A More Precise Abstract Domain for Multi-level Caches for Tighter WCET Analysis

Tyler Sondag and Hridesh Rajan
Dept. of Computer Science
Iowa State University
Ames, IA 50011
{sondag,hridesh}@iastate.edu

Abstract— As demand for computational power of embedded
applications has increased, their architectures have become
more complex. One result of this increased complexity are real-
time embedded systems with set-associative multi-level caches.
Multi-level caches complicate the process of program analysis
techniques such as worst case execution time (WCET). To
address this need we have developed a sound cache behavior
analysis that handles multi-level instruction and data caches.
Qur technique relies on a new abstraction, live caches, which
models relationships between cache levels to improve accuracy.
Our analysis improves upon previous multi-level cache analysis
in three ways. First, it handles write-back, a common feature
of cache models, soundly. Second, it handles both instruction
and data cache hierarchies, and third, it improves precision
of cache analysis. For standard WCET benchmarks and a
multi-level cache configuration analyzed by previous work, we
observed that live caches improve WCET precision resulting
in an average of 6.3% reduction in computed WCET.

I. INTRODUCTION

Computing an upper bound on execution time, known as
worst-case execution time (WCET), for programs running
on real-time systems with hard deadlines is crucial [1]-[3].
It is essential that the computed upper bound must be sound
(longer than any possible execution) [1]. However, an upper
bound that is too high will result in wasted resources [1].
This is a difficult problem that requires determining upper
bounds on program paths, memory access times, etc [1].

One aspect of this problem is determining an upper bound
on each memory access. To drastically reduce memory
access time, many processors incorporate caches, some with
multiple levels. Other cache optimizations include splitting
instruction and data caches. Due to the complexity of caches
(multiple levels, shared vs. unified levels, associativity,
replacement policy, etc), analyzing the behavior of these
caches is difficult. However, if we can analyze the cache
behavior precisely, we can dramatically reduce the computed
worst case access time for memory accesses [2].

A large body of previous work exists to analyze cache
behavior statically [1]. However, these techniques either
focus on instruction caches [2], [4]-[8], or only handle
single-level data caches [9]-[12]. Thus, they do not support
systems that incorporate both instruction and data caches.
Furthermore, since they only treat single-level data caches,
they do not handle write-back. Write-back is a common

technique used in data caches to reduce memory accesses
when contents in a cache are modified. With write-back,
when a modified content is evicted from cache, it is written
to the next cache level or memory. So, the next access to this
content may be a cache hit, whereas previous work would
sometimes classify it as a potential cache miss. This affects
the upper bound on memory access time. We also show that
if existing analyses are applied to unified (instruction+data)
cache hierarchies with write-back the result is unsound.

Our contribution is an analysis for multi-level instruction
and data cache hierarchies. There are two main novelties of
our technique. First, we consider the cache hierarchy as a
whole (as opposed to analyzing cache levels in the hierarchy
separately [4]-[12]), which improves precision. Second and
more importantly we add a new abstraction, live caches, to
the classical abstract domain for caches [2] to handle multi-
level caches. Live caches describes relations between pairs
of cache levels (in order to reduce the imprecision of the
join analysis [2], [4]) as well as information inside a cache
level (in order to handle write-back).

Improving precision is important because a misclassified
memory access may drastically increase computed upper
bounds of the WCET analysis, e.g. a cache miss may be as
much as 30x more expensive compared to a cache hit [13].
Soundness of cache analysis is important because it directly
affects soundness of WCET. An unsound application of a
cache analysis may lead to incorrect WCET.

Similar to previous work [2], [9], we have used the
WCET benchmarks maintained by the Milardalen WCET
research group [14] to evaluate our technique. For 20 out
of 32 (62.5%) of these benchmarks our analysis technique
showed precision improvements over previous analysis. On
an average we saw a 6.3% reduction in computed WCET as a
result of our multi-level cache analysis technique. This result
is significant because it directly translates to a corresponding
reduction in wasted resources for real-time systems [1].

In the rest of this paper, we discuss the technical under-
pinnings of this work that include:

« the definition of live caches and illustration of the key
aspects of their behavior,

« an abstract interpretation for multi-level instruction and
data cache analysis, and

« an empirical evaluation of our cache analysis.
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Figure 1.

Left: code example. Letters after line numbers indicate instruction cache block containing the code for the line. Table shows variable to cache

block mapping. Right: cache contents for each state using previous analysis [2]. Bold cells denote data cache. Loop unrolling is assumed.

II. PROBLEMS WITH EXISTING CACHE ANALYSES

We first describe a typical cache analysis using abstract
interpretation [2]. Basic cache terms are as follows.

o Lz “cache level 2. Lower levels are closer to the processor
and faster, but smaller.

e capacity, denotes the size in bytes of the Lz cache.

o line size, (block size) is the number of bytes loaded into
the Lz cache upon a miss.

o Block refers to a segment of memory. As viewed from the
Lz cache, there are M /line size, blocks of memory, where
M is the capacity of memory.

e Associativity is the number of cache lines a memory block
may reside. In a 2-way associative cache, a block may be in
one of two cache lines. A 1-way associative cache is direct
mapped and capacity,,/line size,-way is fully associative.

e Hit/Miss When a memory location is in a cache level, it
is a hit; otherwise, a miss.

e Replacement strategy: A technique to determine which
block to replace when a cache is full and an additional
block is needed. Like [2], [4], we use the least recently
used (LRU) policy where the block accessed least recently
is removed, however, other policies could also be used.

e Mainly-inclusive: The relationship between cache levels.
In this policy, cache levels operate independently. Updates
for higher cache levels are determined based on misses and
write-backs from the previous level. If Lz and Lx+1 are
mainly-inclusive, then most blocks in Lz are also in Laz+1.

