
Monitoring the Monitor: An Approach towards
Trustworthiness in Service Oriented Architecture

Mahantesh Hosamani Harish Narayanappa Hridesh Rajan
Dept. of Computer Science, Iowa State University

{mahantesh, harish, hridesh}@cs.iastate.edu

ABSTRACT
The key notion in service-oriented architecture is decoupling
clients and providers of a service based on an abstract service de-
scription, which is used by the service broker to point clients to
a suitable service implementation. A client then send service re-
quests directly to the service implementation. A problem with the
current architecture is that it does not provide means for clients
to specify, service brokers to verify, and service implementations
to prove that certain desired non-functional properties are satis-
fied during service request processing. An example of such non-
functional property is access and persistence restrictions on the data
received as part of the service requests. In this work, we describe an
extension of the service-oriented architecture that provides these fa-
cilities. We also discuss a preliminary implementation of this archi-
tecture and report preliminary results that demonstrate the potential
practical value of the proposed architecture in real-world software
applications.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Information flow controls;
D.2.11 [Software Architectures]: Languages (e.g., description,
interconnection, definition); D.2.5 [Testing and Debugging]:
Monitors

General Terms
Design, Human Factors, Languages

Keywords
Service Oriented Architecture (SOA), web-service, verification,
trust, client-side data privacy.

1. INTRODUCTION
Service-oriented architectures (or service-oriented computing

paradigm) promote abstraction, loose coupling and interoperabil-
ity of clients and services [6, 13, 14]. The key idea is introduce
a published interface (often in the form of a description written

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

in web services definition language (WSDL [5]) , which acts as a
basis for communication between three types of entites : service
implementation (or providers), service mediation (or brokers), and
service consumption (or clients), that often follows the sequence
publish-find-bind-execute to discover and use services [6, 13, 14].
The published interface describes the functional requirements for
co-ordination between service implementations and clients. Every
service implementation must satisfy its functional requirements.
For example, a published interface for a location-based hotel find-
ing service may expect clients to provide a GPS co-ordinate in a
specified format and expect the service implementation to produce
the address of the nearest hotel as a string to that GPS co-ordinate.
The specification of input (GPS co-ordinate) and output (string con-
taining the hotel’s address) describe the functional requirements for
this service.

Until recently specifying and verifying functional and non-
functional requirements have not received much attention. Most
recently Kuo et al. have discussed an approach for expressing
and reasoning about functional requirements for service-oriented
computing [9]. The focus of their approach is on facilitating a
more concise representation of the message exchange protocols as
Boolean formula associated with each exchanged message, which
in turn helps verify whether a given message exchange is legal. An-
other exciting result is described by Pathak et al.. They use a sym-
bolic transition systems to help user specify a desired service goal
in terms of functional and non-functional requirements and deter-
mine iteratively how this goal can be satisfied by selecting and com-
posing a set of existing services [15]. The goal of these approach is
to verify the construction of a service. On the other end of the spec-
trum are approaches to validate the functional and non-functional
requirements of a running service-oriented architecture such as by
Baresi et al. [3], Barbon et al. [2], Mahbub and Spanoudakis [11],
which aim to ensure — using dynamic monitoring — that a service-
oriented architecture is satisfying its requirements. The domain of
this work is the later set of approaches.

In service-oriented architectures, services are often performed
on machines that not owned and operated by users. Composition of
services may happen on an entirely different machine all together.
To monitor a service (or its composition) for functional require-
ments, such as “R1: the response given by the location-based hotel
finding service shall be the closest hotel to the GPS co-ordinate
specified by the client”, it is sufficient to observe or test the inter-
face of the service. On the other hand, to validate requirements such
as “R2: the service shall not persist the GPS co-ordinate supplied
by the client”, it may not to be sufficient to validate just the exter-
nal interface. This validation may only come from a monitor that
is executing in the same domain as the service implementation and
that can validate, by observing the running service implementation,

1

that the requirements such as R2 are indeed satisfied. The design
and development of these monitors is a widely studied problem in
requirements monitoring literature (e.g. see [7, 8, 10, 17]). Never-
theless the key question remains, in a (possibly) untrusted domain
who guarantee’s the integrity of the monitor? In other words, who
monitors the monitor?

