull of the set.

--  The sign of the determinant

= [ 1 px py |
== D = | Lagxay | = (gxsry - qy=rx)
—- | 1 rxry | - px(ry - qy) + py(rx-gx),

-- denotes whether r is on left or right of Tine pq.

uo : Integers = <1 ... 10 delta 2xjota>

ul : Integers = <1 ... 10 delta (2«iota)+1>
u2 = U0 >< Ul

P10 1((qy == py:U2[2]) & (gx == px:U2[1]1))

P11 ((gxxry - qyxrx) - px:U2[1]=(ry - qy) +
py:U2[2]=(rx - gx)) >= 0
P1 = exists gx:U2[1] exists qy:U2[2]

forall rx:U2[1] forall ry:U2[2] (P10 & P11)

-- S1 is the input set

S1 = (true : U2)

- S2 is the convex hull of the input set
S2 = (PL : U2)

echo "S2 = " print enum S2

Figure 3. Sal assembler representing the subset of a set of points
that denotes the latter’s convex hull.

2.1 Sal by example: Convex Hull

To illustrate the nature and notation of Sal problem definitions,
the computational problem of the convex hull will be used here and
in the remainder of the paper. Computing the convex hull of a set
of points in the plane is an important problem with applications in a
variety of domains, ranging from image processing to VLSI design.

Informally, if the points in a plane are represented by pins stuck
in, say, a board (Figure 2), the convex hull of the set is the subset of
pins which, if one were to place an elastic band around the grouping
of pins, would be touching the elastic band. Formally, the convex
hull can be defined as follows:

DEFINITION 3 (CONVEX HULL). The convex hull, CH(S), of a
set S of points in the plane, is the smallest convex polygon for which
each point in S is either on the boundary thereof, or in its inte-
rior [7].

The Sal assembler specification of the convex hull problem is
presented in Figure 3. Comments are introduced by --, and extend
to the end of a line. Statements in Sal primarily involve operations
on, and between, registers for holding universe, predicate, and set
expressions. Universe registers, predicate registers and set regis-
ters, are denoted by the letters U, P and S (respectively), followed
by a positive integer. In what follows, the contents of a particular
register, e.g., P5, will be interchangeably referred to as “predicate
P5”, rather than the more accurate but cumbersome “the predicate
held in register P5”, for simplicity of exposition.

Lines 10 and 11 in Figure 3 define two basis universes of scalar
integer type in the universe registers UO and U1, assigning to them a
range of values. Line 12 defines a new universe, whose implied type

variables in other contexts [1].

Problem Specification (Sal)

Set's universe / type
Set's predicate expression =3

SL = (x:U1[1] # 1) : Uy.

T T T— free variable's type
Set free variable

Y (via Salc Compiler)

Svm Machine State Representing Problem

P Registers = S Registers U Registers  Runtime Symbol Table
6 P1:U3 <1,5,..,94> | Variable | Value Scope
™ . (P11P7):U1 || <%en", ..., "bii"> | |gx 2 14
true:U2 {21, ..,-13} mquantvar | "hello" 2

Figure 4. Overview of the Svm architecture.

is the two-dimensional plane of integers, and assigns to it the cross
product of UO and U1. The next three statements define three pred-
icates, P10, P11, and P1. As described in Section 1.2, a predicate
is a set-theoretic expression that evaluates to a Boolean value. It
may contain constants, bound, and free variables, held together by
arithmetic and Boolean connectives. For example, in the predicate
P10, px and py are free variables having types U2[1] and U2 [2]
respectively, corresponding to the first and second sub-dimensions
of the product universe U2. Lines 21 and 24 define sets S1 and
S2, which are pairings of predicates to universes. In this case, S1
represents all elements in the universe held in register U2, while S2
represents the restricted subset of the universe in register U2, which
satisfies the predicate held in register P1. The set of points on the
convex hull of U2 can be enumerated using the last statement in the
example.

The Sal problem specification is only 26 lines, 15 of which are
comments and spacer lines. This succinct Sal problem definition
can be applied to any set of points in the plane, to obtain the subset
thereof corresponding to the convex hull. The definition is declar-
ative as opposed to being imperative. More importantly, it is a
declarative problem specification, as opposed to a declarative al-
gorithm implementation. As an example of the latter, Franklin et
al. [9] describe a Prolog (declarative) implementation of a convex
hull solution that required about 200 lines of Prolog, implementing
a specific convex hull algorithm.