A. Abstract Interpretation based Cache Analysis

Figure 1 illustrates an abstract interpretation of cache
behavior for a two level cache hierarchy. The first level, L1,
is a split (instruction separate from data) 2-way associative
cache. The second level, L2, is a unified (containing both
instruction and data blocks) 4-way associative cache. Both
levels use LRU as a replacement policy with write-back and
have a line size of 32 bytes. For simplicity, we consider
one cache set from each cache. Since the concern is cache
hits and misses, the cache state aims to capture when blocks
are loaded into and evicted from each cache level.

The left side of the figure shows sample code. Letters
after line numbers indicate the instruction cache block the
code belongs to. The right side illustrates states for the
cache analysis (assuming the initial state is empty). The
column marked with concrete states shows the cache states
according to the concrete semantics, whereas those marked
with abstract show the states of the cache from the point
of view of abstract hit/miss analysis. Thus imprecision in
analysis can be analyzed by comparing them.

Similar to previous work [2], [4], for each point in a
program, assume there is a list of reads and writes to analyze.
Based on the reads and writes for a program point, the
state of the cache is updated. Since existing cache analysis
techniques [2], [4] do not handle write-back, in this example
there is no difference between reads and writes.

After analyzing lines 1-2, state S7 results. L1 shows in-
struction cache block A as the most recently used instruction
cache block and z as the most recently used data cache
block. L2 shows that = was the most recently accessed block.
Notice that since L1 is a split cache instruction and data
blocks are treated separately, whereas since L2 is a unified
cache both type of blocks are treated uniformly.

Depending on how the if condition on line 2 evaluates
control might be transferred to either line 3 or line 6. Both
paths must be analyzed because actual path is unknown.

Let us first analyze the loop on lines 3-4. Note that
variable i is assigned to a register and does not impact
the data cache behavior. For simplicity we assume that the
loop has been completely unrolled. Sy shows the state after
analyzing the first loop iteration. Assume that the first 8
locations of array arr are in block y and sizeof (int)
is 4. S5 shows that block y is the most recently accessed
block in L1 data cache and most recently accessed block in
L2. Tracking actual values for variables is not necessary as
it doesn’t influence the hit/miss behavior [4]. S3 shows that
state after all executions of the loop, where L1 data cache
contains the entire array arr (both blocks y and z).

Next, we analyze the loop on lines 6-7. Note that the
state Sy corresponding to this code is derived from S



not S3. On line 7, the value in arr[i] is fetched first
followed by adding the result to sum. Thus, after the first
iteration Sy shows us that x is the most recently used block
in L1 data cache, but block y has been loaded into both
levels. Further, before these data locations were referenced,
instruction block B was loaded into L1 instruction cache
and L2. State S5 results after analyzing all iterations of the
loop. S5 is similar to Sy but block z has also been loaded
into both cache levels.

Join function: When line 8 is analyzed, there are two
predecessor lines 4 and 7 with state S5 and S5 respectively.
Thus, the analysis must merge or “join” the states denoted
as S¢ = S3 /\ S5. Figure 1 shows the merged states for a
“hit” and a “miss” analysis.The hit analysis tells us for each
reference “hit” or “unknown” and the miss analysis tells us
“miss” or “unknown”. For example, if a block is in a state
of the hit analysis, it must be a hit, otherwise it is unknown.

For the “hit” state, the worst case of block locations is
used. For example, the L1 instruction cache block A was in
the last space in S5 and the first space in S3. Thus, A in Sg
takes the last position in the L1 instruction cache.

For the “miss” state, the best case is chosen. For example,
block B is in the first position of L1 in S5 but is not in L1
cache in S3. Thus in Sg, B takes the first position in the L1
instruction cache.

After merging potential states, line 8 is analyzed. First,
instruction block B is fetched giving state S7. Since B is not
in hit analysis state Sg, B is added to L1 updating the LRU
order and evicting A. We can see by looking at the possible
concrete states that B may actually be an L1 hit meaning
it is not sound to update L2 with B. The analysis does not
have the luxury of considering all possible concrete states.
In general, thus the analysis uses the miss analysis and only
updates L2 with the block if the miss analysis can guarantee
the reference will miss L1. Otherwise, an update to L2 with
an empty block is done. Therefore, in this example, B is
not added to L2 since the miss analysis can not guarantee
that B will miss L1. However, the LRU order of L2 must
be updated in case B does miss so an empty block is used.

Next, block z is accessed resulting in an update to L1
data cache as shown in Sg.

B. Problems that Affect Soundness and Precision

With the background on abstract interpretation based
cache analysis in place, we now illustrate the three problems
with existing techniques via our example in Figure 1.

Cache hierarchy: Consider the position of instruction
block A in L1 of state S; of Figure 1. Even though A is
the most recently used block in the L1 instruction cache, z
is the most recently used block in L2. This position of A
in L2 shows how data cache behavior affects the behavior
of instruction blocks in a unified L2 cache. Since most L2
caches are unified, simultaneously analyzing both instruction
and data behavior is necessary.

Write-back: Since analyzing both instruction and data
cache is required, handling write-back properly is essential.
To illustrate the need to handle write-back, let us revisit the
transition from S7 to Sg of the hit analysis in Figure 1.
In the “hit” state for S;, block z in L1 may be dirty.
In the transition to state Sg this block is evicted. As a
result of the potential eviction of a possibly dirty block, L2
should be updated. This additional update would force block
y out of L2. Without considering write-back, the analysis
would report that y must hit L2 which is not sound. For
unified cache levels write-back also affect the soundness of
instruction caches since data cache write-backs to L2 impact
the instruction cache blocks in L2. Thus, it is crucial to
handle write-back properly in a multi-level cache analysis.