The goal of our approach is as follows: given a set of service
specification (S), a set of service implementation (I), a monitor that
is capable of detecting deviations in the execution of the service im-
plementation from its specification (M : SXI → {true, false})
running in a trusted environment, and a monitor that is similarly
capable, but may be running in an untrusted environment (M ′ :
SXI → {true, false}), how can we validate that M ≡ M ′ is
always true.

What we do not do: we are not proposing an approach for run-
time requirements monitoring, there are many other research pa-
pers on this topic e.g. [7, 8, 10, 17]. We do not propose to monitor
functional requirements using our approach, they can very well be
monitored by observing (or testing) the externally visible interface
of the service.

To give the reader an idea of the problem with verifying a mon-
itor in an untrusted environment without a root of trust, let us for
a moment assume that a validation mechanism V ′ : MXM ′ →
{true, false} exists. Now in order to answer this validation ques-
tion, there must be a part of V ′ running in the same untrusted en-
vironment that can observe M ′ to compare it with M . If not, V ′

will depends on the untrusted environment to observe M ′, which
in turn may mask the true responses of M ′ with expected responses
for M thereby invalidating the premise that V ′ exists. On the other
hand, if some part of V ′, say δV ′ is running in the same untrusted
environment to observe M ′, we will need another monitor to verify
that the integrity of δV ′ is not compromised, which will need to be
verified again, ad infinitum. In summary, V ′ may not exist.

We propose to use a hardware-based mechanism as a root of trust
for such validation mechanism. Let us consider the example de-
scribed in the previous paragraph. In this example, if we could
be sure that there exist a δV ′ such that we do not need another
monitor to verify its integrity, δV ′ would make V ′ realizable. For-
tunately, recent research results have shown that realization of such
hardware-based root of trust is possible in the form of a Trusted
Platform Module (TPM) [20, 19]. TPMs is a co-processor that is
now being shipped with every CPU of major processor vendors
such as Intel and AMD and is therefore available broadly. In this
work, we describe an architecture based on TPM to validate the
integrity of a runtime requirement monitor, which will in turn fa-
cilitates trusted services.

Section 2 describes trusted platform modules, which form the
basis of our proposed architecture. Section 3 describes our pro-
posed architecture. The experimental evaluation of a prototype im-
plementation conforming to this architecture is discussed in Sec-
tion 4. Section 5 compares and contrasts our work with the related
approaches. Section 6 discusses future work and concludes.

2. TRUSTED PLATFORM MODULE
A Trusted Platform Module (TPM) is a trusted agent co-

processor within a remote computing platform which derives its
root of trust from its manufacturer or a delegated trusted third
party [22]. A TPM can be trusted to perform certain actions truth-
fully despite being an integral part of a potentially malicious or
compromised system. In other words, it is our trusted ambassador
in a friendly or hostile foreign territory. A TPM provides roots of
trust for storage, measurement, and reporting of measurement.

Every TPM has a unique number assigned to it by the manu-

facturer called the Endorsement Key. This key can be used by the
owner to anonymously confirm that the identity keys were gener-
ated by the TPM in his system. In essence, every computer has a
unique identity which cannot be repudiated. This can serve to be
a fool-proof identity for every user. There is also a facility for on-
chip public and private key pair generation using the inbuilt hard-
ware Random Number Generator. This make it possible for the
TPM to do encryption and decryption of data. The TPM also has a
set of registers called Platform Configuration Registers which can
be used to store the 160-bit hash values obtained using the SHA1
hashing algorithm of the TPM. The hardware ensures that the hash
value of any PCR can be changed only by encrypting the new data
over previous hash value of the PCR. In this way, PCRs can be used
to indelibly record the history of the machine since the last reboot.
The PCRs are cleared off at the time of every reboot.

