
Frances: A Tool For Understanding Code Generation

Tyler Sondag
Dept. of Computer Science

Iowa State University
226 Atanasoff Hall
Ames, IA 50014

sondag@cs.iastate.edu

Kian L. Pokorny
Division of Computing
McKendree University

701 College Road
Lebanon, IL 62254

klpokorny@mckendree.edu

Hridesh Rajan
Dept. of Computer Science

Iowa State University
226 Atanasoff Hall
Ames, IA 50014

hridesh@cs.iastate.edu

ABSTRACT
Compiler and programming language implementation courses are
integral parts of many computer science curricula. However, the
range of topics necessary to teach in such a course are difficult for
students to understand and time consuming to cover. In particular,
code generation is a confusing topic for students unfamiliar with
low level target languages. We present Frances, a tool for helping
students understand code generation and low level languages. The
key idea is to graphically illustrate the relationships between high
level language constructs and low level (assembly) language code.
By illustrating these relationships, we take advantage of the stu-
dents existing understanding of some high level language. We have
used Frances in a compiler design course and received highly pos-
itive feedback. Students conveyed to us that Frances significantly
helped them to understand the concepts necessary to implement
code generation in a compiler project.

Categories and Subject Descriptors
K.3.0 [Computers and Education]: General; K.3.2 [Computers
and Education]: Computer and Information Science Education—
computer science education, curriculum; D.3.4 [Programming Lan-
guages]: Processors—compilers

General Terms
Education, Languages

Keywords
Frances, Code Generation, Compilers, Visualization

1. INTRODUCTION
A compiler is a software system designed to translate programs

written in a source language (usually a high level language), to an-
other target language (frequently machine code) [12]. Developing a
compiler is a difficult but rewarding experience for students since it
requires a wide range of knowledge and techniques [8]. Compiler
and language implementation has always been listed in the ACM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

Computing Curricula (CC) as a main curriculum topic [16]. The
latest revision of CC ’01 also states the importance of these topics:
“. . . good compiler writers are often seen as desirable; they tend to
be good software engineers [2, pp.11].”

Unfortunately, the complexity of compilers makes it difficult to
sufficiently cover the necessary concepts and construct a compiler
in a single semester [8]. One problem is that students must have
a thorough understanding of the high level (source) language and
the target language [8]. Most students at this point in their educa-
tion have learned at least one, if not several, high level languages
(Java, C++, etc). However, many students have not learned assem-
bly like languages commonly used as compiler target languages.
In recent years assembly language courses have been supplanted
by other topics in many undergraduate curricula [11]. This signifi-
cantly complicates the task of writing the compiler, specifically, the
portions dealing with code generation and optimizations.

Our contribution is a tool called Frances1 which has the primary
use of assisting in the learning of code generation [3]. The main in-
tuition of our approach is to take advantage of the students existing
knowledge of some high level language. We allow students to en-
ter source code in a language of their choice, then show a graphical
representation of the corresponding target code. This graphical rep-
resentation is shown in a way that allows users to quickly identify
how different types of high level language features are represented
in a lower level language. Our representation makes use of several
techniques to improve understanding, most importantly we,

• maintain actual target code ordering,

• show different types of possible run-time paths, and

• color code types of instruction blocks.

Frances provides a simple graphical interface that helps to reduce
the burden of learning to use the tool.

The key benefits of Frances is that it helps students

• understand code generation, and

• gain familiarity with assembly language .

This tool helps students understand code generation and assembly
language by showing how high level language source code trans-
lates to assembly language. Additionally, Frances generates graphs
which clearly illustrate the purpose of code segments. This greatly
improves the understanding of the target code. Naps et al. claim
1We named the tool Frances in honor of Frances E. Allen . She
received the Turning award for pioneering contributions to the the-
ory and practice of optimizing compiler techniques that laid the
foundation for modern optimizing compilers and automatic paral-
lel execution.

that in computer science education, visualization techniques are
more beneficial when they engage students [15]. Our approach
is not only visual, but allows students to experiment with program
code in a variety of high level languages. A small example is shown
in Figure 1 where the assembly language equivalent of a small loop
in the high level language C is graphically illustrated in Frances.