Precision: Notice the existence of block x in both
potential concrete states of S7 in Figure 1. This means that
x must be somewhere in the cache, however, the hit analysis
can not guarantee this. Thus, even though the reference to
x on line 8 will be a “hit”, the analysis says “unknown”
or worst case memory access. This loss of information is
due to the sound approximations of the join function. Since
joins are frequent (i £s, loops, etc), the precision of the join
function is key to the overall precision of the analysis.

III. MULTI-LEVEL CACHE ANALYSIS WITH LIVE CACHES

The soundness and precision problems with existing anal-
yses arise because they do not take into account the global
view of the hierarchy. As a result, they miss the cache blocks
that must exist in the hierarchy, even though their existence
in any cache level may not be soundly computed. They also
do not soundly capture write-back. To solve these problems
we introduce a new abstraction to the classic abstract domain
of caches, that we call live caches.

A. Live Caches

A live cache is an abstract cache maintained for the
purposes of multi-level cache analysis. For every pair of
concrete cache levels the analysis maintains one live cache.
These live caches contain blocks that must exist (blocks that
are live references, thus the term live caches) in at least
one of two different cache levels. The example in Figure 1
contains two cache levels L1 and L2. Thus the multi-level
cache analysis maintains one live cache Cieso.

Figure 2 shows the “hit” analysis state for S; from
Figure 1 as determined by our analysis. This state now
includes the live cache Ci.,5. The state for L1, L2, and
Ci<2 is shown on top-left, bottom-left, and bottom-right
respectively in this section. The live cache Ciyo consists
of two sets, one corresponding to L1 instruction cache and
L2 and the other corresponding to L1 data cache and L2.

The associativity of each set in the live cache is equal to
the larger of the two caches, e.g. the associativity of Ci,o
is 4 since that is the larger between L1 and L2.
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The position of a block in live cache is determined by
taking the better case of the same block’s position in the
two cache levels that the live cache relates. This is because
a live cache is updated whenever either of its corresponding
cache levels, more specifically sets, is updated.

As mentioned previously, write-back introduces new be-
havior that must be modeled. Consider an example for the
“hit” analysis for Sy in Figure 3. The 3’ notation in L1 of
S5 means that the block y is dirty (modified).

To handle the addition of live caches and write-back, the
join functions for both the “hit” and “miss” analysis must
be modified. For the “hit” analysis, when a block exists in
both states, the resulting block is dirty only if both blocks
are dirty. However, in the case that only one block is dirty,
we must keep track that a potentially dirty block may exist
in that cache location in order to safely handle write-back.
For live caches, we join the two corresponding cache levels
giving blocks the worst-case proximity to eviction between
the two. For the “miss” analysis, when a block exists in both
states, if either block is dirty, the resulting block is dirty.
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Figure 4. Hit analysis state for Sg from Figure 1

Consider the join of states S3 and S5 to create Sg for
the “hit” analysis in Figure 4. Locations of blocks in live
cache are determined similar to the previous examples except
for block x. The location for = is chosen as a worst case
location between x in L1 in S5 and L2 in S3. Also, note
that in S5, z is clean in L1 but in S35 it is dirty. Thus, in Sg,
2" denotes that z may be dirty in L1. Also, notice that in
S3, y exists in L1 and is dirty, however, y does not exist in
L1 in Ss. Thus, since we can not guarantee y will be in L1
cache, y should not exist in L1 in Sg. However, since y may
exist and may be dirty, when it may be evicted from L1, the
LRU order of L2 should be updated. Thus, y should not be
reported as a hit if accessed (denoted by %) but is kept in
the state so higher levels can be modeled in a sound way.
Even though y is modeled in the “miss” state, we can not
safely use eviction from L1 in the “miss” state to update L2
because of the difference in updates for the “miss” analysis.

Consider the same join for the “miss” analysis. Even
though z is clean in L1 of S5, since it is dirty in L1 of
Ss, it is dirty in L1 of Sg for the “miss” analysis.

Finally, we must consider how live caches are updated.
Recall that a live cache must be updated whenever either of
its corresponding levels, more specifically sets, is updated.
To avoid duplicate updates, we only need to update a live
cache once if both corresponding sets are updated as a result
of the same memory access. For example, Figures 5 shows
states S7 and Sg from Figure 1 extended with live caches.
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Figure 5. Hit analysis states for S7 and Sg from Figure 1

Recall that the transition from Sg to S7 in Figure 1 involved
an update of both L1 instruction cache and L2 cache. Thus,
the corresponding live cache sets in Ci2 must also be
updated. Here, upon reading block B, both sets in Ci.o
are updated. This results in eviction of block A and block
x being moved to the last position in Cioa.

B. Benefits of Live Caches

Live caches have several benefits in that they help address
the problems described in Section II-B. We now describe
each of these benefits.

Improved precision: Recall in the example from Fig-
ure 1 that when reading = on line 8, the hit analysis could
not guarantee a hit even though z is in both concrete states
in S7. In Figure 4, block x was in the second last position
in the L1 data cache of S5 and in the second last position in
the L2 cache of S5. Thus, in the resulting state, Sg, = took
the second to last position (worst case) in the live cache
C12. Now, consider the read to z again but using the state
S; augmented with live caches from Figure 5. Since z is
in the live cache Ci.,2, we know that in the worst case, z
will hit L2. Thus, by adding live caches, an unknown, or
worst case memory access, has been classified as a worst
case L2 hit. For this example, we see that introducing live
caches results in an access being classified as a hit of some
cache level rather than a worst case memory access. Thus,
live caches improve the overall precision of the analysis.

Write-back: To illustrate how these changes ensure
soundness for the “hit” analysis, consider the transition from
state S7 to Ss in Figure 5 as compared to the previous
example in Figure 1. In the transition in Figure 5, two
potentially dirty blocks are evicted from L1 (z and %). Thus,
L2 cache must be updated once for potential write-back
(since loading in one new block can not result in two write-
backs). Further, we update L2 again for the potential L1
miss of block . Again we can not update L2 with x since
the miss analysis can not guarantee L1 miss.

