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ABSTRACT

Finding flaws in security protocol implementations is hard. Finding
flaws in the implementations of sensor network security protocols
is even harder because they are designed to protect against more
system failures compared to traditional protocols. Formal verifica-
tion techniques such as model checking, theorem proving, etc, have
been very successful in the past in detecting faults in security pro-
tocol specifications; however, they generally require that a formal
description of the protocol, often called model, is developed before
the verification can start.

There are three factors that make model construction, and as a
result, formal verification is hard. First, knowledge of the special-
ized language used to construct the model is necessary. Second,
upfront effort is required to produce an artifact that is only useful
during verification, which might be considered wasteful by some,
and third, manual model construction is error prone and may lead
to inconsistencies between the implementation and the model.

The key contribution of this work is an approach for automated
formal verification of sensor network security protocols. Technical
underpinnings of our approach includes a technique for automati-
cally extracting a model from the nesC implementations of a secu-
rity protocol, a technique for composing this extracted model with
models of intrusion and network topologies, and a technique for
translating the results of the verification process to domain terms.
Our approach is sound and complete within bounds, i.e. if it re-
ports a fault scenario for a protocol, there is indeed a fault and our
framework terminates for a network topology of given size; other-
wise no faults in the protocol are present that can be exploited in
the network topology of that size or less using the given intrusion
model. Our approach also does not require upfront model construc-
tion, which significantly decreases the cost of verification.

Categories and Subject Descriptors
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1. INTRODUCTION

A sensor network is a collection of small size, low power, low-
cost sensor nodes that have limited computational, communication
and storage capacity. These nodes can operate unattended, sens-
ing and recording detailed information about their surroundings.
The innovation in wireless networking coupled with the effect of
Moore’s law is making these networks attractive for many civil and
military applications [1] such as target tracking, remote surveil-
lance, and habitat monitoring. The operating environments of sen-
sor networks are often hostile, requiring mechanisms for secure
communication. In particular, messages containing missions or
queries disseminated by administrators [24], control or data mes-
sages for decentralized collaborations, etc, need to be secure. A
number of security protocols for sensor networks have been pro-
posed in the past decade (see [6] for a survey).

Establishing the correctness of security protocol implementa-
tions continues to be a daunting task as their complexity continue
to increase. In the past, even widely-studied security protocols are
shown to have faults that are detected much later [8, 41, 31].

Verifying sensor network security protocol implementations is
even harder. The reason behind this is that these implementations
are developed for a severely resource constrained environment. Ef-
ficiency and code size are more likely to weigh over readability and
understandability, which in turn increases the likelihood of incon-
sistencies and errors.

The demand for robust performance in unattended deployment
scenarios in hostile environments makes this problem more severe,
which necessitates uncovering any errors as early in the develop-
ment process as possible because on-site bug-fixes and updates are
often impossible or, at the very least, prohibitively costly. There-
fore, detecting and removing errors from sensor network security
protocol implementations is extremely important.

The variety of methodologies that have been suggested for ver-
ification may be classified under two broad categories, simulation
and formal methods. Functional simulation of the implementation



using simulators such as TOSSIM [26] and/or test runs of the pro-
tocol implementation on sensor network test beds are the primary
techniques used within the research community to verify imple-
mentations due to its simplicity and scalability. However, exhaus-
tive simulation is often impractical, and the likelihood that these
tests will uncover subtle errors is diminishing. Therefore, formal
methods such as model checking [14] which use mathematical rea-
soning to systematically explore all possible paths, and which are
based on an unambiguous specification of the implementation, have
emerged as an alternative. Since the entire space of possible execu-
tion paths is searched in order to establish definitive correctness, all
subtle errors in the covered space are exposed. These verification
techniques have shown significant potential in recent years [3, 16].

Applying model checking technique for verification, however,
requires non-trivial efforts primarily because model checking tools
often require a specification (model) of the system under verifica-
tion. This specification is written in a specialized language. Learn-
ing this language itself can be a daunting task. This task is further
complicated by the impedance mismatch between the implemen-
tation language and the modeling language. For example, while
the dominant implementation language for sensor network applica-
tions (nesC) uses an event-based paradigm, an example modeling
language (Promela for Process or Protocol Meta Language [21])
uses message-driven paradigm.

Moreover, constructing a model from an implementation of the
protocol may not be desired for several reasons:

e Building models is time consuming and can take more time
to do than to write the implementation of the protocol [17].

e The level of knowledge and effort required may prevent
many domain experts from attempting such task [38].

e Such model may abstract many potentially troublesome and
error prone details of implementation code that are more
likely to contain bugs [4].

e Keeping model and the code synchronized is hard as the code
is deployed and maintained. Therefore, even though the ab-
stract model is verified correct, security flaws may be in-
troduced in the implementation during maintenance of the
code [4].