Figure 1: A simple C while loop

We have used this tool in an undergraduate compiler design course
with encouraging results. The students in this course were given the
opportunity to use Frances when learning the topics of code gener-
ation. These students communicated that the tool was very useful
for understanding concepts necessary for code generation. Based
on this experience, Frances is becoming a more integral part of fu-
ture offerings of this course.

The rest of this paper is organized as follows. Section 2 gives a
brief overview of related work. Then, Section 3 outlines the goals
of Frances. Next, in Section 4, we describe the Frances tool. Sec-
tion 5 discusses our experiences and observations from using the
Frances tool as part of a compiler design course. Finally, Section 6
concludes and discusses future work.

2. RELATED WORK
Since developing a compiler is difficult, especially within a sin-

gle semester course, a large body of work has been done to improve
this process. Aiken presented Cool, a language and compiler de-
signed for course projects to reduce the overhead for the instructor
and keep assignments modular [5]. Similarly, Corliss et al. de-
veloped Bantam which is a Java compiler project for courses [8].
Modularity is also achieved in Bantam since components of the
compiler can use the provided modules, or be swapped out with
custom versions. Rather than developing a new infrastructure, our
technique is complementary to these existing techniques in order to
help understand specific portions of compiler implementation.

Resler et al. propose a visualization tool, VCOCO, for under-
standing compilers [13]. VCOCO provides several view panes
which show source code, language grammar, compiler, parser, and
scanner. Each pane is updated throughout the compilation pro-
cess. We also propose a visual approach, however, we are interested
specifically with code generation and present a graphical approach.

Bredlau et al. suggest using the Java Virtual Machine (JVM) for
teaching assembly [7]. The idea is to let the java compiler create

JVM code which is compared to the source code. We take a simi-
lar approach but with assembly language and we provide a simple
graphical comparison to aid in this process.

3. GOALS FOR FRANCES
In this section, we discuss the goals we had in mind when de-

veloping the Frances tool as well as details for accomplishing these
goals. Briefly, these goals include making code generation easy to
understand by clearly and quickly showing how familiar high level
language constructs translate to low level language code. Addition-
ally, the tool is made as easy as possible, making the learning curve
for the tool minimal.

3.1 Understanding Code Generation
The first and most important goal, was to help students under-

stand the concepts behind code generation.
We have observed that for many students, code generation can

be the most difficult challenge when writing a compiler for the first
time. This is largely because of the differences in already famil-
iar high level languages and unfamiliar low level languages. This
includes differences in syntax as well as the ordering of statements
related to the various programming constructs. For example, in Fig-
ure 1 the order of the loop condition and loop body are opposite in
the two representations. With this tool, we intend to ease this chal-
lenge by clearly showing how familiar high-level language code
and constructs map to target, low-level assembly code. The idea is
that students already understand at least one high level language.
By understanding how the high level and low level languages re-
late to each other, students can quickly understand how to translate
from one language to the other. Then when students write their
own compiler they can use Frances as a guide for dealing with var-
ious high level constructs including memory management and code
order.

A simple way to do this is to have students compare source code
with equivalent assembly code (for example, gcc can generate as-
sembly from source). The benefit of this is that it allows students
to see what types of instructions their code is mapped to as well
as ordering of instructions. This is a helpful process, however, we
felt that more could be done to improve this process especially for
larger programs. To improve this process, we show the source to
target language mapping and improve upon this mapping in two
ways. First, we represent target code as a graph that shows execu-
tion paths that may be taken at run-time. Second, we color code
this graph to quickly show how control structures are represented
in the target language. Most students are familiar with high level
languages constructs. Thus, being able to quickly identify how lan-
guage constructs in familiar high level languages map to assembly
code significantly eases this comparison process. The details of
these features and how they work are described in Section 4.