Hierarchy: As discussed previously, a sound analysis
must model both instruction and data caches due to their
impact on each other in unified cache levels. Thus, our
analysis simultaneously analyzes both cache types. Also,
the hierarchy as a whole contains more information than
the levels do in isolation. Thus, our analysis introduces live
caches which capture additional information available from
the hierarchy as shown in Figures 4 and 5 with block =z.

We now define the theory of our multi-level cache anal-
ysis. As is usual for an abstract interpretation based analy-
sis [4], we first define the concrete behavior for a common
type of cache hierarchy (Section IV). Then (Section V) we
define the abstraction of the concrete behavior for multi-level
caches and the formalism behind live caches.



IV. CONCRETE CACHE SEMANTICS

In this section, we define the concrete semantics for
caches. That is, their observable behavior, not their physical
behavior. Here, we focus on mainly-inclusive caches, a com-
mon multi-level cache policy (Pentium II, III, 4, etc). The
discussion for other types of cache hierarchies is contained
in our report [15]. Figure 6 shows our notation for concrete
semantics. It is inspired from Ferdinand and Wilhelm [3],
but extends it to multi-level caches.

Nyt The number of blocks that fit into the Lz cache at one time. n, =
capacity, /line size,.

hS
8,

Associativity of the Lz cache (A.-way set associative). For direct
mapped caches, A, = 1 and for fully associative, A, = n.

=

H = (C1,---,Cnr), where N is the number of cache levels. State
of the cache hierarchy.

Q
8.

Co = (S1,2+" " +Sny/Ap,2) The =" level of cache (L1, L2,
etc) and consists of n, /A, cache line sets (or block sets).

Sixt Si.e = (1,4, 14, ) Represents an associative cache set.

Sequence of cache lines, ordering defines the LRU order where the
last line is the least recently used. S; 5 (1} ) is a look-up of the block

-th

in the jth line in the ¢°™ cache set of the Lz cache.

0

o The j* cache line in the i*™ associative set in the La: cache (contains

one memory block).

M,: Set of blocks {11, - =+, M Aq /line size , }» Where M is the capac-
ity of memory. M, models the memory as viewed from the Lz cache.
The line size changes this view of memory.

My ot The " memory block as viewed from the La cache (as large as the
line size of Lz cache).

I: empty block indicates that no value exists in cache yet.

M : M, = M, U {I} memory with the empty block.

adrg: adrg : M, — N function mapping memory blocks (as viewed from
Lz cache) to their start address and is defined as adry (m; ) = n
where n = |i(line sizey)].

sety: sety : My — C, maps blocks to cache sets. set, (m; ) = Sz,
where j = adry(m;, ) mod (ng/Az) + 1.

0: Cy X S;,» — {true, false} True if the input block is dirty.

0

=: Used for cache levels with different line sizes. e.g.: m; o XMy ;4
means that all of m; , is in m,s , 4, Formally, m; » < m; , &
adry (mj,y) <adry (mi,o) <adry(mjt1,4), ¢ <y

Cavy: Cavy = (Sivievy;Sive,evys 5 Sng/Apvng /Ay ,avy)
Cache level that contains blocks in either C,, C, or botﬁ.

Apvy: Associativity of Civy. Apyy = max(Ag, Ay).

B A S VEk - —
Sivi,avy: Sivk,aevy = <ll,z\/y7 cee, Aqu,z\/y> Represents an associative
cache set in C'; . Sequence of cache lines, ordering defines the LRU
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The 5" cache line in the set corresponding to the i*™™ associative set
in the Lz and k" associative set in the Ly (a set of memory blocks).

Figure 6. Notation for Concrete Semantics

A. Concrete Semantics of Reads for a Cache Level

Single-level update: Since we are modeling the
LRU replacement policy, we define how memory reads
and writes effect the LRU order. Our update function
U : Hx M, — H) for handling individual cache sets is
borrowed from previous work [3]. It takes a cache level
and a block and returns the updated cache as follows.

Z’t(cr’ m]ﬁr) =

lir =My,
lew 7 Sia(lp_q o)k € {2,-- -, h},
liw = Sia )k € {h+1, -+ Ag}

) if 3h, i
Sia(lh,e) = mja
li,x = My x,

];I = Si:m(l;—l‘x)‘k <€ {27 o ‘,Ax}

otherwise
setz (M o) = Sia

The first case updates the LRU order when the block is
already in the cache level. The second case adds the block
to the cache level and updates the LRU order .

Multi-level update: A technique based on mainly-
inclusive caches can rely heavily on previous work since
the replacement policies for each level are independent [13].
Such a technique was defined in previous work for in-
struction caches [2]. However, by considering levels in
isolation the analysis ignores much information available in
the hierarchy. Thus, we define multi-level semantics to gain
knowledge from the hierarchy.

We now define the update function, R, : H x M, — H
which takes a cache level and a memory block and returns
the updated cache level. For simplicity, reads and writes both
use the same update function. The only difference is that a
write will mark the block as dirty in the first level cache.
This function is defined as

Ra(mj,e) =

U(Cwymijz) if 3i,h: Si o (), ) = My
y=z+1, if setz(mjwz)ﬁsivmv, Bh -
Sie(l o) = mja A=6(Sia, Uy, 2),

mj’z j ’r’nj/7

Cy >—>’Ry(mj/yy)
Z/{(C»’Ev mjy»’ﬂ)
Y

y=x+1, if .Yetm(m]‘,g;)‘)Si,zv_ #h:
Cy HWS,'y(SkVy) Si,m(l;L z) = Mj,z A 6(Si,m7 l.LA 1-)
Cy—=Ry(mys ) , @

U(Cy,mjg) mj e = ms ., Siyw(lzm,w) — Me,z
' sety (Me,z) — Sk,y

In the first case, the block is in the cache set, so LRU
order of the set is updated. In the second case, the block is
not in the cache set and the evicted block is clean. A read
is issued to the next cache level (Lz+1). Then, LRU order
of the current set in Lz is updated. In the final case, the
block is not in the cache set and the evicted block is dirty.
LRU order of the next cache level (Lz+1) is updated for the
dirty block which is marked as dirty (via Ws,, defined in
Section IV-B). Then, a read of the new block is issued to
the next level of cache (Lz+1). Finally, the LRU order for
the current level (Lz) is updated.