This work addresses these problems. We present our approach
for automatic formal verification of sensor network security pro-
tocol implementations written in nesC [15]. Our approach does
not require upfront model construction thereby significantly easing
the task of sensor network developer. Instead, a skeleton model is
automatically extracted from the nesC implementation of the secu-
rity protocol. This extracted skeleton model is then automatically
composed with intrusion models and desired network topologies to
create a complete verifiable model. The key technical contributions
of our work are:

e An automated technique for extracting a skeleton model of
the protocol from its nesC implementations,

e a light-weight language design to semi-formally describe the
protocol specification,

e an approach for customizing the skeleton model of the pro-
tocol with the help of the protocol specification and inbuilt
intrusion detection models to generate a complete verifiable
models, and,

e atechnique for mapping the results of verification back to the
domain terms.

module CompM {
provides interface StdControl;
uses interface Timer;
}
implementation {
command result_t StdControl.init () {...}
event result_t Timer.fired() {...}

}

configuration Comp {

}

implementation {

components Main, CompM, SingleTimer;
Main.StdControl => CompM.StdControl;
CompM.Timer —=> SingleTimer.Timer;

Figure 1: A nesC Module Example

To evaluate our approach we have verified implementations of
two security protocols designed for sensor networks. The first pro-
tocol is the one-way key chain based one-hop broadcast authenti-
cation scheme [45]. The second protocol is pTesla protocol [37].
The intrusion model used for verifying these protocols was a mod-
ified version of the Dolev-Yao model [13] that supports the stan-
dard node capture attack model where one or more nodes are under
control of an attacker and behave maliciously. This is the intruder
model currently used by our approach; however, it can be easily
extended to allow other intrusion models to be used. Our approach
confirmed known flaws in both these protocols.

The rest of this work describes our approach in detail. To make
it self-contained, we briefly describe the nesC language and model
checking in the next two sections. In Section 4, we describe a mo-
tivating example. Section 5 describes our verification framework.
In order to automatically generate the intrusion model that rep-
resents malicious behavior in the model, our framework requires
users to provide information about the protocol message structures
exchanged using a light-weight annotation language. Section 6 de-
scribes this language through an example. Section 7 describes the
results of applying our verification process to a selection of sen-
sor network protocols. Section 8 discusses related work. Section 9
describes future work and Section 10 concludes.

2. THE NESC LANGUAGE

nesC [15] is an extension of the C language designed to develop
sensor network applications. A nesC application consists of mod-
ules, interfaces and configurations. nesC modules are similar to
early Ada and ML modules in that they cannot be instantiated, but
they serve as containers. A module can contain state declarations
(shared by other elements of the modules), command declarations
(methods) and event handlers. An event handler is similar to a
method; yet, it is executed only when the event is triggered. An
interface is a collection of related commands/events. A module
that provides an interface has to implement its commands, while a
module that uses an interface has to implement its events.

An example module in nesC is shown in Figure 1. Module
CompM provides interface StdControl, so it has to implement
the interface commands (e.g. StdControl.init ()). CompM
also uses the interface Timer, so it has to implement its events
(e.g. Timer.fired). A configuration component is responsible
for connecting the components that are using interfaces to the com-
ponents that provide their implementation. For example, compo-
nent Ma in uses interface StdCont rol and is wired to component
CompM. Every application has a single top-level configuration.



3. MODEL CHECKING

In model checking, the system to be verified is represented as a
finite-state model, a model that represents all possible scenarios of
the system behavior. After the model is built, the verifier (or the
model checker) takes the model and the requirement as input and
goes through the model to check if any branch of the model is vio-
lating the requirement. If one branch has violated the requirement
of the model, then the model checker creates a counterexample,
where the branch that violated the requirement is displayed as a
sequence of states.

Verification from abstract specifications using techniques such as
model checking has been used to find flaws in cryptographic proto-
cols [29] (see [32] for a survey). The main benefit of model check-
ing over verification techniques like simulating using TOSSIM and
manual inspection is that the model verified by the model checker
covers all possible scenarios of the behavior of the system. Unlike
simulation that does not provide exhaustive coverage, verification
using model checking gives a more thorough analysis of the system
by checking satisfiability of the requirement through every branch
of the model representing the system.

As mentioned previously, one of the main problems that hinders
using model checking is the effort required to build the models. The
time taken to build the models and the expertise required to learn
how to build them make model checking a tedious job. Some work
has attempted to automate such process by extracting the models
from the code (e.g. [17]). In particular, model checkers that take
source code as input such as Java path finder [19], Bandera [12],
etc, allow general-purpose Java programs to be model checked,
but these techniques do not support the nesC language and do not
consider security protocol related aspects such as intrusion models,
network topologies, etc. To the best of our knowledge, our work is
the first such approach that is applicable to sensor network security
protocols.

4. MOTIVATION

To illustrate the problem with current verification techniques, we
describe in this section the verification of an example sensor net-
work security protocol, the polynomial pool based pairwise key
establishment protocol [27]. The following describes the protocol
in some detail.