Such a Sal specification purposefully leaves the algorithm by
which it is solved open. Section 5 gives one example of a counterin-
tuitive solution method for this problem specification, which, in the
particular scenario considered, yields a more energy-efficient solu-
tion than optimal algorithms such as Graham’s scan or the Jarvis
march, for computing the convex hull.

2.2 The Svm virtual machine architecture
Problem specifications written in Sal are transformed via an as-
sembler/compiler, Salc, into machine state for the Svm virtual ma-
chine, whose instruction set is the Sal assembly language. Svm’s
state is organized into sets of machine registers for holding predi-
cate expressions (P registers), set expressions (S registers) and uni-
verse values (U registers), as illustrated in Figure 4. Conceptually,
there are an unlimited number of registers of each kind, thus Svm
can be thought of as a memory-to-memory or infinite register archi-
tecture, in the vein of other virtual machines such as the Dis virtual
machine [26] of the Bell-labs Inferno operating system. Unlike reg-
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Figure 5. Measured memory usage for creating large multi-
dimensional universes in the current Svym implementation.

isters in a real machine, all of these registers hold sophisticated data
structures as opposed to simple scalar values. The internal represen-
tation of registers is detailed in Section 3, which follows.

3 Svm internal representations

Central to the implementation of Svm are the structures for rep-
resenting universes, predicates and sets. These structures were de-
signed to facilitate the implementation of operations with minimal
overhead, and to facilitate operations such as garbage collection of
unreachable items (detailed in Section 3.3.1), and type inference
and type checking of expressions to be assigned to registers (de-
scribed further in Section 3.3.2).

3.1 Representation of universes

Universes form the basis of Svm’s operation. They are single or
multi-dimensional collections of integer, real or string values from
which sets are defined. In normal usage, there will be multiple
universes, corresponding to multiple fundamental quantities from
which sets are drawn. In what follows, universes are described in
terms of the data structures for their representation.

There are three built-in universes which are always defined in
the Svm runtime, and represent the basic non-enumerated single
dimensions: integers (Ujyegers), SrNgs (Ugying), and reals (Ugeys)-
New universes may be created by taking the cross product of these
basic 1-D dimensions. For example, a universe U, may be de-
fined as U, = Upyegers X Unniegers X Unnegers> t0 represent all possible
3-tuples of integers. Similarly, U, = Upyegers X Uspings 1 the uni-
verse of 2-tuples of integer-string pairs. Universes may also be
defined by lists of 1-D elements, e.g., U, = {1.0,2.0,33.5,29.7}
(unordered) or U, = (1,4,9,10,442) (ordered), or ranges, e.g.,
U, =(1...1000 A3x1+1).

The manner in which universes and dimensions are handled fa-
cilitates compact representation. First, dimensions are maintained
copy-on-write, with, e.g., a dimension used in two different prod-
uct universes maintained as references to a single copy. Reference
counts are maintained to determine when such copies are really nec-
essary, and enable a dimension to be garbage-collected when all the
universes referring to it have been deleted. Second, in a universe
cross product, the resulting universes grow linearly, as the product
space is never enumerated; instead, a “latent” or “lazy” symbolic
representation of the product space is maintained. Because a sin-
gle dimension data structure is used to represent each dimension
(with the potential for multiple universes referencing the same di-
mension), an n-dimensional product universe of dimensions having
size |U,[]], grows as k- n, rather than as |U,[i]|", where k is a small
constant on a given host platform, a function of the size of a pointer

Individual elements

Dimension in the dimension

cmp() | prnQ | enumerated | refcount

(a) The Dimension data structure is used to represent
a one-dimensional universe, holding its elements when
finite.

References to these dimensions
' are often shared across universes

L ‘
D --- <—— Additional universe-specific state

(b) The Universe data structure is used to represent a (pos-
sibly) multi-dimensional universe.

values[] |

cmp() | prn() | enumerated | refcount va'lues[]|

cmp() | prn() | enumerated | refcount va'lues[]|

Figure 6. Logical structure of universes, and the structure of
their sub-dimensions.

on the host architecture. To illustrate, Figure 5 plots the memory
usage in the current implementation of Svm, as a function of num-
ber of elements per dimension (from 1 to 10,000 integer elements),
and number of dimensions (from 1 to 100 dimensions). The space
of elements represented is from 1 to 10%%°. Although the space of
elements represented is enormous, because of the efficient product
space representation, it requires less than 500 KB of memory.