B. Concrete Semantics of Writes for a Cache Set

Since actual values are not relevant for cache analysis, the
only difference between reads and writes is that writes mark
the block as dirty. We use this fact to simplify definition of
write. The semantics of write uses the read semantics to
update the LRU order to move the written block to the first
location and marks this block as dirty as shown below.

Ws,2(Siz) = Sie ® (13 ) — true

Here @ is the overriding function for finite sets. It replaces
the previous state of the cache line with the new state.
C. Read/Write Concrete Semantics for Cache Hierarchies

We now discuss reads and writes for an entire cache hi-
erarchy. A formal description is in our technical report [15].



For a read, first the correct set is found for the L1 cache.
Next, a read to L1 cache is issued for the block containing
the reference. Since reads are defined recursively, the L1
read function will handle calling reads for the higher cache
levels. Write is similar to read, except that after the read to
L1 is issued the first line in the L1 set is marked as dirty.

Finally one more addition is needed to enable proper
concretization of live caches. This addition, denoted C.\y,
is similar to a live cache in that it captures blocks in two
different cache levels, Lz and Ly. Like live caches, there
is an associative set in Cyy, for all combinations of sets
in C, and C, that may contain common addresses. Also,
the associativity of the sets is equal to the larger of the two
levels (Apyvy = max(A,, Ay)).

For simplicity, instead of re-defining the update functions
to include this new model, we re-create the state for each of
these caches, C,,, after each update. Creating the state for
each Cy, is as simple as copying C, and Cj into Cyy,y
where blocks are put at the same proximity to eviction as in
the standard cache level. This creation is defined as follows.

iV k
My = lfqvxvy_h,z_vy € Sivk,avy € Cavy € H <
My = ZZE,,MU € Si. €Cy €H
\%
k
mjw 2 la,

—h,y € Skpy€Cy€H

V. ABSTRACT CACHE SEMANTICS

This section discusses our abstract semantics including
notations, join and update functions, and hit/miss analysis.
Most notations are similar to Figure 6. Below we outline
major differences.

Single block to Set: Since the run-time path is un-
known, lines may hold more than one value (illustrated
in Figure 1). Therefore, the cache line look-up becomes
S(li ) : § = P(M') which simply means that a look-up
returns a set of blocks rather than a single block.

Live cache notation: The notation C_m_)y denotes a live
cache corresponding to Lz and Ly caches. Recall that with
each live cache set, we have two corresponding sets one
in Lz and one in Ly cache. Suppose we have a set in live
cache corresponding to sets S; , € C, and Sy, € C,. Then,
to refer to this set we use S, icyy.k € Cuesy- As mentioned
previously, this set (Sw,m%k) is updated whenever either
corresponding set is updated (S; , or S y).

Write-back: The function § needs to be updated to
account for two things. First, cache lines hold sets in the
abstract semantics. Second, for soundness, we need to know
if a block may be dirty (” in Figure 1), for precision, we
need to know if a block must be dirty (' in Figure 1). First,
d : M x 8 — {true, false} takes a block and a cache
line and returns true if and only if that block must be dirty.
Second, § : M xS — {true, false} is the same as § except
it returns false if an only if the block can not be dirty.

Hierarchy: Abstract hierarchy state 7H =
{C1,...,Car} UV, where V is the set of live caches.

A. Hit/Miss Analysis

As shown in Section II, the analysis consists of two
parts, a hit (must) and miss (may) analysis [2], [4]. For
each memory access, the hit analysis reports either hit or
unsure (for each level). Similarly, the miss analysis reports
either miss or unsure. Each analysis is sound (if the hit
analysis reports a hit for an access, it will definitely be a
hit). Combining the two we determine for each access if
the access will hit in Lz, the access will miss in Lz, or
unknown if the access will hit or miss in Lz. An advantage
of incorporating live caches is that we can now determine
if the access in the worst case will hit Lz (when m;,, is
in Cyeyp) or hit Ly (when m;,, is in C;Hy). This new
information results in a tighter upper bound since we classify
additional accesses as hits. Formal treatment of miss analysis
is omitted here, but included in our technical report [15].

Like previous work [2], [3] we differentiate between first-
hit/miss and always-hit/miss. Since many blocks will not be
in cache for their first use but will be for accesses thereafter,
this reduces the loss of precision introduced by compulsory
(cold) misses. For example, in Figure 1 (if running example
has a loop), the first iteration of the loop in lines 3-4 results
in a miss to load the data (y). However, y is used throughout
all other iterations resulting in hits. Differentiating between
first/always-hit/miss results in 1 miss and 7 hits for the first
8 iterations instead of 8 unknowns (worst case miss).

B. Join function

The “join” function is used to combine states from two
program paths. Since we are designing a sound analysis,
this must be a worst case combination. This is illustrated in
Figure 1. Compared to join functions of previous work [2],
our definition handles live caches and write-back soundly.