The protocol includes two phases: system initialization before
network deployment and pairwise key establishment after deploy-
ment. Before deployment, the network controller picks n symmet-
ric bivariate polynomials f;(x,y) (: = 0,--- ,n — 1); every sensor
node with ID A is preloaded with m < n univariate polynomials
fi, (A,y) (k = 0,--- ,m — 1), which are shares of m out of n
aforementioned bivariate polynomials.

After deployment, if neighboring nodes A and B have shares de-
rived from the same bivariate polynomial, for example, fo(A,y)
and fo(B,y), they can directly establish f;(A, B) = f;(B, A) as
their pairwise key. Otherwise, A and B will find one or more help-
ing nodes Iy, I, - - -, Is such that, each pair of adjacent nodes on
the chain A, 11, I, - - -, Is have shares derived from the same bivari-
ate polynomial, and thus can set up a pairwise key. Then, A picks
a new key, encrypts it with the pairwise key shared with I;, and
sends it to I1. I; and the following nodes in the chain uses the same
approach to secretly transmit the new key hop-by-hop towards B.
This way, a pairwise key can be established between A and B.

A part of the nesC implementation of this protocol is shown in
Figure 2. This part is responsible for the path discovery . First, we
can see that the implementation is much more complicated com-
pared to the abstract description of the protocol. Even though the

levent uint8_t* Channel.receive (uint8_t *msg) {
2 uintlé6_t node_s,node_d;

3 uintlé6_t key[4],keys[4],keyd[4];

4 uint8_t cks([2],ckd[2];

5 uint8_t i, Jj,type;

6 bool same, sames, samed, cp;

7

8

9

// every sensor that received the msg
// checks itself

10 if ((type==4)&& (node_s!=sID)&& (node_d!=sID)) {
11 msg[5+ss+ss] = msg[5+ss+ss]-1;
12 sames = check (msg+5+ss, secret, cks) ;

13 samed = check (msg+5, secret, ckd);

15 if ((sames==1)&& (samed==1)) {

16 // node_my send *cks *shares to node_s
17 j=cks[1];

18 i=ckd[1];

19 call ComputeKey.compute (

20 (uint8_t *)&secret[j],node_s, (uint8_t *)keys);
21 call ComputeKey.compute (

22 (uint8_t *)&secret[i],node_d, (uint8_t *)keyd);
23 // generate a random number

24 key[0] = call Random.rand();

25 key[1l] = call Random.rand();

26 key[2] = call Random.rand();

27 key[3] = call Random.rand();

28 // encrypt key[0] with keys and keyd separately
29 call Primitive.encrypt (

30 (uint8_t *)keys, (uint8_t *)key, (uint8_t *)keys);
31 call Primitive.encrypt (

32 (uint8_t *)keyd, (uint8_t *)key, (uint8_t *)keyd);
33 msg[0] = 5; // type5: send path key

34 memcpy (msg+1, (uint8_t *)&sID,2); // src node

35 memcpy (msg+3, (uint8_t *)&node_s,2); // dest node
36 msg[5] = ckd[0];

37 memcpy (msg+6, (uint8_t *)keyd, 8);

38 msg[1l4] = cks[0];

39 memcpy (msg+15, (uint8_t *)keys,8);

40 if (sendflag==0) {

41 call Channel.send(node_s,msg);

42 sendflag = 1;

Figure 2: A snippet of the polynomial pool based pairwise key
establishment protocol implementation [27]

manual inspection and mathematical analysis of the abstract spec-
ification of the protocol might ensure security of the protocol, the
implementation of the protocol may not accurately implement the
abstract protocol, thus leaving room for subtle errors that can be
exploited by adversaries. Moreover, verification of the implemen-
tation using simulators like TOSSIM [26] or using testbeds may
not exhaustively test all paths in the protocol implementation, thus
leaving room in the untested paths for possible attacks.

A model for this protocol in the PROMELA language is shown
in Figure 3. This model can be verified by the model checker
Spin [22]. One challenge in building such model is to emulate the
physical characteristics of sensor networks in the model that plays a
key role in verification. For instance, to emulate the wireless chan-
nels, the receiver of the message should not prevent other sensors
from receiving it as well.

If PROMELA’s inbuilt construct for sending and receiving mes-
sage is used to emulate sending and receiving message in this pro-
tocol, the message will be removed from the channel when a re-
ceiver receives the message. Thus, a modified version of receiving
like the one used in Figure 3 (lines 3-9) is needed. Furthermore,
some mechanism to emulate collision and mutual exclusion is also
needed. Here the atomic construct of PROMELA is used to en-
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do
/*Receiving a msg*/
: channel.containsMsg==1 =>
atomic {
msg.src = channel.msg.src;
msg.dest channel.msg.dest;
msg.info channel.msg.info;

msg.type ==
&& msg.src == agent_id
&& msg.dest == agent_id ->

/* Non-determinism for
emulating random call*/

if

:: key[0]

:: key[0]

:: key[O0]

1;
2;
3;

fi;

/* same for key[l], key[2]... */

/* Sending message */
atomic{
channel.msg.src = msg.src;

}
:: else —> ...
fi;
od;

Figure 3: PROMELA model for the code in Figure 2

sure these properties. This construct ensures that all statements
between line 5 and 8 are executed as an atomic transaction.