3.2 Ease of Use
We felt it was important for the tool to be as easy to use as pos-

sible. If not, the cost of learning how to use the tool could easily
overshadow the benefits it provides. Therefore, we take several
steps to make the tool easy to use: make it easy to run on a wide
variety of platforms, provide a simple interface, and support a vari-
ety of high level or source languages.

First, to avoid issues with different operating systems, hardware
platforms, software versions etc., we make the tool available via the
web. Thus, we eliminate the need for users to build Frances on their
machine. This removes any problems that may arise when building
a software package from source and allows any user to make use of
Frances as long as they have a web browser.

Second, to make the tool easy to use, we provide a simple graph-
ical interface. Many compiler tools operate from the command line
and require the users to learn complicated syntax. While powerful
and flexible, learning how to use such a tool if you are only plan-
ning on using it for a short period of time is undesirable. We believe
our interface is simple enough for users to immediately begin using
it and understanding the output.

Third, it is required that users are familiar with some high level
language. Restricting the tool to a single language would clearly
not be useful for users not familiar with this language. Therefore,
we provide support for several common high level languages (C,
C++, and Fortran).

4. FRANCES
We now discuss the details of the Frances tool. This includes

what facilities the tool provides to students as well as how it pro-
vides these facilities. Additionally, we give detailed explanations
of why certain approaches are taken. A general discussion of why
these facilities are provided is included in Section 3.

The core of Frances is a framework built for another research
project. This framework makes use of the GNU Binutils [9] for
converting an executable to an object oriented representation that
we can analyze, modify, and output as a new executable. This
framework is not yet publicly available, but will be released as an
open source project in the future. Until then, the tool is made avail-
able as a web service.

Frances generates a simple graphical representation of the tar-
get code corresponding to the source code. For example, in Fig-
ure 1, this simple while loop is shown graphically as four blocks
of code. Furthermore, the edges or paths between these blocks
that can be taken at run-time are shown. To generate the graphical
program representation, we make use of dot which is part of the
GraphViz [10] graph visualization software. We now describe the
major components of Frances including how blocks and edges are
drawn as well as a brief discussion about the interface.

4.1 Blocks
Basic blocks of instructions are generated by Frances. A basic

block is a sequence of instructions with a single entry point and sin-
gle exit point with no jumps between [6]. For simple control struc-
tures (non-nested structures) basic blocks capture the main compo-
nents of the structures. For example, in Figure 1, the sample while
loop can be divided into two parts which have a different purpose:
the loop body, and the loop condition. Therefore, the graphical ver-
sion of the target code illustrates these two components of the loop
in two separate blocks. Additionally, the blocks before and after
the loop are also shown separately.

A major difference between previous tools and our tool is the
way in which we lay out blocks. Similar tools [1, 4, 14] represent
blocks as a flow chart. Since our major goal was to help students
understand code generation, we make this graphical representation
as close as possible to real generated code. We do this by maintain-
ing the instruction ordering of the actual target code. This includes
the ordering of the blocks. To make this ordering clear, we repre-
sent blocks in a linear fashion in the same way that programs are
represented in target code.

For example, in Figure 1, the layout of blocks is not done in a
way that is immediately obvious from the source code. Consider
the loop condition. In the source code, this is before the loop body
whereas in the target code, it is after the loop body. This is not
immediately clear; however, this is how target code is generated by
the compiler. Thus, understanding this ordering is necessary for un-
derstanding code generation. Therefore, our tool exposes students

to such orderings. Given that this ordering is confusing, we take
steps to help clarify this ordering.

4.2 Color Coding
Following that students are already familiar with a high level lan-

guage, we aim to quickly and clearly illustrate how control struc-
tures in a high level language are represented in the target language.
We show this by coloring the graph to highlight the different parts
of the various control structures. Our tool performs simple con-
trol flow analyses [12] on the code to determine the different parts
of the control structures. Then, the tool colors blocks based on
which part of the control structure they make up (loop condition,
loop body, etc). For example, in Figure 1 a while loop is shown in
both forms. Both the loop condition and the loop body are colored
differently to make it easy to distinguish between the two. As men-
tioned previously, the ordering of these two blocks is confusing at
first since it differs from the source code ordering. This coloring
quickly points out this ordering by showing that for this high level
language while loop, the loop condition goes after the loop body.

