Declarative Visitors to Ease Fine-grained Source Code Mining with Full History on Billions of AST Nodes
By: Robert Dyer, Hridesh Rajan, and Tien N. Nguyen
Download PaperAbstract
Software repositories contain a vast wealth of information about software development. Mining these repositories has proven useful for detecting patterns in software development, testing hypotheses for new software engineering approaches, etc. Specifically, mining source code has yielded significant insights into software development artifacts and processes. Unfortunately, mining source code at a large-scale remains a difficult task. Previous approaches had to either limit the scope of the projects studied, limit the scope of the mining task to be more coarse-grained, or sacrifice studying the history of the code due to both human and computational scalability issues. In this paper we address the substantial challenges of mining source code: a) at a very large scale; b) at a fine-grained level of detail; and c) with full history information. To address these challenges, we present domain-specific language features for source code mining. Our language features are inspired by object-oriented visitors and provide a default depth-first traversal strategy along with two expressions for defining custom traversals. We provide an implementation of these features in the Boa infrastructure for software repository mining and describe a code generation strategy into Java code. To show the usability of our domain-specific language features, we reproduced over 40 source code mining tasks from two large-scale previous studies in just 2 person-weeks. The resulting code for these tasks show between 2.0x-4.8x reduction in code size. Finally we perform a small controlled experiment to gain insights into how easily mining tasks written using our language features can be understood, with no prior training. We show a substantial number of tasks (75%) were understood by study participants, in about 3 minutes per task.
ACM Reference
Dyer, R. et al. 2013. Declarative Visitors to Ease Fine-grained Source Code Mining with Full History on Billions of AST Nodes. Proceedings of the 12th International Conference on Generative Programming: Concepts & Experiences (2013), 23–32.
BibTeX Reference
@inproceedings{dyer2013declarative,
author = {Dyer, Robert and Rajan, Hridesh and Nguyen, Tien N.},
title = {Declarative Visitors to Ease Fine-grained Source Code Mining with Full History on Billions of {AST} Nodes},
booktitle = {Proceedings of the 12th International Conference on Generative Programming: Concepts & Experiences},
series = {GPCE},
year = {2013},
pages = {23--32},
location = {Indianapolis, IN},
entrysubtype = {conference},
abstract = {
Software repositories contain a vast wealth of information about software
development. Mining these repositories has proven useful for detecting
patterns in software development, testing hypotheses for new software
engineering approaches, etc. Specifically, mining source code has yielded
significant insights into software development artifacts and processes.
Unfortunately, mining source code at a large-scale remains a difficult task.
Previous approaches had to either limit the scope of the projects studied,
limit the scope of the mining task to be more coarse-grained, or sacrifice
studying the history of the code due to both human and computational
scalability issues. In this paper we address the substantial challenges of
mining source code: a) at a very large scale; b) at a fine-grained level of
detail; and c) with full history information.
To address these challenges, we present domain-specific language features for
source code mining. Our language features are inspired by object-oriented
visitors and provide a default depth-first traversal strategy along with two
expressions for defining custom traversals. We provide an implementation of
these features in the Boa infrastructure for software repository mining and
describe a code generation strategy into Java code. To show the usability of
our domain-specific language features, we reproduced over 40 source code
mining tasks from two large-scale previous studies in just 2 person-weeks. The
resulting code for these tasks show between 2.0x-4.8x reduction in code size.
Finally we perform a small controlled experiment to gain insights into how
easily mining tasks written using our language features can be understood,
with no prior training. We show a substantial number of tasks (75%) were
understood by study participants, in about 3 minutes per task.
}
}