The moral of the story is that, even though model checking al-
lows us to conduct more rigorous verification compared to simula-
tion and test-beds, a simple error in building the model can easily
deviate the behavior of the model from the intended behavior.

An approach that provides technique for automatically extract-
ing a model from protocol implementation and verifies them using
existing model checkers seems to solve these problems. Once the
automatic extraction approach is verified to be correct, the models
extracted by it are guaranteed to faithfully represent the implemen-
tation. Thus there are no inconsistency issues between the model
and the protocol implementation during the model construction.

Such models can be kept synchronized with the actual imple-
mentation by a simple regeneration of the model after the imple-
mentation has changed. Such regeneration could be as simple as
compiling the protocol implementation and can also be incorpo-
rated into the compilers.

Furthermore, such approaches make the benefits of rigorous for-
mal verification technique available to a developer without requir-
ing them to learn the intricacies of formal techniques and their spec-
ification languages, which in turn significantly reduces the over-
head of protocol implementation verification.

Our approach is an example of such technique. In the next sec-
tion, we describe our framework for verifying nesC implementa-
tions of sensor network security protocols.

5. VERIFICATION FRAMEWORK

Our framework provides automatic verification of sensor net-
work security protocols by extracting models from the protocol im-
plementation. In addition, the framework automatically generates
intruder models that are necessary for verification of the security
protocols. It is built on top of the nesC compiler version 1.1.1 [35]
and uses the Spin model checker [23] as the backend.

The overview of the framework is shown in Figure 4. The frame-
work takes the source code of the protocol as input. In order
to verify a protocol implementation, besides the source code, the
framework requires a small amount of extra information such as
the structure of messages used in the protocol, a deployment topol-
ogy, and properties that need to be verified about the protocol. This
information is provided as comments at the top of the main con-
figuration of nesC implementation using our annotation language.
The generated protocol model is merged with the generated in-
truder model and then verified using the Spin model checker [23].
If there is a violation of the protocol objective, the counterexam-
ple generated by Spin is translated into nesC statements using the
counterexample translator.

In this section, we describe the main components of the frame-
work: the Protocol Model Generator, the Intruder Model Generator
and the Counterexample Translator.

5.1 Protocol Model Generator

The protocol model generation phase replaces the original code
generation phase of the nesC compiler on top of which our frame-
work is built. It translates the protocol implementation into a
PROMELA model.

The major challenge in extracting a model from the implemen-
tation is to generate a model of small number of states as possible.
If the number of states (also known as state space) increases be-
yond a certain limit, the model checker will not be able to verify all
the model and may never halt. This problem is known as the state
explosion problem, which is a major challenge when applying the
model checking technique.

In order to generate a model with small state space, we have to
put some boundaries on the generated model. Our current proto-
type requires a bound on the number of nodes involved in the pro-
tocol as well as the topology of the network. The user has to state
the number of nodes and the topology of the network. The user
can provide the framework with such information through our new
lightweight annotation language that we describe in Section 6. This
annotation language is also required for specifying the verification
goals of the protocol. In other words, the security properties that
need to be satisfied by the protocol are stated using this annotation
language so that the framework can verify if the implementation is
able to satisfy them or not.

5.2 Intruder Model Generator

A malicious behavior is required in the verification process to
ensure that the protocol satisfies its goals with the presence of ma-
licious behavior. In order to automatically generate an intruder
that behaves maliciously, the framework requires some information
about the protocol. Please note that the framework does not infer
the protocols from the nesC code (i.e. the framework does not infer
the message sequencing of the protocol from the implementation).
What the framework does is verify that the implementations of the
security protocols satisfy their goals in the presence of malicious
behavior.

In order for the generated intruder model to behave malicioulsy,
the intruder should be able to receive messages, read their content
if able to decrypt them and send false data. To be able to do so,
the intruder needs to know the types of messages exchanged be-
tween principals in the protocols and the structure of the message
i.e which fields in the message represents information about sender,
receiver, data, etc so that it can read and alter the message contents.

For example, imagine a simple protocol that consists of two mes-
sage types: ping and ack, each of which contain a source and desti-
nation address and a sequence number. In order to attack this naive
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Figure 4: Overview of the Verification Framework

protocol, the intruder may intercept the messages to the destina-
tion, exchange the source and destination address and reply back
with this modified message as one possible attack. In order to au-
tomatically generate this attack the intruder needs to be aware of
the structure of these message types in the implementation so that
it can retrieve and manipulate fields in the messages that are ex-
changed by the protocol e.g. sender and destination address. The
framework can get this information from the annotation language
through which the message structure is analyzed.