For simple control structures, that is, non-nested control struc-
tures, we shade the background of the blocks to corresponding col-
ors for each part of control structures. This includes structures such
as loops (loop body and loop condition are colored differently),
if/else blocks, etc. As discussed previously, Figure 1 shows this for
a simple while loop.

For nested control structures, the coloring must be done differ-
ently. We start by shading the blocks in the innermost structures
as described previously. Then, all other structures are surrounded
with boxes. These boxes are then shaded to show what kind of
structure the member blocks are a part. Furthermore, this helps to
show how the different structures interact. For example, consider
the nested loop in Figure 2. The inner loop is composed of two
blocks, the loop condition and the loop body. These two blocks
are shaded in the figure. We can see that both of these blocks (the
entire inner loop) are contained within another structure since they
are contained in a larger shaded box. This structure is the loop body
of the outer loop which is shown clearly by the shading.

Figure 2: A simple nested while loop

This drawing of blocks shows how target code is laid out. Then
the coloring helps to quickly show how components in familiar
high level code are represented in the target code. Furthermore,
by breaking this representation down, we can focus on a smaller
subset of the code. Next, we describe how edges are illustrated.

4.3 Paths
The edges between blocks represent the paths that can be taken

at run-time. A jump in the target code can have up to two possible
next instructions. The paths show what these possible next instruc-
tions are. For example, in Figure 1, we see that the loop condition
(shown in green) has two outgoing paths: one edge leading to the
loop body if the condition is true and one edge leading to the next
block after the loop (exiting the loop) if the condition is false.

In combination with blocks, edges help the user see how different
structures are represented. For example, consider the first block in
Figure 1. This figure illustrates how, in the target code, you first
jump past the loop body to the loop condition for this type of loop.
This illustrate a key difference between while and do-while
loops since do-while loops are not organized this way.

As mentioned previously, the instruction (and block) ordering in
the target code can be confusing to students because it is frequently
different than the source code ordering. Our graphical representa-
tion of blocks helps by highlighting the components of the different
control structures. Illustrating the ordering of control structures is
helpful, however, we still need to show execution flows between
these structures. Figure 2 shows an example of a nested loop where
paths help to illustrate the initially confusing code layout. In this
figure, we see that the edge corresponding to entering the inner
loop actually goes to the second block in the inner loop. This is
slightly confusing at first since the path does not go to the begin-
ning of the inner loop code. This example shows that it is important
to understand how execution enters and exits loops. Furthermore,
understanding how execution flows through others structures such
as if /else blocks is also important. Thus, we take steps to help
contrast the differences between edges.

4.4 Edge Types
There are multiple types of edges. We illustrate the different

types by using different styles of lines and arrowheads for drawing
the edges. For example, in Figure 1, we see all three different types
of edges. We now give a brief description of each edge type.

• First, we have “unconditional jumps”. In the figure, this
jump is illustrated with a dashed line and an empty triangular
arrowhead. In Figure 1, the first block ends with the instruc-
tion jmp newLabel3. With this type of jump, the path is
taken no matter what when the instruction is executed.

• Next, we have “fall through” or “branch not taken” edges.
This edge type is illustrated with a thin edge and a “wedge
shaped” arrowhead. This edge type refers to when we sim-
ply go to the next sequential instruction when either the cur-
rent instruction is not a jump or a condition is false. For
example, the edge going from the loop body to the loop con-
dition in the figure. In this case, since the block does not
end with a jump, the next instruction is just the next sequen-
tial block. Another example of this type of edge is the edge
from the loop condition to the last block in Figure 1. This
edge is taken when the condition on the jump, in this case
$0x9 >= -0x8(%ebp), is false. This may seem trivial
since the “branch not taken” edge is always the edge to the
next sequential block, however, for students just learning this
concept may not be immediately obvious.