Figure 6(a) illustrates the structure of the individual dimen-
sions in a universe, and Figure 6(b) illustrates the logical struc-
ture of universes, which may have one or more sub-dimensions.
The actual realization of these structures contain a few additional
implementation-specific fields, which are not discussed further
here. The values [] arrays in a dimension, if the dimension is not
defined to be continuous (i.e., the enumerated flag is set), con-
tains the primitive elements of the dimension. The cmp () function
of a dimension returns a number greater than, less than, or equal
to zero, if the difference of the values of two arguments is the self-
same, and is used in operations such as checking set dominance;
if not defined, the dimension is considered to be unordered. The
prn() function is used to print individual dimension elements into
a string buffer.

3.2 Specification of Boolean predicates

Figure 8 illustrates the structure of the elements which make up
the Boolean predicate tree of a set. There are eight types of Boolean
predicates in Svm:

¢ Boolean constants (bool : TRUE, FALSE).

* Quantifiers ((var,bool) — bool : EXISTS,FORALL) have a
bound variable and Boolean predicate as their children, and
evaluate to a Boolean value.

¢ Boolean connective predicates (bool — bool
AND, OR, XOR,NOT) are binary and unary Boolean functions
of the truth (Boolean) value of their child predicates. The
connective predicate nodes can only be parents of Boolean-
valued nodes (comparator predicates or other connective
predicates).

¢ Comparator predicates (arith +—  bool
EQ,NE,GT,GE,LT,LE) are functions of arithmetic val-
ues from the dimensions of the given set, e.g., a function



DIDXS2ELEM (U, didxs)
1 > U, is a Universe; didxs is a dimension index array.
2 n—0
3 fori—O0to|U,|—1
4 do
5 ifi==0
6 then n — didxs[0] +n
7 continue
8 tmp — [U[0]]
9 for j—1toi—1
10 do tmp «— |U,[j1| - tmp
11 n «— tmp - didxs[i] +n
12 returnn

ELEM2DIDXS(U,, elem)

1 > U, is a Universe, and elem an element index.
2 fori« |U,|—1 downto O

3 do
4 ifi==
5 then didxs|i] — elem
6 break
7 else nlower — |U,[0]]
8 for j— 1toi
9 do nlower «— \Uﬂ[j]| -nlower
10 if nlower > elem
11 then didxs[i] — 0
12 else didxs(i] — elem/nlower
13 elem «— elem — nlower - didxs|i]

14 return didxs

(a) Converting n-dimensional coordinate value to an element index.

(b) Converting element index into an n-dimensional coordinate value.

Figure 7. Algorithms for converting between unique element indices and coordinates in a multi-dimensional space.

Universe Index

Dimension Index

Constant Element

Reference Count

left $

right

Figure 8. Predicate elements making up the Boolean predicate
tree of a set defined on a universe. The dimension index is used
to enable Boolean predicates from different universes which are
used to form a product universe to still make sense of the prod-
uct space.

representing the expression {U,[1] # 1}; they take two
universe values or variables, and yield a Boolean value.
Comparator predicates can only be parents of arithmetic and
constant or variable predicate nodes.

* Arithmetic operators (arith  —  arith
ADD,SUB,MUL,DIV,MOD,POW,NRT,LOG) take two
arithmetic universe values and yield a new arithmetic value.
Arithmetic predicate nodes can only be parents of values and
variables (arithmetic predicates and variables/constants).

Literals, bindable and free variables represent specific
(enumerated) elements in the universe, free variables (which
take on the per-dimension value of the set element to which
they are applied) and bound variables (which may take on val-
ues determined by their binding quantifiers). These may only
appear at the leaves of a Boolean predicate tree.

Each predicate in a predicate tree acts on a single sub-dimension
of the universe with which the predicate tree is associated, main-
taining the information on its target dimension in the dimension in-
dex field of its data structure (Figure 8). All dimension index fields
in a given predicate tree must thus be updated when dimensions
get concatenated in a set cross product, to reference the ordinal po-
sition of the dimensions in the new higher-dimensional universe.
Each element in a multi-dimensional universe can be referred to by
a unique element index. The element index is derived from the di-
mension indices for each sub-dimension, via the algorithm listed in
Figure 7(a). Conversely, an element index can be converted into an
array of dimension indices via the algorithm in Figure 7(b).