The intruder model that the framework currently generates is a
modified version of the Dolev-Yao style [13] that allows model-
ing wireless network channels. An intruder in this model can read
all messages and modify their contents, but cannot read encrypted
messages unless it has the encryption key; yet, an intruder inter-
cepting a message need not block the original recipient of the mes-
sage from receiving it. This approach models the behavior of wire-
less network channels where the malicious node and the original
recipient are in the reception range of the message source, thus
both receive the message. Besides, this modified model can also
represent node capture attacks, where the intruder is a legitimate
node that has been captured by an adversary and then placed back
after being modified to act maliciously.

Even though our framework currently supports the generation of
intruder models according to only one intruder template that allows
verification against node capture attack, our framework can easily
be extended to provide generation of other intruder models accord-
ing to different patterns. As Figure 4 shows, we intend to allow
the users of our framework to add new intruder patterns to be used
for generating intruder models. This extensibility feature would
help achieve more thorough verification against different types of
attacks.

5.3 Verification and Counterexamples

The generated model containing the model of the protocol im-
plementation, the intrusion model and the environment models are
given as inputs to the Spin model checker [23], which verifies
whether the model violates the objectives stated using our anno-
tation language. If the objectives are satisfied, the protocol is ver-
ified as secure. Otherwise, Spin produces a counter example that
violates the security objectives. This counter example is then trans-
lated to a sequence of nesC statements. The protocol verification
may not terminate if the PROMELA model is too large.

6. ANNOTATION LANGUAGE

Our annotation language provides necessary information re-
quired for automatic verification of nesC security protocols. In this

section, we describe how our annotation language is used to gen-
erate intruder models, specify topology and describe the objectives
sought of the protocol. We illustrate how our annotation language
can be used through a simple example.

message Ping mapsto IntMsg{
int sender mapsto src;
int receiver mapsto dest;
private int data mapsto info;
}
message Ack mapsto IntMsg{
int sender mapsto src;
int receiver mapsto dest;
}
message_type IntMsg.type {
1: Ping;
2: Ack;
}
node A{ }
node B{ A; }
node Intruder { B; A; }
A.Send.send(Ping)—>
!Intruder.Receive.receive (Ping)

@EPEPE@E@E@EEE@E@EE®E®®®®® ® @

*/

Figure 5: An Example Verification Configuration

An example of the verification configuration written in our an-
notation language is displayed in Figure 5. The verification con-
figuration is defined in comments. The annotation comments start
and end with an at-sign (@) and is written at the top configuration
of the nesC application. The verification configuration is used to
describe message structure mapping, topology and objectives.

6.1 Message Structure Mapping

As mentioned in the previous section, the intruder needs to be
aware what kind of messages it is receiving, thus needs to know
about the message structures. An example message declaration is
given in Figure 5 (lines 2-6), where a message type Ping is de-
fined. This message type in specification is mapped to the structure
IntMsg in the implementation using the mapsto special word.
Similarly, the fields in the message structure are mapped using
mapsto special word. In the field declaration, we have a set of
predefined terms for which the fields in the implementation can
be mapped to. The set of terms currently used has three terms:
{sender,receiver,data}. In the example message declaration,
a message of type Ping will contain three integers. Two inte-
ger fields represent the sender and the receiver of the message and
are mapped respectively to fields src and dest of the structure
IntMsg. The third field represent the data carried by the mes-



sage, and is mapped to the field info of the structure IntMsg.
The private special word is used to declare that the content of
the info field is encrypted. In case a message contains more than
one field with relevant data that need to be mapped, another field
mapping is written with that same term data appended with an
incrementing number. For instance, if we have two fields a and b
that carry data, then the mapping will correspond to terms data
and data2 respectively.

One common approach in implementing protocols in nesC is
that only one message structure is used for all different types of
messages used in the protocol. For instance, we can see that both
message declarations Ping and Ack (lines 7-10) are mapped to
the same structure IntMsg. To differentiate between different
types of messages, usually one field of the message structure in
the implementation is used to identify the type of the received mes-
sage. In the annotation language, this field is referenced using the
message_type special word. The field type of the structure
IntMsg (lines 11-14) is the field responsible for identifying if the
type of the message is either Ping or Ack (where the value of
type will be either 1 or 2 respectively).

6.2 Topology

To avoid the problem of state explosion, Our current prototype
allows for verifying the protocol with one topology at a time. The
annotation language allows the user to define the topology of the
network against which the protocol will be verified. In lines 15-17
of Figure 5, we define the nodes to be involved in the protocol using
the special word node. After the node name, the nodes to which
the node is connected are stated. In this example, we have a linear
topology between nodes A and B. The compromised node that acts
maliciously is represented using the special word Intruder.

Even though sensor networks are supposed to have dynamic
topologies, we believe that this prototype is still in cope with
the current implementations of sensor network security protocols
where handling dynamic topologies has not yet reached the level of
maturity to be deployed in real life applications.