• Finally, we have “branch taken” edges. These edges are
drawn with a thick solid line and a solid triangular arrow-
head. These edges are those which are taken when a jump
condition is true. For example, in Figure 1, we have an edge
from the loop condition block to the loop body block. This
edge is taken whenever the loop condition on the loop is true.
Another example is shown in Figure 3. In this example we
can see a branch taken edge from the if condition block to the
else body block. This edge is taken whenever the condition
is true, however, in the source version, we have that this edge
is taken whenever the if condition is false. This is another
interesting difference between source and target code which
is nicely illustrated in Frances.

Figure 3: if-else block

This edge drawing helps illustrate the finer details of the tar-
get code. This includes how individual instructions such as jumps
are created and how complex control structure components interact
such as nested loops. Together with our block drawing and color-
ing, Frances generates informative and easy to understand figures
which illustrate how code generation is performed.

4.5 Interface
To make Frances as easy to use as possible, we make it avail-

able via a web interface. Since we make it available through a web
interface, it does not require installation and thus avoids compati-
bility problems. This simple and easy to use interface is available
at http://www.cs.iastate.edu/ ˜sapha/tools/frances/.

Since we can not be sure what high level languages each user is
familiar with, we give users the option of writing code in a variety
of high level languages. The language is selected in a simple drop
down list. Figure 1 shows an example where the C language is
selected.

To enter code, users can type into a text box as part of the web
interface of Frances. Since a user may not want to enter all the
code for each example in the web interface, users have the option
to upload a file. The input code is shown side-by-side with the
graphical representation generated by Frances. Because of space
restrictions the figures in this paper show a trimmed version of this
interface.

By not requiring installation, interfacing with a wide variety of
high level languages, and giving users options for inputting code,
we have a tool which is easily accessible to a wide range of users.

Summary of Representation: We believe that Frances’ block
layout and coloring in combination with the edge drawing greatly
helps to teach the instruction layout of low level language code.
Furthermore, we believe that when viewed alongside familiar source
code, this representation makes the process of understanding trans-
lating between the two languages significantly easier. With its sim-
ple and easy to use interface we believe Frances is easy to use in a
course, will help students understand these difficult concepts, and
save valuable course time for other topics.

5. EXPERIENCES AND DISCUSSION
Our first uses of Frances in an undergraduate compilers course

gave very positive results. Initially, Frances introduced students to
fundamental assembly language concepts through demonstration.
The demonstration consisted of a simple program with only vari-
able declaration and a single if-statement. This simple program
demonstrated the initialization of registers, memory allocation and
a few simple assembly instructions. Prior to this most students had
little or no exposure to actual assembly language code.

As stated previously, the order of instructions in high level lan-
guages contrasted with the generated low level language is for-
eign to most students. Often, students that only have exposure
to high-level languages have difficulty understanding the relation-
ship between the source and target code. The graphical features
of Frances help to close this gap in understanding by providing
a side by side comparison with color coded identification of con-
trol structure components. The visualization techniques used in
Frances allow students to quickly assimilate how the assembly is
accomplishing the implementation of the source code.

Several course exercises, available on the Frances website, have
been developed that allow students to experiment with Frances.
The exercises are developed to demonstrate each basic control struc-
ture. Additionally, the nesting of structures provides a deeper un-
derstanding of why it is important for the assembly code to be gen-
erated in the given order. Other course materials demonstrate more
concepts. Memory allocation for variables, including arrays, pro-
vides the student insights into how space requirements of a program
are utilized. Additionally, materials have been created to demon-
strate details of transferring control to functions.

As part of the curriculum of the compiler course, students are
required to build a compiler for a language they create. The com-
piler is written directly in Java or C++. The use of Frances allows
students to gain an understanding of how and why to generate code
for given control structures and function calls. This has allowed
the pace of the course to significantly increase. Students question-
ing how to program the code generation for a particular construct
simply go to Frances and get a direct demonstration.