Over the past few years, computer industry has come up with
many initiatives to guarantee security, integrity and confidential-
ity of data through innovative hardware-based Architectures. A
consortium of key industry players, Trusted Computing group
(TCG) [22], came up with the specifications for a TPM with such
a goal. The TCG vision was that this rudimentary TPM supported
trust can be bootstrapped into a higher level trust through some
software trust architecture or design principle. Another popular
initiative is the Next-Generation Secure Trusted Computing Base
(NGSCB) [12]. The hardware vendors are moving towards in-
stalling TPM on every computer that ships.

3. APPROACH

Figure 1: Our Proposed Architecture

Our proposed architecture is shown in Figure 1. The key addi-
tions to the standard SOA is a new interface that we call trust nego-
tiation and verification interface. The purpose of this interface is to
provide an abstraction for the clients to negotiate desired integrity
levels and for brokers to verify that the service implementation is

2

indeed conforming to the desired service specification. The trust
negotiation and verification interface between the service broker
and the service provider also allows broker to communicate with
its trusted agent, the trusted platform module, and with service spe-
cific trust monitor in the service providers domain. The role of the
trusted platform module is to periodically validate the integrity of
the trust analyzer that in turn validates the conformance of the ser-
vice implementation with the service specification.

We have implemented a very simple system based on this hy-
pothesized architecture to show the feasibility of our approach. Our
system is shown in Figure 2. To recapitulate briefly, in a SOA there
are three main entities: the service provider, the service broker and
the client (customer). In the context of this paper, the words client,
customer and end user are used interchangably. The client con-
tacts the service broker with a request and the broker directs the
requester to the service provider. In our example system, the ser-
vice broker also acts as the trusted third party. The monitor in this
case is very simple, it verifies whether the service implementation
on the service provider’s side is genuine. This monitor can be di-
rectly implemented using the trusted platform module’s primitives.

The trusted third party hosts an authentication server to authen-
ticate whether the service implementation on the service provider’s
side is genuine. It does so by verifying whether the implementaion
has changed since the last known deployment. For the purpose of
this simple system, we are assuming that if the service provider had
malicious intentions, the service implementation would be modi-
fied to either store or process the confidential customer data. It
may not always be necessary; however, but we are deferring dy-
namic monitoring for future work. The goal of this architecture is
to help the client to successfully complete the transaction with an
assurance from the trusted third party that the service provider has
not stored or processed the confidential data that were provided by
the customer.

The algorithm for verifying the integrity is as described below.

1. A clean-room copy of the production software or the pro-
gram is provided by the service provider to the trusted third
party.

2. The authentication server on the trusted third party takes in-
tegrity mesurements by computing the 160-bit hash of im-
portant configuration files, source files and class files of the
web-service implementation in a specific order using the in-
built Sha1 hash engine of the TPM. The TPM computes the
new 160-bit hash value by computing a SHA1 over the cur-
rent 160-bit hash value. In this way any number of files can
be measured into the same Platform Configuration Register
(PCR). These measurements are stored in the Authentication
Server for future reference.

3. The authentication server sends an ordered list of files to the
TPM on service provider’s side. The TPM computes the 160-
bit hash of these files in the given order and sends it across
to the authentication server.

4. Each time the authentication server receives the 160-bit hash
from the TPM, it compares this hash with the reference value
stored at the time of clean-room measurement of the soft-
ware.

5. Even if there is a slight difference in any of the measured
files, there will be significant variations in the calculated
SHA1 hash value from that file onwards. [25] claims that
it takes 269 units of time to find SHA1 collisions implying
that collisions are very rare. Hence, there will be significant

Figure 2: An Implementation of the Proposed Architecture

variations in the computed SHA1 hash values and these vari-
ations can be detected easily.

6. If the most recent hash value is different from the original
reference hash value, the service broker which is also the
trusted third party can warn the customer of this fact before
the transaction itself.