6.3 Objectives

The objectives (requirements) of the protocol are described in
terms of commands and events used in the implementation. In lines
18-19, the trivial objective in this example means that if node A
sends a message of type Ping, then (denoted by the construct —>)
node Intruder will not receive it. Please note that the right hand
side of the objective (after the construct —>) is always a negation.
This way we are verifying that something bas does not happen (i.e.
Intruder does not know a secret that it is not supposed to know).

Since the malicious node acts as a compromised node, then
it has the ability to use the same commands and events of
the legitimate users. For instance, we stated in the objective
that the intruder receives a message of type Ping by writing
Intruder.Receive.receive (Ping m). In order to de-
note that the intruder was able to understand data that is supposed
to be secret, one more special word is used: knowsData. For
instance, since the message type Ping has a private field that
the intruder should not be able to read, this would be denoted as
(! Intruder.knowsData(Ping m)).

If the objectives are satisfied, then the protocol is verified as se-
cure. Otherwise, the counterexample generated by Spin is trans-
lated in terms of nesC statements.

7. EVALUATION

In this section, we evaluate our framework prototype. We then
describe verification of two sensor network security protocol im-

plementations using our framework. For both protocols, the frame-
work was able to find flaws in the implementation. All experiments
described in this section were conducted on a Dell PowerEdge 1850
with dual 3.8 GHz processors and 2 GB RAM. The version of SPIN
used for these experiments was 4.2.7.

7.1 Verification of the One-way Key Chain
Based One-hop Broadcast Authentication
Scheme

7.1.1 Protocol Overview

The one-way key chain based one-hop broadcast authentication
scheme was proposed by Zhu et al. [45]. During the initialization
step of this protocol, every node (denoted as A) generates a one-
way key chain of certain length; that is, kn, kn—1 = h(kn), -+ -,
k1 = h" " (kn), ko = h™(kn), where h(.) is a secure hash func-
tion.

The protocol then proceeds as follows: A transmits the first key
of the key chain (i.e., ko) to each neighbor separately, encrypted
with the pairwise key shared between A and this neighbor. When
A broadcasts its first message mo, the message is authenticated
with k1; that is, mo is broadcast with message authentication code
(MAC) h(mo, k1). After the broadcast, k1 is released alone or
with the next broadcast message, which is authenticated with the
next key in the key chain (i.e., k). To generalize, the i*" message
m; is broadcast along with h(m;, ki41), and ki1 is released after
the broadcast.

7.1.2 Known Flaw in the Protocol

As pointed out by Zhu et al. [45], the adversary can launch the
following attack: First, the adversary prevents a neighbor of A (de-
noted as B) from receiving the packet from A directly. This can
be achieved by, for example, transmitting to B at the same time
when A is transmitting message m,; and when A is releasing au-
thentication key k;+1. Second, after knowing k;11, the adversary
sends a modified packet to B while impersonating A. Note that,
the adversary has already got the released authentication key be-
fore transmitting the modified message to B, hence B will accept
the modified packet. To defend against an outsider (not a neighbor
of A) from launching the above attack, the original authentication
scheme can be enhanced as follows: A shares a cluster key KC'
with all its neighbors; when A broadcasts message m;, the MAC of
the message will be h(m;, ki1 XORKC'). However, the defense
will not be useful if the adversary has obtained K C' by compromis-
ing a neighbor of A.

7.1.3  Verification using Slede

To test if our prototype can automatically detect the above attack,
we verified an implementation of this protocol with respect to a
property informally stated as follows: “if a malicious node sends
data, the receiver should detect that the sender is an intruder.”

The verification setup including the verified property is shown in
Figure 6 using our annotation language. Two message structures
are defined, KeyMsg that sends the keys, and Dat aMsg that sends
the message authenticated using the next key to be broadcast (the
MAC field in this message structure is mapped to data2 as shown
inline 11). Note that the field info in the implementation message
structure IntMsg holds the encrypted key in the first message type
KeyMsg (line 5) and also holds the data for the message of type
DataMsg (line 10). This is one of the main reason message struc-
ture mapping is required since the fields of the message structure in
the implementation can be reused in different message types.

The field type in the message structure has a value of 1 or



2 corresponding to messages of type KeyMsg and DatalMsg re-
spectively (lines 13-16). The objective uses the special word
Intruder torepresent the intruder model generated by the frame-
work as described in Section 6.3. Notice that the intruder can send
messages using the command Send. send () since the intruder is
a node that has been captured and modified to behave maliciously
according to the intruder pattern that our framework is usually us-
ing. In our sample nesC implementation for this protocol, node B
turns its green led on when it receives a message from an authen-
ticated source. Thus the objective ensures that node B should not
turn its green led on if a message of type DataMsg is sent (or in-
tercepted and modified) by an intruder (lines 20-21), otherwise the
intruder would have successfully impersonated a legitimate node
and fooled node B.