6. CONCLUSION AND FUTURE WORK
Compiler design courses are an integral component to most Com-

puter Science curricula [2]. Prior to this course, in much of today’s
curriculum, students have limited exposure to low level languages.
This makes the code generation components of these compiler de-
sign courses particularly challenging. In this paper, we presented
Frances, a tool to aid in the understanding of code generation and
compiler construction. The main goal of this tool is to help students
understand the relation between familiar high level languages and
not so familiar low level target languages. This is accomplished by
giving a side by side comparison with graphical cues of the target
language. The graphical representation includes color coded tar-
get code to highlight control structures and execution paths. This
representation also maintains the actual order of instructions of the

compiled version of the program. Frances has shown to be highly
useful in practice by significantly easing the process of teaching
code generation concepts.

As part of future work we plan to extend the tool in the direction
of illustrating and understanding program analysis techniques and
automatic compiler optimizations. We plan to have the option in
Frances to illustrate a variety program analysis techniques (control
flow, data flow, etc). This will help illustrate where optimizations
are applicable and how optimizations are performed. For optimiza-
tions, the plan is to have the ability to illustrate common optimiza-
tions step by step using similar figures as those used to illustrate
code generation techniques shown in this paper. We plan to imple-
ment a wide range of common optimizations as well as a hot-spot
finder to illustrate which portions of the program are in most need
of optimization. Along with making common techniques available,
we also plan to allow users to write their own analysis and opti-
mization routines. Frances is a powerful tool for a basic compilers
course and we believe these enhancements will extend its use to
advanced undergraduate and graduate level compiler and program-
ming language courses.

Acknowledgments
The authors would like to thank the students who tested the tool as
well as the anonymous reviewers for their comments and sugges-
tions. Sondag and Rajan are supported in part by the US National
Science Foundation under grants 06-27354 and 08-08913.

7. REFERENCES
[1] aiSee - Graph Visualization. http://www.absint.com/aisee/.
[2] Computing curricula 2008: An interim revision of cs 2001.

http://www.acm.org/education/curricula/
ComputerScience2008.pdf.

[3] Frances: Control FLow Graph Generator.
http://www.cs.iastate.edu/ ˜sapha/tools/frances/.

[4] ICD-C Compiler Framework. http://www.icd.de/es/icd-c/.
[5] A. Aiken. Cool: a portable project for teaching compiler

construction. SIGPLAN Not., 31(7):19–24, 1996.
[6] F. E. Allen. Control flow analysis. In Symposium on

Compiler optimization, pages 1–19, 1970.
[7] C. Bredlau and D. Deremer. Assembly language through the

java virtual machine. In SIGCSE, 2001.
[8] M. L. Corliss and E. C. Lewis. Bantam: a customizable,

java-based, classroom compiler. In SIGCSE, 2008.
[9] Free Software Foundation. Gnu binutils: a collection of

binary tools, 2009. http://www.gnu.org/software/binutils/.
[10] J. Ellson et al. Graphviz - open source graph drawing tools.

Graph Drawing, 2001.
[11] M. C. Loui. The case for assembly language programming.

IEEE Transactions on Education, E-31(3):160–164, 1988.
[12] S. S. Muchnick. Advanced Compiler Design &

Implementation. Academic Press, 1997.
[13] R. D. Resler and D. M. Deaver. Vcoco: a visualisation tool

for teaching compilers. SIGCSE Bull., 30(3):199–202, 1998.
[14] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable sensor

network simulation with precise timing. In Information
Processing in Sensor Networks (IPSN), 2005.

[15] T.L. Naps et al. Exploring the role of visualization and
engage- ment in computer science education. In
ITiCSE-WGR, 2002.

[16] L. Xu. Language engineering in the context of a popular,
inexpensive robot platform. In SIGCSE, 2008.