In the TPM, the PCRs are automatically reset to zero at the time
of system reboot. The measurements made by the trust analyzer on
the service provider’s side are stored in a specific PCR of the TPM.
The contents of this PCR is encrypted using the public part of the
Attestation Identity Key (AIK) of the TPM of the trusted third party
before sending data to it. AIK is a special purpose asymmetric sig-
nature key created by the TPM manufacturer, the private portion of
which is non-migratable and protected by the TPM. Thus, whatever
data is received from the trust analyzer is trustworthy. The TPM of
the trusted third party decrypts the PCR data using the private part
of the AIK. This ensures that the hash value sent to the authentica-
tion server cannot be tampered by the service provider.

The above steps are repeated when one the following happens on
the service provider’s side:

• The operating system reboots.

• The web server or the SOAP server restarts.

• A patch is applied to the software.

• The source code of the software is changed, even slightly.

For every web service, the broker only needs to store a 160-bit
hash value. So, the amount of extra disk space required to do the
above operation is negligible. For small files the inbuilt hash engine
in the TPM can be used to compute the hash value. Whereas, for
large pieces of data, it is advantageous to use a hash engine outside
the TPM, as the TPM hardware may be too slow in performance
for such purposes. This is the main reason why the entire software
is not be measured by the authentication server or by the trust an-
alyzer. Only parts of the software that deal with the handling of
confidential data and the files that deal with the critical system con-
figuration are measured.

3

Figure 3: Example of Trust Violation by a Web Service

4. EVALUATION
This section describes an evaluation of our implementation for a

simple web service dealing with financial transactions. This web
service is described in the following subsection.

4.1 Example Web Service
Figure 3 depicts a common case of violation of trust by web ser-

vices involved in financial transactions. The web service takes the
credit card number, the card validation code (cvc) and the purchase
order as input from the customer. At the end of the transaction, the
customer gets back the invoice number, which is the output of the
web service. In this example, the customer is unaware of the fact
that the web service provider has processed the customer’s input for
adversarial purposes and that it has stored his credit card number
within its local database. The web service could have been certi-
fied to be compliant at the time of deployment, but later, it might
have been reprogrammed by the service provider with a malicious
intent. This violation of trust goes undetected. In essence, without
much ado, the web service provider has extracted the customer’s
credit card number and other important data. Currently, there are
no established strategies for detecting unsafe persistence of data or
for detecting adversarial computation in a service provider’s envi-
ronment.

4.2 Experimental Setup
The architecture was implemented using two Dell Precision 390

stations each having Intel Core2 Duo Processor @ 1.86 GHz and
2 GB of RAM. Both the stations have a TPM (Version 1.2) man-
ufactured by Atmel Corporation, embedded in them. The Atmel
TPMs in these stations have 24 PCRs each. One of the stations is
assigned the role of a service provider while the other plays the role
of a trusted third party. We used the tpm4java [23] for developing
our trust analyzer to monitor and measure the implementation on
the service provider. The Java library tpm4java, developed at TU-
Darmstadt, Germany, is used for accessing the TPM functionality
from Java applications. The test environment consists of Apache
Web server Version 2.2, Tomcat Servlet Container Version 5.5.23
and Axis SOAP server Version 2-1.1.1 running on Windows XP
Professional operating system.

4.3 Experiment
For evaluating this architecture, we created the web-service that

carries out an online transaction for a customer as described in Sec-
tion 4.1. The web service is invoked from a web browser in another

machine. The customer gives the credit card number and the card
validation code along with the list of items to be purchased. On the
implementaion side, we have two files Order.java and Process.java
that contain the code for carrying out this transaction and for giv-
ing back an invoice number as the output. There are two versions
of these files. The first version is exactly according to the web ser-
vice specification. Whereas, the second version is very similar to
the first one except that it has been altered to store the credit card
numbers locally.