P4296026464X
op=P_OP_NOT

P4296025168X

P4296025344X
op=P_OP_BOUND op=P_OP_FREE

P4296025712X P4296025920X

op=P_OP_BOUND op=P_OP_FREE

varname=gy uidx=-1 didx=0 varname=py type=int uidx=1 didx=0 varname=gx uldx=-1 didx=0 varname=px type=int uidx=0 didx=0
refcount=1 refcount=1 refcount=1 refcount=1

O L

Figure 9. Rendered predicate tree for predicate P10 of Figure 3,
auto-generated by Svi runtime.

To illustrate these concepts in the context of the convex hull ex-
ample, Figure 9 shows the predicate tree for predicate P10 of the
example in Figure 3, as rendered by the Svm runtime system’s pred-
icate tree rendering facility. The root of the tree is a NOT predicate,
whose only (left) child is a conjunction of two EQ predicate sub-
trees, each having one free variable and one bound variable leaf.

The bound variables in a quantified predicate expression repre-
sent formal parameters of the predicate, to be substituted with the
actual element to which the predicate is being applied during quan-
tification. A symbol table is used to maintain the correspondence
between variables and their associated binding dimensions, placing
entries into the symbol table at the point of evaluating a quantifier
predicate tree node, and removing it after processing its children.

3.3 Representation of sets

Sets are represented internally as pairings of a predicate tree to
a universe. The association of sets with their universes is necessary
for the implementation of operations such as set complement. This
association also implicitly serves as a type system for sets, enabling
safety checks such as when two sets occur in a binary set operation.
Figure 10 depicts the structuring of sets, illustrating their relation to
universes and the dimensions therein.

3.3.1 Reference counting in universes and sets

In the manipulation of sets and universes, many intermediate
elements may be created. Some of these elements, such as the di-
mensions of a universe, are shared across new universes created
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Figure 10. Sets are represented internally as pairings of a pred-
icate tree to a universe.

therefrom (e.g., in a product operation). As sets are created and
destroyed, they need to be appropriately allocated and deallocated,
the latter being more involved.

A natural method for managing the deallocation of such struc-
tures is using reference counting. For universes, the reference count
is initially zero, and is increased each time a set is defined on the
universe, or when the universe is assigned to a register. The refer-
ence count of dimensions is initially one, as they are always associ-
ated, at creation time, with a universe. Dimension reference counts
are decremented whenever an associated universe is deleted.

Sets and universes can only be deleted if their reference count
is zero. A universe with a reference count of zero will have one
or more sub-dimensions all with reference count greater or equal
to one. Deleting such a universe decrements the reference counts
of these sub-dimensions, and if their reference count reaches zero,
they are also deleted. Similarly, deleting a set (if its reference count
is zero) decrements the reference count of the universe on which
the set is defined, and if the universe no longer has any referrers,
the aforementioned process of deleting a universe occurs.

3.3.2  Types, type inference, universes, and sets

The separation of the representation of sets into predicates
paired with universes enables an elegant solution to the implemen-
tation of a type system—the universe of a set is by definition its
type. Operations are permitted between two sets (e.g., union, inter-
section, dominance checking), if they have the same type, and Svm
(or the Salc compiler) issues a type error for operations between
sets having different types. The only operation permitted between
sets of different types is the cross product, which yields a set with a
new type.

As a result of taking the cross product of sets, there will often
be several new types created over the scope of a Sal problem def-
inition. These new types, which correspond to implicitly created
new universes, can be used in the definition of further new sets, in
the same way explicitly declared universes can, via the set2type
operator. An expression consisting of set2type with a set as its
operand can be used at any point where a universe register is valid
in an expression.

4 Implementation

The current implementation of Sal/Svm comprises four parts: a
compiler, Salc, the core Svm implementation as a library, an inter-
active console interface, and a web interface to enable execution of
Svm via a web server.

4.1 The Svm implementation

The runtime system of Svm is implemented in a library whose
application programming interface (API) implements valid opera-
tions in the Svm semantics. This runtime system library is driven ei-
ther by: an interactive command line interface; an execution engine

that accepts pre-parsed and validated input in binary form, gener-
ated by the Salc compiler; or by a Web common gateway interface
(CG]I) front end.

The interactive command line and Web interfaces parse and ex-
ecute Sal statements directly, providing interactive feedback and
meaningful error messages to assist prototyping and debugging of
Sal programs. For local beta users of the system at our institution,
we have encapsulated this web interface in a content management
system that enables users to post new example programs, comment
on existing programs, search through a growing collection of exam-
ples, and so on.