The join function for our hit analysis is denoted as
Npis(H', H") = H. We define the behavior of this function
case by case, first informally, then formally. Here, S; , €
Cy € Hand S jesy i € Cresy € H. Also, assume that cache
sets and levels marked with ’ belong to H’ and those marked
with 7 belong to H”. Since A(H',H") = AN(H",H') we
remove extra cases without loss of generality. If a case does
not appear in the definition, it is ignored and thus does not
exist in the joined cache hierarchy.

e The first case is for standard abstract caches, C,, when
two references exist on the same level. In this case, like
previous work [4], we take the later position (max(a, b))
and set the dirty () and may dirty (J) states of the block.
If 3a,b: myjw < 8] (1 L), mjw < S0 L)
then m; o < S; 2 (l} ) where t = max(a,b),

(Mg 1 0) = 8 (M, U 2) NS (M, T L),
S(mjw,ly 2) = 6" (Myw, lg,0) V6" (M w, 1 5

o The second case deals with write-back when a dirty
reference exists in one case (') but not the other (H').
We must capture that a block in this location may be dirty
but since the block doesn’t exist in both cases, we cannot



keep it in the joined state (). Thus, we use an empty
block (I) that is marked maybe dirty (1, lg.i)-

If mj,ew = S:L(ZZL) NS (myaw, L a.z) N o,y ki myw < S,i'y(lb )
then I X S; (1, ,)where 6(1,1; ).

e The third case is where the same block is in different
levels in the two cases. We find the shortest distance to
eviction between the two blocks and put the block into
the live cache the same distance from eviction.

If 3a,b: myjw 28] ,(10) A8 (M, 1l ) Amyw 287,30 ,)
then mj.w = Su,icry, k(lt’m’y)where t=A, yfmm(A —a,Ay—b),z < vy,
=8(mj,w, Z;’;z/) 5("”] w’it,m,gj) =4 (Mj,w, la )V g”(mj,w’l;ﬁ,y%

« The fourth case handles states where the block is in
different levels (Lw and Ly) in two states and the lower
block is dirty. In this case, we take the age of the block in
the higher cache. This is safe since the block in the lower
cache will be written to the higher cache on eviction.
Thus, it will be moved to the first spot in the higher cache.
If 3a,b,w,p : mj, w-<3/ w(h W) A 5" (Mjw, 1B w) Nmy, w38y y(lb )
then M, w = Su,icry, k(lt’ﬁ’y) where t = Ay, — (Ay —b)

85 T ) = 8 (g ), S0 T ) = 3

o The fifth case is when the block exists in the same level
of live cache in both cases. This is similar to the first case
except we are dealing with live caches instead of abstract
caches. Like the first case, we take the later position.

If Ja,b : mj 0 <sz Mka;;y) Ay R (|

DR )= 8 (s Lay) A8 (mg, z’“)
5(m7 uull '; y) = 8" (M, I8 )V (myw, T )

o The sixth case is when a block exists in live cache in
one state and an abstract cache in the other. The block
in the abstract cache is also clean. This case is similar to
the third, in that we find the block closest to eviction. We
give the block in the joined state the same proximity to
being evicted in the live cache.

If 3a, b : my;, “’<S; 1Y, k(l;l‘r y)Amja’“js;/,z(li,z)A_‘(S/l(mj,ws l{;,z)
then m;, =Sy iory, k(ll)‘k,)y) where t =A, ,—min(As y—a,A—b), z <y,
=0(mj,w, lt,]; y) J(m] 107[1 z y) =34 (mj,w, [i z, 1,)\/5“(7”] unlb @)

o The seventh case is the same as the previous except that
the block in live cache is dirty. In this case (since the dirty
block is in a lower level), like the fourth case, we take
the position of the block in the higher level. The higher
level is the live cache since the block is in the lower of
the two levels that the live cache corresponds to.

If 3a,b:mjw=3SL oy n (X5 ) Am;w=S! (1 ) A" (Mg, 1} )
then mj.w = Si,icry, ’“(l«,-k«,y) where t = a, —|6(mJ u“lt,ac.u)’
5(mJ w’lt,m,y) =4 (M, w, la x y) Vv 5”(7”1 w»lb )T < Y.

« The eighth case is like the previous except the dirty block
is in the higher of the two levels corresponding to the live
cache. Like the sixth case, take the worst case position
between these two blocks and place it in the live cache.

If 3a,b:mjw = ST Jiery, k(la x, u) ANMjaw 2 S':/y( b, u)

then m;, w < Se, iy, k(lf I; y) where t=A, , —min(Ag,, —a,A, —b)

6('"7«7 w, ! t e y) =¢ (m] wv;l 1 y) A 5”(m7 w»lb-y)v
é(mJ “’7lt x, y) =4 (Mg, g7, y) V‘S”(mj wvlb y)

Soundness: The proof of soundness of the join func-
tion uses standard analysis of its cases [15].

C. Abstract Update

A major difference between the concrete and abstract
semantics is that in the abstract semantics we have that cache
lines may contain sets of possible blocks. This change re-
quires minor changes to the notation to look for membership
in the sets of blocks rather than comparing to a single block.
We also need to consider empty sets.

Update using live caches for unknown address
references: Since we are interested in an analysis for all
types of caches, we must consider the case where we do
not know which cache set a reference will belong to. For
example, consider the following code:

1 void foo(int x){

2 int % a = (int *) malloc(sizeof(int));

3 %a = X x 2;

4 if(xa > 10){

In this simple function, memory is allocated and the pointer,
a, is set to the address of this new memory. Next, the
location pointed to by a is modified based on the function
input x. In the last line, we read the location pointed to by
a. If we are unable to determine the actual address of this
new memory statically, we can not determine which cache
set it will belong to. Since previous analysis techniques are
designed for instruction caches if we use a previous analysis
techniques we lose information about a. As a result, we
do not have any information about a on the second line.
However, we can see that the write to a will be a hit.