Our approach was able to detect this attack. The performance
results for verifying this protocol are discussed in Section 7.3.

message KeyMsg mapsto IntMsg{
int sender mapsto src;
int receiver mapsto dest;
private int data mapsto info;
}
message DataMsg mapsto IntMsgf{
int sender mapsto src;
int receiver mapsto dest;
int data mapsto info;
private int data2 mapsto MAC;
}
message_type IntMsg.type {
1: KeyMsg;
2: DataMsg;
}
node A{ }
node B{ A; }
node Intruder {B; A;}
Intruder. Send.send(DataMsqg)
!B.Leds.greenOn ()

->

®EEEEEEE@®EEEE®E®E®®®®®®®® @

*/

Figure 6: Verification Configuration for One-way Key Chain Based
One-hop Broadcast Authentication Scheme [45]

7.2 Verification of the ,Tesla protocol

7.2.1 Protocol Overview

UTESLA [37] was proposed for securing broadcast in sensor net-
works. This protocol assumes a network model that consists of a
broadcast sender (e.g., base station) and multiple receivers (e.g., or-
dinary sensor nodes). On receiving a broadcast message, each re-
ceiver needs to verify whether the message is really from the sender
and not tampered by any intermediate nodes. The correct working
of the protocol relies on the assumption that all principals (base
station and ordinary sensor nodes) are loosely time synchronized.
An implementer of the yTESLA protocol may not fully understand
the necessity of implementing secure time synchronization for the
security of the protocol, which is not explicitly specified in the de-
scription of the protocol itself. Hence, the implementer may choose
to implement a simple but not secure time synchronization proto-
col as the fundation of the yTESLA. As elaborated in the following,
our approach can automatically test such mis-implementations.

7.2.2  Verification Using Slede

The verification resulted in the scenario shown in Figure 8. For
time synchronization, node A sends out its time stamp t0, which
is intercepted by some malicious node I. Node I changes the time
stamp to be t0-2, and then forwards it to node B. Since the time syn-
chronization protocol is attacked, the clock in node B will not get

message Timestamp mapsto IntMsg({
int sender mapsto src;
int receiver mapsto dest;
private int data mapsto info;
}
message Data mapsto IntMsg{
int sender mapsto src;
int receiver mapsto dest;
int data mapsto info;
private int data2 mapsto MAC;
}
message Key mapsto IntMsg ({
int sender mapsto src;
int receiver mapsto dest;
private int data mapsto info;
}
message_type IntMsg.type {
1: Timestamp;
2: Data;
3: Key;
}
node A{ }
node B{ A; }
node Intruder {B; A;}
Intruder.Send.send(Data)
!B.Leds.greenOn ()

->
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*/

Figure 7: Verification Configuration for pTesla protocol [37]
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Figure 8: Assumption Violation in pTesla Implementation

synchronized with node A. Later, when node A broadcasts message
ml (which is authenticated with key k1) at time t1, the message is
intercepted by node I who will not further forward it. At time t1+1,
when node A releases key k1, the key is also intercepted and held
by node I. Right after that, node I forges a message m1’ authenti-
cated with key k1, and forwards it to B. Then, node I releases key
k1 at t1+2. Upon receiving k1, node B will accept message m1’
since it can be verified with k1 and the time stamp of the message
(i.e., t1) is within the valid scope for acceptance.

7.3 Performance

In this section, we describe the performance of our framework in
terms of number of states generated, memory used and time taken
to detect the flaws. In Table 1, the properties of the sample imple-
mentations we used to verify the two protocols are displayed. The
implementation of the pTesla protocol has more lines of code and
more number of fields in the message declarations than the one-hop
broadcast authentication scheme.

In the performance charts in Figure 9, we can see that when we
have two nodes and the intruder can communicate with both of
them, the pTesla consumes more time, states and memory than the
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Cmdes 0 Deslsage F.elsgage verifying protocol implementations in C. Their approach models
ode tiggsara_ 1elds secrecy properties as reachability properties of the C implementa-
One-hop Broadcast Authenti]I70 o 0 tion and analyzes these properties. A simple pointer analysis tech-
cation Scheme nique is used to keep the verified model as close as possible to
1/ Tesla 200 3 i the actual implementation. Unlike our approach that provides sup-

Table 1: Implementation properties of the protocols

Broadcast Authentication scheme. In our experiment, the intruder
is communicating with only two nodes, even when more nodes are
present in the topology. The reason behind that is that when we in-
creased the number of neighbors of the intruder to three instead of
two (not shown in the figure), a state explosion occured. Thus, we
bound the number of neighbors of the intruder in the verification
of both protocols to two neighbors through the whole experiment.
We can see in Figure 9 that the verification of p/Tesla requires more
time, memory and has more states than the verification of the Au-
thentication scheme. The reason behind this is that z/Tesla has more
lines of codes and more message declarations than the Authentica-
tion scheme.

We have concluded from our experiment that there are four main
criteria that affect the performance of our framework: the lines of
code of the protocol implementation, the number of message dec-
larations, the number of fields in the messages exchanged and the
number of neighbors to the intruder node.