The first column of the Table 1 lists the names of the files in the
web-service implementation. The second column in the Table 1
shows the 160-bit hash values of PCR #10 during clean-room mea-
surements of the software. The third column shows those measure-
ments that were obtained after the source-code has been altered.
It can easily be observed that the hash values in the third column
starting from the entry corresponding to the file Order.java are all
different from their corresponding entries in the second column.
This is because the SHA1 hashing algorithm in the TPM not only
hashes the contents of the candidate files but also preserves the or-
der in which the files were hashed. This implies that at least one
file including Order.java has been altered without the knowledge of
the trusted third party. The list of files that were monitored, which
includes log files, class files and executables, is long and only a
subset of this list is published in this paper to demonstrate the via-
bility of the concept. Thus, our architecture can detect a violation
of trust in a web service implementation and can produce evidence
for the same. A web service deployed in such a setting can claim
to be "trust preserving".

5. RELATED WORK
Ever since the 1970s, efforts have been made to produce secure

operating systems [21] as a basis for secure computing. Any sys-
tem can be thought of as consisting of many layers of abstractions.
The integrity of a system is built recursively through a chain of
integrity checks starting from the lowermost level of abstraction.
Each level is checked for integrity before passing the control to the
next higher level. In 1997, Arabaugh et al. proposed an architecture
for secure and reliable bootstrapping called AEGIS [1]. In AEGIS,
the integrity checks begin from the power-on and continue till the
control is handed over to the operating system. AEGIS modifies
the boot process so that all executable code is verified using digi-
tal signatures prior to its execution. Here, the chain of trust begins
from the software loaded in BIOS and PROM boards. AEGIS also
incorporates the capability to recover from integrity failures using
replacement modules. Thus, it can guarantee that the system initial-
izes to a secure state. Microsoft has incorporated a feature called
Secure Startup in the Longhorn version of Windows [12]. Secure
Startup has the capability to ensure that the PC running Longhorn
starts in a known good-state. Another important contribution of
this work was towards preventing denial of service attacks. AEGIS
cannot distinguish fake hardware from the genuine one. If the boot-
ing process is not sequential, certain non-trivial changes have to be
made to the architecture.

In 2003, Grafinkel et al. proposed Terra, a virtual-machine based
platform for Trusted Computing. Terra allowed multiple applica-
tions with diverse security requirements to run simultaneously on
the same hardware. A virtual machine monitor was used to simul-
taneously partition the hardware into independent, isolated virtual
machines. The software stack of each virtual machine could be
tailored to meet the security requirements of the software running
on that virtual machine. Terra can give digital certificates for all
of the software running on the virtual machines, to the third party
for verification. However, it is not possible to selectively measure

4

Table 1: TPM Measurements for a Genuine and a Malicious Service
File 160-bit SHA1 Hash of Genuine Program 160-bit SHA1 of the Modified Program
../EchoHeaders.jws 34f6....32b7 34f6....32b7
../SOAPMonitorApplet.java 422b....b03a 422b....b03a
../SingleOrder.jws fd53....77b5 fd53....77b5
../StockQuoteService.jws b377....590b b377....590b
../fingerprint.jsp a841....09c2 a841....09c2
../happyaxis.jsp 2c7f....4030 2c7f....4030
../i18nLib.jsp 2a5f....e883 2a5f....e883
../index.html 524b....d1db 524b....d1db
../index.jsp 0302.....6ab9 0302....6ab9
../Order.java f354....14a3 3d12....fccb
../Process.java d679....2e8d 9821....6490
../charset.conv 8279....db20 7fbf....f784
../httpd-autoindex.conf 24bc....11af 3da1....2c05
../httpd-dav.conf 0600....79cb ea20....ddb1
../httpd-default.conf cb78....b514 aeec....8bc7
../httpd-info.conf e86d....d676 cb42....65c0
../httpd-languages.conf edd9....1fae a591....9b95
../httpd-manual.conf 5526....40c7 7701....9d58
../httpd-mpm.conf 5d28....9ac3 e062....5a41
../httpd-multilang-errordoc.conf 6526....7a2e 5f59....a0cf
../httpd-ssl.conf 528b....579f b3e5....5215
../httpd-userdir.conf 1337....4ba1 e020....11e5
../httpd-vhosts.conf 1be5....108a 3101....229a
../httpd.conf c9fd....4aa7 4fff....b99f
../magic f16c....e125 ab63....6b9c
../mime.types 7996....4748 17a4....8059

individual software. The ever increasing number of device drivers
pose a formidable challenge to implement the virtual machine mon-
itor. Terra does not address the issue of loading untrusted drivers.
Unlike AEGIS, Terra does not start from a secure boot process.