Live caches help solve this problem. We now describe a
special live cache set (S'%v(_,x’v) for each live cache corre-
sponding to a single level (C,..). Note that we only require
one additional set per cache level.Since there are typically
at most a few cache levels, we need few extra sets to handle
this important case. This new set corresponds to all live
cache sets in this cache. This set is updated whenever any
set in C, is updated. Since cache sets are typically only 8
or 16 lines wide, we typically only need in the tens of new
cache lines for this extension to live caches. References in
this new set are likely to have a short lifetime since sets are
typically small. However, these sets catch cases like those
illustrated previously which occur frequently in practice.

Update for live cache: We now define how live caches
are updated. Recall that a live cache corresponds to two
separate caches. Also, live cache sets correspond to two sets,
on in each of these two caches. Thus, whenever we update
a set in the Lz cache, we must update all live cache sets
that correspond to the set in Lz. This is defined as

u(si,z’ B) =

RE,y(Sm‘iHyle)

Vy,k sty ZT NSz icsyk € Catry, Ra,y(Sy kora,ir B)

Yy, k st Sw,i«—)y,kie ézHyv
{ Rx,z(sm,VHm,Va B)
Where B C M is a set of blocks to be read. The updates in
this equation are done regardless of the case for updating and
the other updates done (represented by ...). The restriction



of y # x in the second set of updates ensures that live caches
corresponding to single cache levels are not updated twice.
The live cache update is defined as:

Ra,y(Se,icy,k, B) =

M(Sm,iey,k»B) <y
Vp:BE#¢V Ime . € Be : ~ 7_kac:y,i:k
6(m57w,lf4’l:,y,m’y)/\ Sm,my,k(l’fgz,y,x,y) — B,
sety (Me,w) = Sp, 2, Z=y+1,B§={n_Lek,w€Be\
w e
Rz,2(Sz,pesz,p, BY) S(me,ws Uy owy)s

U(Se,icsy,ky B) setz (Me,w)— Sp,z}

Rae,2(Seveav, B) =

Sm,VHm,V(mw,z) - Be

Rz,z(sz,VHz,Vng)
z=2+1, BE={me w€Be|d(me,w, 1%, ,)}

U(Ss vera,v, B)

This definition relies on update function, ¢/, similar to that
for concrete cache sets given in Section IV-A. In this case
we instead update live cache sets. Like abstract cache states,
each line in a live cache set may contain a set of blocks.

In the first case, since x < y the LRU order is updated
with the new set of blocks B (we never have blocks that
are definitely dirty in a live cache connected to two separate
levels). In the second case, all blocks being evicted from the
live cache are written back to the next level of live cache.

In practice, the number of updates can be reduced slightly
while maintaining soundness. For example, suppose a read
misses both L1 and L2. According to our theoretical rules,
the live cache set corresponding to both the set in L1 and
in L2 would be updated. Typically, this is the same set in
Ci<2. Thus, there is no reason to update this set twice since
both levels are updated only once (unless a block is evicted
from L1 to make room for the new block). Thus, we can
simply update the corresponding set in C ., once.

D. Concretization

As is standard, for determining the meaning of an abstract
state, a concretization function, ~, is used. The concretiza-
tion of standard abstract cache levels, C,, follows previous
work [3] and is relatively straightforward. Live caches,
however, are somewhat more challenging.

Suppose we have a live cache C; ;2. A block in this cache
represents a worst case L2 hit. However, we can not simply
put this block in the concrete L2 cache since it might not
actually be in L2.

To address this problem, recall the extension Cjy, dis-
cussed previously in Section IV-C. Since this portion of the
concrete state contains blocks that are in either Lz, Ly, or
both Lx and Ly, live cache blocks are concretized safely
into Cyv,. To concretize a block in Cieyo, We place it in
C1ve at the same proximity to eviction as in Ci<2. This
is defined as follows. Suppose H = (H). The portion of
concretization for live caches is defined as follows.

k

My ST ) € iy € Cacny €7

\4
= My X li\z\/y—h,mVy € Sivk,evy € Cavy € H

Termination of the Analysis: Like previous work [2],
our analysis is guaranteed to terminate. For a full discussion
we refer to our technical report [15].

VI. EVALUATION

The goals of our analysis were to handle cache hier-
archies, handle write-back and improve precision. So far,
via the definition of our abstract domain for multi-level
caches, we have shown that our approach can handle cache
hierarchies and write-back. In this section we evaluate our
third claim that our approach improves the precision of
multi-level cache analysis over previous work [2].

A. Improved Precision

To verify that live caches improve precision in practice,
we compared two static analysis approaches, one with live
caches and one without. The cache analysis was imple-
mented as part of our prototype tool which analyzes program
binaries. At this time, the entire analysis process is not
completely automated as it requires determining bounds on
loop iterations by hand for many loops. For our experimen-
tation, loop bounds were determined either from comments
in the benchmark source code or by manual inspection of
the source code. Like previous work [2], [9], we used the
WCET benchmarks maintained by the Milardalen WCET
research group [14]. We ran our prototype on all 32 of
these benchmarks. For these benchmarks, we observed the
average space overhead to be 95% (max 120%) and time
overhead to be 57.8%. This is primarily because we have not
yet attempted to produce an optimized implementation. A
more optimized representation of live caches will drastically
reduce both space and time overhead, however, producing
such implementation was not the focus of this paper.

To determine the performance of our analysis we used
a cache configuration also used by previous work [2] (L1:
8k, 4-way, L2: 64k, 8-way). We also use the same cost in
cycles for accessing levels in the memory hierarchy (L1 hit:
1 cycle, L2 hit: 10 cycles, Memory access: 100 cycles). The
improvement in precision for overall cache/memory access
time for each benchmark is shown in Figure 7.