4.2 The Salc compiler: Sal to Svm compila-

tion and optimization

Salc is implemented in ANSI C. It consists of a YACC-driven
parser front end which performs syntax and semantic checking, an
optimization middle end, and a code generator that emits a lin-
earized form of the intermediate abstract syntax tree (AST).

A small number of static optimizations on the in-memory repre-
sentation are currently implemented, prior to emission of the binary.
These optimizations include rearrangement of nodes in the AST to
enable more efficient short-circuiting of evaluations. Several opti-
mizations that take advantage of the execution semantics of Svm
are currently being investigated; these are not detailed here due to
space limitations.

Even though the binaries generated by Salc must be executed
over Svm, and are not directly executed by the host system, Salc
uses the ELF object file format for storing the intermediate repre-
sentation. The intention of this design choice is to facilitate the use
of a wide variety of existing tools for obtaining basic information
of compiled Sal programs, such as the objdump, strings(1), size(1)
or the nm(1) utilities, across a variety of host platforms.

4.3 Bootstrapping and validation

A challenge faced by designers of new programming platforms,
whether high-level languages or low-level virtual machines such
as Svm, is the need for a collection of input programs for bench-
marking and regression testing. While new applications may be
developed by a system’s early users, which might serve as initial
benchmarks and validation tests, the number of such programs is
often small. This challenge is even more acute when the language
being implemented is a low-level language intended to be the target
of a higher-level language compiler, and not always the direct target
of human programmers.

To address this bootstrapping challenge, a facility for automat-
ically synthesizing valid Sal programs was implemented. Given a
universe definition, the Sal program synthesizer builds a predicate
tree of a user-specified size that can be paired with the universe to
form a valid set definition. The synthesizer achieves this by first
building a random binary tree, and then progressively converting
nodes in the tree into valid predicate tree node types, based on the
Sal grammar, using the same code the Salc compiler uses for check-
ing validity.

Achieving fast synthesis rates for large programs is challenging.
Martin and Orr [13] present an algorithm for generating random
binary trees, and Siltaneva and Mékinen [19] provide a comparison
of several such algorithms. In our case however, the challenges lie
more with the stages subsequent to building the initial binary tree,
where the randomly generated tree’s nodes must be assigned roles
that correspond to Sal grammar elements.

Over the course of several months, the synthesizer has generated
572 valid programs that we currently use for regression testing and
benchmarking. These programs, which currently range from 10- to
19-element predicate trees, can be composed to form more complex
valid predicates, and hence, longer programs. Figure 11 presents an
outline of the properties of these synthesized programs, showing the
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Figure 11. Characteristics of the suite of 572 synthesized Sal
“microbenchmarks” used for regression testing. Each oval in
(b) corresponds to a unique benchmark; oval sizes in both (a)
and (b) are proportional to the set size.
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Figure 12. Performance of Sal implementations of convex hull
problem solution, with and without optimization, versus C lan-
guage search-based convex hull solution, and C language imple-
mentation of step-optimal Graham’s scan algorithm.

range of set sizes they represent and the execution duration for their
evaluation, as a function of their predicate tree size, and the size of
the universe they are paired with.

Using these and our other user-provided inputs, in combination
with tools such as Valgrind [15] permitted many functional and im-
plementation bugs to be caught that were not identified during test-
ing with only human-authored inputs.

4.4 Preliminary performance evaluation

The objective of specifying computation in Sal, rather than using
an algorithm to explicitly describe the computation’s behavior, is to
enable the runtime system to identify problem definitions for which
there is an efficient algorithm for their solution on a given platform,
and to use that algorithm instead. In the absence of such a match
however, as will be demonstrated in Section 5, even the seemingly
poor evaluation strategy of using an enumerative search turns out to
be beneficial for some classes of execution platforms.

The extension of the Svm runtime to perform such problem iso-
morphism identification is the subject of ongoing active develop-

ment. Figure 12 however presents an initial evaluation of a single
such problem definition—the convex hull of points in the plane—
implemented in Sal and evaluated on Svm, using Svm’s enumer-
ative solution finder. This implementation is compared against
a hard-coded C-language implementation of the same enumera-
tive solution finding, as well as a C-language implementation of
a known-optimal algorithm (the Graham’s scan [8]). The mea-
surements were performed on a 2.8 GHz Intel® Core i7, running
MacOS® 10.6.2, with gcc 4.2.1 as the compiler, and optimization
flags -03 for the C-language convex hull implementations; the
Svm implementation was compiled with the same compiler and op-
timization flags. In the measurements, when the times involved
were small and thus more affected by measurement noise (due to
the preemptive scheduling quanta of the operating system), each
plotted point is the average over 50 runs at the given input problem
size.