There are many ways and means to enforce policies such as con-
fidentiality and security on the end-to-end behavior of a computing
system. Such methods are broadly classified as Information Flow
Mechanisms. Other than carrying out a rigorous analysis on the
system as a whole to prove that it enforces the specified security
policies, Information Flow Mechanisms also take into considera-
tion the possibility of supplying malicious inputs to the program
so that it terminates abnormally. Then, it is verified if confidential
information can be extracted from the exception trace. Sablefeld
et al. address such issues through language-based techniques for
specification and enforcement of security policies in [18]. The lim-
itation of this approach is that the security policies can only be
specified by the programmer. The user of the software has no say
in it. Identifying such short-comings, Vachharajani et al. proposed
RIFLE [24], a user-centric run-time information flow architecture.
Information flow systems such as this allow untrusted applications
to access confidential data but prevents the data from getting leaked
to other programs or covert channels. The authors claim that RI-
FLE can be used to enforce user-defined security policies on any
program through a security-enhanced operating system. The pro-
gram binary is translated from the conventional Instruction-Set Ar-
chitecture (ISA) to an Information Flow Secure (IFS) architecture.
This translated program is executed on a hardware designed for
information-flow tracking. The goal is to verify if the program
contains only legal flows, which is defined by the user in the se-
curity policy. Such an architecture is very useful if the user wants

to be certain that the program running on his/her machine is not
propagating any confidential local data, that the user is unaware of.
It is difficult to apply this technique without major changes in the
context of a Service Oriented Architecture because the web service
implementation program runs elsewhere rather than locally.

In 2004, Sailer et al. proposed a TCG based Integrity Measure-
ment Architecture for Linux [20]. This architecture made use of
a Trusted Platform Module (TPM) hardware to store the integrity
measurements of the system using the SHA1 Hash function module
of the TPM hardware. Unlike AEGIS, this system only takes mea-
surements and does not have a recovery process. Also, this system
can take selective measurements of the software to create a repre-
sentative evidence that can be interpreted by the remote party. The
purpose of this architecture is to present an ordered list of mea-
surements to a remote party. The remote system determines the
integrity of the attested system by reconstructing the image of the
attested system’s software stack on the local system using these
measurements and then by applying the security policy on the lo-
cal software stack. To establish mutual trust, this process has to be
carried out on both sides involved in the transaction [19]. This was
implemented by instrumenting the Linux kernel to create measure-
ments and to store them in the TPM hardware to protect against
compromised systems. This architecture takes measurements of
the kernel modules, executables and shared libraries, configuration
files and other important files before they are loaded on the system.
The cryptographic measurements are stored in the 160-bit Platform
Configuration Registers (PCRs) of the TPM. The advantage of this
architecture is that it could verify integrity of a system up to it’s
application layer (web server).

However, the process of mutual attestation is quite complex in-

5

volving recreating the image of the other party on the local system
based on the measurements obtained and then applying a security
policy to it. The task of taking measurements is implemented by
making modifications to the Linux kernel code. In case of online
transactions, common users may not have the Linux operating sys-
tem. In a majority of the cases, the two communicating parties may
not have the same operating system in their environments. This
makes it difficult to recreate the image locally based on the mea-
surements sent out by the other party. Our architecture is designed
to address these issues.