8. RELATED WORK

The closest work related to our approach is by Bhargavan et
al. [4] and by Goubault-Larrecq and Parrennes [17]. Bhargavan et
al. [4] present an approach for verifying protocol implementations
written in F# using ProVerif [5], a theorem prover as the underlying
mechanism. Our work is different in two dimensions: first, we are
verifying protocol implementations written in nesC, and second,
we use a model checker as the underlying technology.

Goubault-Larrecq and Parrennes [17] present an approach for

port for the entire nesC language, this approach is useful only for
C implementations; however, the insights described by Goubault-
Larrecq and Parrennes [17] could be used to enhance the underlying
verification technique for our framework.

Tobarra et al. [43] propose an approach for verification of sen-
sor network security protocols using model checking. In their
approach, they verify the models of the protocols written in
HLPSL [10] modeling language using the model checking tool
Avispa [2]. They were able to discover attacks in two security pro-
tocols; however, unlike Slede, they verify the protocols from mod-
els written manually, which does not provide any guarantee that the
implementation of the protocol is correct.

Besides the previous approaches, there is a significant body of
research on verifying security protocols but they don’t address
challenges of sensor networks security protcols. The best-known
and influential approach based on Modal logic is that by Burrows,
Abadi and Needham [8], commonly known as the BAN logic. The
key idea is to reason about the state of beliefs among principals in a
system. Some extensions to the BAN logic are also proposed such
as by Oorschot [44].

Meadows developed the NRL protocol analyzer for the analysis
of cryptographic protocols [31]. The NRL protocol analyzer was
used to find flaws in a number of cryptographic protocols including
selective broadcast protocol by Simmons [41], Resource Sharing
Protocol by Burns and Mitchell [7], re-authentication protocol by
Neuman and Stubblebine [36], etc. Longley and Rigby also de-
veloped a tool and demonstrated a flaw in a banking security pro-
tocol [28]. Yet another tool was Interrogater developed by Millen
et al. [33]. Kemmerer [25] used general-purpose formal meth-
ods technique as tools to verify cryptographic protocols. Schneider



adapted the CSP model for verification of security protocols [40].
For a detailed summary of verification techniques, please refer to
a survey by Rubin and Honeyman [39], Meadows [30], Gritzalis
et al. [42], and a more recent survey by Buttyan [9]. Compared
to these ideas, Slede has two advantages. First, it can be used to
verify implementations. Second, that is is highly customized for
sensor network applications, which enables many domain-specific
optimizations resulting in improved scalability.

Tools for model checking source code directly are also related
to this work. In particular, Blast [20], Bandera [12], Java Path
Finder [19], CMC [34], etc, have successfully verified C and Java
implementations. Like these approaches, our framework also ver-
ifies source code directly; however, unlike these techniques our
framework is highly customized towards model checking security
protocol implementations in nesC.

9. FUTURE WORK

Our approach opens up a number of interesting avenues that we
plan to explore in the future. One such area is analyzing the in-
fluence of non-functional properties, such as memory, bandwidth,
and power constraints on security properties. Sensor nodes are re-
source and bandwidth constrained. It may not be sufficient in this
environment for a node to have an excellent security property at the
cost of depleting system resources. The fitness of a protocol for a
particular purpose is thus also a function of assumptions about the
execution environment. For example, a key management protocol
may distribute the shares of a key polynomial among n neighbors
so that k fragments are required to reconstruct it. This protocol fails
if either [ > k nodes are captured or m > n — k nodes run out of
power. Traditional verification mechanisms only assume lost or in-
tercepted messages as failure modes for security protocols making
them inadequate to handle situations like the loss of power situa-
tion above and the effect of other such non-functional properties on
security properties.

We also plan to improve on our current prototype. The current
implementation of Slede has some limitations partly due to the re-
strictions of the underlying model-checking technology and due to
the specific translation approach that we have taken. Limitations in-
clude the bound on the number of neighbors to the intruder, as well
as having only one malicious intruder in the model. A limitation
is on the number of participant nodes in the verification process
that causes a state explosion when it increases. We are currently
studying network decomposition techniques (i.e. [11]), which al-
low a large network topology to be verified by decomposing it into
smaller topologies, will help alleviate this issue.

10. CONCLUSION

In this work, we presented our verification framework for sen-
sor network protocol implementations. The key advantages of the
framework is that it automatically extracts verifiable models from
nesC implementations and allows automatic generation of protocol
specific intrusion models from lightweight annotations. Our frame-
work confirmed the flaws in two sensor network specific protocols.

Our approach is sound and complete within bounds, i.e. if there
is a fault scenario in the protocol, the framework will detect it and
if the framework terminates for a network topology of given size
declaring no faults, then there are no faults in this network or net-
works of smaller size using the given intruder model.

Security in sensor networks is an important problem. Our ap-
proach brings the advantages of explicit-state model checking to
the sensor network applications, thereby paving the way to improve
their security at a relatively small cost.
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