Starting from a user-supplied Sal implementation of the convex
hull problem definition (topmost curve in the figure), the optimized
Sal problem definition removes redundant nodes from the predicate
trees in the problem definition. This reduction in the predicate tree
size from 256 nodes to 37 nodes, combined with transformations
to optimize for the manner in which Svm evaluates predicate trees,
leads to a performance gain, for the largest problem size, of 17%.
However, in comparison to the C-language implementation of the
enumerative search, this optimized Sal execution is still a factor
of 20.5x slower. The C-language implementation of the known-
optimal algorithm is even faster still—thus there is significant po-
tential for identifying such problem definitions in Sal, and evaluat-
ing them using known-optimal algorithms for the given execution
model or platform. However, as demonstrated in the following sec-
tion, the optimum execution method with respect to metrics such as
energy usage, may still be the enumerative approach. Even though
it performs more computational steps, the overall energy usage can
be smaller in certain device technologies, due to the possibility for
parallel evaluation that enumeration permits, employing slower per-
processor execution, at lower operating voltages, for a reduction in
total energy.

5 Sal as a Computation Platform for Future
Device Technologies

The most computationally-efficient algorithms for computing
the convex hull of a set of n points in a 2D plane have step complex-
ity ®(nlogn)—their worst-case complexity is O(nlogn), and they
are known to be asymptotically optimal [8]. The associated energy
usage for this computation will be denoted E,;,, when executing on
a processor operating at voltage V.. While a given Sal problem
definition can be evaluated using a variety of different strategies, it
can also always be evaluated by enumeration.

An enumeration on the Sal problem definition presented in Fig-
ure 3, computes the convex hull in deterministic ¢; - n> 4 d; steps,
with the search centered on each of the points in question being in-
dependent. The search is thus embarrassingly parallel, with degree
of parallelism equal to the size of the set’s universe, and with no
need for communication between parallel partitions. If all prim-
itive steps consume the same amount of energy, then the energy
consumed in the search will be
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If n processors are employed in the search, each completes in
®(n2) steps, and all processors may proceed in parallel. If the pro-
cessors may operate at a minimum voltage of V,, /k, and if energy
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For CMOS, the theoretical maximum value of k is in the range
of 10-18 for current process technologies, while B is typically 2
for any logic technology in which logic stages pass information by
capacitive charge transfer.

The constants cy,d;,cy and dy were determined by fitting the
measurements presented previously in Figure 12 to the respective
quadratic and logarithmic complexity models. The range of prob-
lem sizes for which the enumerative search would yield better en-
ergy efficiency, for these values of the constants ¢y, dj, ¢p and d»,
and with a maximum value of kP fixed at 200, is upper-bounded by
70 for the C-language enumerative search (Figure 13), and by 153
for the Svm enumeration (Figure 14). The latter is larger, since it
would require more hardware parallelism in order to achieve better
energy efficiency than the step-optimal Graham scan.

6 Related Research

Examples of the implementations of enumerative set facilities
include the language-level set representation facilities postulated by
Hoare and Wirth [28], set manipulation facilities in symbolic com-
puting packages such as Mathematica® [29], the set handling fa-
cilities provided by the C++ standard template library (STL) [16],
the Java® utility libraries [22], or the Mac 0S® “Cocoa” frame-
work [2]. Other relevant related research includes set manipula-
tion languages and notation, declarative programming languages,
database query languages, miscellaneous set representation tech-
niques such as binary decision diagrams and their variants, and
computer algebra systems.

6.1 Sets in programming languages

SETL [17] is a general purpose programming language, with
constructs for procedures, iteration, variables, and the like. SETL
is built on the representation of finite sets (enumerated sets), and
makes no clear distinction between sets and the universes they are
defined on. Sal, unlike SETL, is not intended to be a general-
purpose programming language. It is purposefully a machine lan-
guage for set expressions, to which (portions of) languages such
as SETL might be compiled. While SETL has variables, functions,
maps, control flow and more, Sal problem definitions operate on set
registers, universe registers and predicate registers. By providing a
clear distinction between sets and universes, Sal simultaneously en-
ables the association of sets with well-defined types, and operations
which are only meaningful on sets in the presence of associated uni-
verses (such as set complement).

In addition to languages that permit computation on sets, there
also exist formalisms or notational forms based on set theory. One
prominent example is the Z notation [20]. Z and its offspring are not
intended for creating executable programs (or problem definitions),
but rather, for specifying program properties to enable formal anal-
ysis.