Canfora et al. have presented a detailed analysis of the funda-
mental issues and solutions related to various perspectives of test-
ing a service-centric model in [4]. These perspectives are analyzed
considering the needs of the service provider, the system integra-
tor, the third party certifier and the user. The authors profess that
making a service-centric system capable of self-testing helps over-
come issues such as unpredictable response time and availability.
We support this idea of self-testing by using the trust analyzer and
extend the concept to include trust as one of the issues in a service-
centric system. Our architecture avoids wastage of resources be-
cause it does not force the service provider, the trusted third party
and the user to make any radical changes in the existing architec-
ture. Only initiative that has to be taken for guaranteeing trust is to
leverage the TPM hardware that is already installed in the system.

Another related approach is Aglet [16]. An aglet is a java ob-
ject with a code component and a data component. The key idea
here is to use these mobile agents to preserve privacy. An aglet
consists of two distinct parts: the aglet core and the aglet proxy.
The aglet core contains all the internal variables and methods. It
provides interfaces through which the environment can make use
of the aglet or vice versa. The core is encapsulated with an aglet
proxy which acts as a shield against any attempt to directly access
the private variables and methods of the aglet. This aglet proxy can
be programmed to enforce local privacy requirements on the site of
the remote entity. Aglets are deployed into aglet servers, which en-
forces the requirement of the security model. A key problem with
aglets is that the integrity of aglets depends on the integrity of aglet
servers, which cannot be guaranteed in an untrusted environment.
However, our architecture can be used to ensure the integrity of
the aglet server, which would then provide a basis of integrity for
aglets.

6. CONCLUSION AND FUTURE WORK
Existing security models for web-services mostly consider the

following four security and trust issues in the service infrastruc-
tures. First question is whether the requesting entity, i.e. client, is
who they claim to be. Second question is the whether the client
is authorized to use the service. Third question is whether the
data, i.e. service request and reply messages, exchange between
the client and the service provider is protected from unauthorized
access and from tampering. Fourth question is whether the client
and/or the provider are protected from the each other’s denial of
service attacks.

These questions, while important do not address a key concern
of clients. Provided a reasonable security framework is available,
the client gets the guarantee that the service request and replies
will be protected from unauthorized access and tampering, how-
ever, these frameworks do not offer any guarantee whether the data
will remain private and tamper-proof in the application domain of
the service provider. Note that the application domain of the ser-
vice provider is where the client’s service requests are processed
and replies returned. A service-oriented architecture is only as se-
cure as its weakest link. In a truly decoupled environment, which

is the main motto of SOAs, including constructs to negotiate, en-
force, and verify trust and security guarantees within the provider’s
application domain through the service discovery interfaces thus
seems to be a crucial pre-condition of mission-critical deployment
of SOAs. Our proposed architecture for ensuring the integrity of
requirement monitors is a step in this direction. Our current ex-
perimental results have looked at static checksum as a method of
ensuring the integrity of the monitor. In future, besides conduct-
ing an extensive evaluation of the overheads associated with this
mechanism, we will also look into dynamic mechanisms.

7. REFERENCES
[1] W. A. Arbaugh, D. J. farber, and J. M. Smith. A secure and

reliable bootstrap architecture. In IEEE Symp. Security and
Privacy, pages 65–71, IEEE CS Press, Los Alamitos,
California, 1997.

[2] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.
Run-time monitoring of instances and classes of web service
compositions. In ICWS ’06: Proceedings of the IEEE
International Conference on Web Services (ICWS’06), pages
63–71, Washington, DC, USA, 2006. IEEE Computer
Society.

[3] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors for
composed services. In ICSOC ’04: Proceedings of the 2nd
international conference on Service oriented computing,
pages 193–202, New York, NY, USA, 2004. ACM Press.

[4] G. Canfora and M. D. Penta. Testing services and
service-centric systems: Challenges and opportunities. IT
Professional, 8(2):10–17, 2006.

[5] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web services description language (wsdl)
1.1. Technical report, World Wide Web Consortium, March
2001.

[6] T. Erl. Service-Oriented Architecture: Concepts, Technology,
and Design. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2005.

[7] M. S. Feather, S. Fickas, A. V. Lamsweerde, and C. Ponsard.
Reconciling system requirements and runtime behavior. In
IWSSD ’98: Proceedings of the 9th international workshop
on Software specification and design, page 50, Washington,
DC, USA, 1998. IEEE Computer Society.