This data shows that introducing live caches into the
analysis resulted in up to a 31% reduction in worst case
memory access time. The benchmarks bsort100, cnt, cover,
edn, fac, fibcall, fir, fdct, loop3, nsichneu, gsort-exam, and
select did not show any improvement. We observed that
these benchmarks typically have few joins. For benchmarks
reported in previous work [2] we observed an average
improvement of 6.4% and the average improvement over all
benchmarks with non-zero improvement was 6.3%. Overall,
62.5% of the benchmarks showed some improvement in
precision. As the box-plot shows, there is a high variability
between benchmarks (standard deviation of 6.1%).
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Right: boxplot for those benchmarks with non-zero improvement.

B. Impact of program characteristics

We performed a multiple linear regression analysis using
the Lindeman, Meranda and Gold (LMG) method to de-
termine relationships between program characteristics and
precision improvement. The strongest model includes the
following predictors: floating point computations (y/n), if-
then-else structures (count), size of the binary, joins in the
binary (count), and accuracy of analysis without live caches.

Relative importances for improvement
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Figure 8. Relative importance, Improv > 0

These results are shown in Figure 8. Besides the charac-
teristics shown in Figure 8, we also considered others such
as number of loops, nesting of control structures, etc, but
none of them were found to be strong factors. The figure
shows five predictors that were the strongest with an adjusted
correlation coefficient, R?, of 0.6 (std R% = 0.73).

Number of joins and complex branching: As ex-
pected, we found these to be a large factor. In other words,
the more joins and branching, the higher the expected
improvement, which is encouraging because these are the
cases where precision matters.

Size: Another encouraging result was that as the pro-
gram size increased precision improvement also increased,
which suggests that for programs larger than the WCET
benchmarks, we could see similar, if not better, precision.

Floating point operations and accuracy of previous
analysis: It was somewhat surprising to see these factors
as strong predictors. Float programs have an average lower

miss rate for instruction and unified caches than non-
float programs (although slightly higher data cache miss
rates) [16]. Thus, the previous technique should have higher
accuracy for these benchmarks. Increased hit percentage of
previous analysis implies some increase in knowledge which
means greater knowledge for our analysis as well. More
information will increase the precision of our cache model.

Scalability: We found a strong logarithmic correlation
between space overhead and number of joins. This suggests
that our approach should scale as well as the previous
technique [2]. We also found a strong linear correlation
(R? = 0.94) between run-time and number of joins. This
means that for large complex programs, we should not see
an explosion of run-time, rather a more gentle increase.

C. Impact of hardware configuration

Besides the simple cache configuration presented before,
we tested a variety of cache configurations to determine if
target platform has an impact on precision improvement of
our analysis. We include cache configurations found in pro-
cessors ranging from early models with multi-level caches
to modern processors. Our results show several noticeable
trends which we now summarize.

First, we found a positive correlation between the size
of L2 cache and precision improvement. However, this
improvement is small. For example, when quadrupling L2
size, experiments showed on average that accuracy only
improved by about 0.13%. This result is however pleasant in
that it suggests that our analysis is useful for large caches as
well. L1 cache sizes had no significant impact on precision.
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Figure 9. Average improvement for varying L2 associativity and linesize
(L1: 32k, 4-way. L2: 256k).

We found that associativity plays the largest role in im-
pacting performance. Figure 9 shows average improvement
for a variety of L2 associativity levels and linesizes. We
see a clear negative correlation between associativity and
improvement, however, even for highly associative caches,
we see an improvement of nearly 4% on average. The figure
also depicts the results for varying linesize. We did not find
a statistically significant difference in average improvement
for 32byte vs 64byte linesizes.

Summary: In summary, we observed the following.

o Most programs see precision improvement.



o As program complexity and size increase, precision
generally increases.

o Caches from small to large see precision improvement.

« Time and space overheads scale well for program size
and complexity.

VII. RELATED WORK

Existing work either focuses on instruction caches [2],
[4]-[8] or on data caches [9]-[12]. In contrast, our technique
works for both instruction and data caches.

Most similar among instruction cache techniques is that
of Hardy and Puaut [2] which makes use of abstract inter-
pretation to address multi-level instruction caches. However,
as mentioned previously, this technique is only for mainly-
inclusive instruction caches. We address all types of multi-
level caches as well as data caches. This includes handling
complications caused by write-back and other multi-level
cache policies. We have also developed live caches which
improve upon the accuracy of their technique by capturing
memory references that exist in different cache levels.

Another technique was proposed by Sen and Srikant [9]
which uses abstract interpretation to predict data cache
behavior. They make use of previous work to track ad-
dresses [17]. This work does not consider multi-level data
caches and thus does not handle write-back. Our work
considers multi-level caches and write-back for data caches.

The original technique for predicting cache behavior using
abstract interpretation was proposed by Alt et al. [4]. Like
the work by Hardy and Puaut [2], we make use of the ideas
presented in this paper to form the basis of our analysis. Our
analysis extends this work by handling multi-level caches
and write-back for these multi-level caches.

There are several ideas to handle tracking address values
in programs [10], [17]. This is an orthogonal issue to
cache behavior analysis. Similar to previous work on cache
analysis our technique also makes use of these ideas.

Yan and Zhang’s analysis technique [6] considers inter-
ference between threads [18], but it doesn’t handle both
instruction and data caches. We don’t consider interference
but handle both type of caches.

VIII. CONCLUSION

Precise cache abstractions are needed to get correct worst
case execution time by static analysis. Existing cache analy-
ses [2], [4]-[12] do not provide precise enough abstractions
for realistic cache hierarchies which include split and unified
multi-level caches as well as write-back. We have discussed
a multi-level cache analysis enabled by a new abstraction,
live caches, that solves these problems. Evaluation of our
technique using standard WCET benchmarks shows an aver-
age of 6.3% reduction in 66.5% benchmarks. Since memory
access time is often a significant portion of the execution
time of a system, we expect to see similar improvements
in larger real-time systems. Since estimating WCET is

important for real-time systems we expect our technique to
lead to resource savings in their implementation.
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