6.2 Logic programming languages

Logic programming languages enable the specification of logi-
cal predicates, which may be seen as “truths” input into a system by
auser. These pieces of knowledge input into the system may subse-
quently be evaluated. A programming language implementing sets
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as such logical predicates is Prolog [25], for which the Warren ab-
stract machine [24] was designed as an intermediate representation
for its execution. Predicates in Prolog represent facts, or the truth
value of a particular statement, and are equivalent to enumerated
sets in Sal (but do not have associated types). In addition to truth
statements, Prolog contains rules, which enable the expression of
conditional relations between truth statements.

The process of evaluation of predicates in Prolog may be used
to achieve computation as a side effect of logical evaluation, en-
abling the explicit implementation of algorithms. Logic program-
ming languages such as Prolog are based on the fact that com-
putable functions [23] can be represented with logic expressions
and they achieve computation in the process of performing proofs
of propositions in a goal-directed process. Characteristic functions,
which are used to represent sets in this work, are trees of Boolean
predicates, and their evaluation can not lead to iteration or recur-
sion. Thus, Sal problem definitions have no procedural representa-
tion.

6.3 Database query languages

Database operations and the associated query languages may be
seen as analogous to Svm and Sal. Just as the case in SETL and
logic programming languages however, databases represent finite
sets (tuples), which have no associated universe, precluding the im-
plementation of the full extent of set theoretic expressions within
them. There are however ideas from the domain of databases, such
as query optimization, that may be applied to improve the perfor-
mance of execution in Svm.

6.4 Set representation techniques

Complementary to the discussion of specific programming lan-
guages and software systems for processing sets, is the question of
the way in which sets are represented in such systems. Finite sets
(enumerated sets) may be represented with a variety of structures,
including sorted lists and binary trees, when the elements are to be



represented directly in the data structure [4]. They may also be im-
plemented as binary decision diagrams (BDDs) [5] and word-level
binary moment diagrams (BMDs), when a prior encoding step is
used to assign binary strings to elements of the set. While BDDs
may be seen as a form of “symbolic” representation of the elements
of a set, they are still an enumerative representation, albeit an im-
plicit enumeration in a compact form. Taylor expansion diagrams
(TEDs) [6] on the other hand permit true symbolic representations
of expressions (and thus, possibly, of set predicates), if the expres-
sions to be represented are differentiable.

6.5 Computer algebra languages

Computer algebra systems [3, 12, 14, 21, 29] provide general-
purpose facilities for a wide variety of algebraic manipulations. Be-
ing often intended for symbolic algebra, calculus and visualization,
their facilities focus on these domains, rather than on set theory. For
example, while Mathematica® provides built-in facilities for the
operations union, join, intersection, and complement (in all cases,
given two sets), these operators act only on lists—static enumerated
sets.

7 Summary and Future Directions

In addition to further development of the Sal/Svm system as pre-
sented in this paper, there are a number of directions of evolution
which we are currently exploring.

Interpretation versus static and on-the-fly compilation of Sal
programs: Since the operations in Sal correspond to complex high-
level operations, the overhead of interpretation is low. The Sal as-
sembler already performs all the expensive string processing and
represents Sal programs in memory with a format that is efficient to
process.

Possible hardware implementation strategies: While the
foregoing potions of this article have discussed how Sal/Svm was
implemented in software, it is a worthwhile exercise to consider
ways in which it might be implemented in hardware. Such a thought
experiment provides a different view of the possible applications of
the ideas presented. Is there a basic abstraction that underlies all
the set operations, that could be implemented in hardware?

Normal forms of predicate trees: Predicate trees are not nec-
essarily in a normal form when constructed. Finding a normal form
would be useful for many compile-time optimizations, but is how-
ever a difficult problem [11] in general. Barring an available normal
form, one can only assume sets are identical, if, for the same uni-
verse, the predicate trees are identical; if they aren’t, they may still
be equivalent. It may still be possible to use techniques from inter-
val analysis [10] to find equivalent subtrees; this does not however
imply a normal form.
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A Sal Grammar in EBNF Form

The complete Sal language grammar in EBNF [27] form is
shown in Figure 15.

zeronine oo & o
onenine S O
uimm

intconst

boolconst

drealconst
erealconst

"." {zeronine} .
" | "E") intconst .