[8] S. Fickas and M. S. Feather. Requirements monitoring in
dynamic environments. In RE ’95: Proceedings of the
Second IEEE International Symposium on Requirements
Engineering, page 140, Washington, DC, USA, 1995. IEEE
Computer Society.

[9] D. Kuo, A. Fekete, P. Greenfield, S. Nepal, J. Zic,
S. Parastatidis, and J. Webber. Expressing and reasoning
about service contracts in service-oriented computing. In
ICWS ’06: Proceedings of the IEEE International
Conference on Web Services (ICWS’06), pages 915–918,
Washington, DC, USA, 2006. IEEE Computer Society.

[10] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Monitoring
and control in scenario-based requirements analysis. In ICSE
’05: Proceedings of the 27th international conference on
Software engineering, pages 382–391, 2005.

[11] K. Mahbub and G. Spanoudakis. Run-time monitoring of
requirements for systems composed of web-services: Initial
implementation and evaluation experience. In ICWS ’05:
Proceedings of the IEEE International Conference on Web
Services (ICWS’05), pages 257–265, Washington, DC, USA,
2005. IEEE Computer Society.

6

[12] Microsoft next-generation secure computing base.
www.microsoft.com/resources/ngscb.

[13] M. P. Papazoglou. Service -oriented computing: Concepts,
characteristics and directions. In WISE ’03: Proceedings of
the Fourth International Conference on Web Information
Systems Engineering, page 3, Washington, DC, USA, 2003.
IEEE Computer Society.

[14] M. P. Papazoglou and D. Georgakopoulos. Service-oriented
computing: Introduction. Commun. ACM, 46(10):24–28,
2003.

[15] J. Pathak, S. Basu, and V. Honavar. Modeling web services
by iterative reformulation of functional and non-functional
requirements. pages 314–326, Washington, DC, USA, 2006.
IEEE Computer Society.

[16] A. Rezgui, M. Ouzzani, A. Bouguettaya, and B. Medjahed.
Preserving privacy in web services. In WIDM ’02:
Proceedings of the 4th international workshop on Web
information and data management, pages 56–62, New York,
NY, USA, 2002. ACM Press.

[17] W. Robinson. Monitoring software requirements using
instrumented code. In HICSS ’02: Proceedings of the 35th
Annual Hawaii International Conference on System Sciences
(HICSS’02)-Volume 9, page 276.2, Washington, DC, USA,
2002. IEEE Computer Society.

[18] A. Sabelfeld and A. Myers. Language-based
information-flow security. In IEEE Journal on Selected
Areas in Communications, 21(1), 2003., 2003.

[19] R. Sailer, L. van Doorn, and J. P. Ward. The role of tpm in
enterprise security. Technical Report RC23363
(W0410-029), IBM Research, Thomas J. Watson Reserch
Center, Yorktown Heights, NY 10598., October 2004.

[20] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a tcg-based integrity measurement
architecture. In Thirteenth Usenix Security Symposium,
pages 223–238, August 2004.

[21] M. Schroeder. Engineering a security kernel for multics. In
Fifth Symposium on Operating Systems Principles, pages
125–132, November 1975.

[22] Trusted computing group.
https://www.trustedcomputinggroup.org.

[23] E. Tews and M. Hermanowski. Projektvorstellung tpm4java
trusted computing fur java.
http://tpm4java.datenzone.de/trac/attachment/wiki/MRMCD/mrmcd101b-
tc.pdf.

[24] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, and
D. I. August. Rifle: An architectural framework for
user-centric information-flow security. In MICRO 37:
Proceedings of the 37th annual IEEE/ACM International
Symposium on Microarchitecture, pages 243–254,
Washington, DC, USA, 2004. IEEE Computer Society.

[25] X. Wang, Y. L. Yin, and H. Yu. Collision search attacks on
sha1.
http://www.cryptome.org/sha-attacks.htm.

7