realconst drealconst | erealconst | rreg
strconst "\"" {Unicode character} "\"" | wreg .
basetype = " | "reals" | "strings" .
baseconst = intconst | realconst | stringcons
tuple "(" baseconst {"," baseconst} ")
constsetexpr {" tuple {"," tuple} "}"

| ' baseconst {"," baseconst} "}" .
intrangelist e " dintconst ["delta" arithexpr] .
intconstlist 5 intconst | intrangelist) {"," (intconst

| intrangelist)} .
realconst "delta" arithexpr .

realrangelist

realconstlist (realconst | realrangelist) {"," (realconst
| realrangelist)} .

unorderableintconstdim intconst {"," intconst} "}" .
orderableintconstdim intconst {"," intconst} ">" "integers" .
unorderablerealconstdim realconst {"," realconst} " .
orderablerealconstdim realconst {"," realconst} ">" | "reals" .
unorderablestrconstdim stringconst {"," stringconst} "}" .
orderablestrconstdim 5 stringconst {"," stringconst} ">"

| "strings" .
constdimexpr ::= unorderableintconstdim | orderableintconstdim

unorderablerealconstdim | orderablerealconstdim
unorderablestrconstdim | orderablestrconstdim .

hprecbinboolop
Iprecbinboolop

unaryboolop

arith2boolop | U>=" ] <] ="
hprecarith2arithop | "pow" | "nrt" | "log" .
lprecarith2arithop ="

aggrop hprecarith2arithop | Tprecarith2arithop .

hprecboolsetop #] U><

Iprecboolsetop R |

unarysetop 'powerset” |

quantifierop ‘forall” | "exists" .

uandop 'unionover" | "andover" .

setcmpop 'sd" | "wd" .

program {stmt} .

stmt ::= setinferdefn | predassign | iregassign
| wregassign | rregassign | unvdefn
| unvinferdefn | miscop .

filename = strconst .

miscop g "print" ((printfmt (sreg|preg)) | ureg) [filename]
| "delete" (sreg|preglureg) | "lIsregs" | "luregs"
| "Tpregs" | "liregs" | "lrregs" | "lwregs"
| "load" filename .

printfmt = "randenum" | "prewalk" | "postwalk"
| info" .

setinferdefn "=" setexpr

unvdefn ":" unvexpr "=" constdimexpr .

unvinferdefn
predassign

sreg
ureg
preg '"P'uimm{uimm} .
ireg ‘T"uimm{uimm} .
wreg ‘Wuimm{uimm} .
rreg ‘R"uimm{uimm} .
type basetype | ureg | "(" "sreg2type" sreg ")" .
unvfactor type | "(" unvexpr ")" .
unvterm ::= unvfactor {hprecboolsetop unvfactor}
| unarysetop unvfactor .
unvexpr 3 unvterm {1precboolsetop unvterm} .
aggrexpr 'aggregate" sreg aggrop uimm uimm .
abstrexpr 'abstract” sreg uimm .
uandoverexpr '(" uandop varintro predexpr setexpr ")" .
identifier strconst .
varintro identifier ":" ureg "[" uimm "]" .
vartuple ‘(" identifier {"," identifier} ")" .
arithconst intconst | realconst .
arithfactor 8 arithconst | varintro | identifier
| ' arithexpr ")" .
arithterm 5 arithfactor {hprecarith2arithop arithfactor} .
arithexpr arithterm {lprecartih2arithop arithterm} .
quantboolterm quantifierop varintro predexpr .
regfullterm 'full" (ireglrreg|wreg) .
setcmpterm setexpr setcmpop setexpr .
predfactor boolconst | preg | "(" predexpr ")" .
predterm g predfactor {hprecbinboolop predfactor}
| arithexpr arith2boolop ["@" (intconst]|realconst)]
arithexpr
| quantboolterm | regfullterm | setcmpterm
| vartuple "in" ["@" (intconst | realconst)] setexpr
| unaryboolop predfactor .
predexpr : predterm {1precbinboolop predterm} .
minexpr min" sreg .
setfactor ::= constsetexpr : unvexpr | "{" "}" | "omega"
| sreg | "(" setexpr ")" | "(" predexpr ":" unvexpr ")" .
setterm ::= setfactor {hprecboolsetop setfactor}

unarysetop setfactor | minexpr
aggrexpr | abstrexpr | uandoverexpr .
setexpr ::= setterm {1precboolsetop setterm} .

Figure 15. EBNF grammar for input language of the virtual
machine, with both single and multi-character tokens enclosed
in double quotes.



