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ABSTRACT

Machine learning models are increasingly being used in important

decision-making software such as approving bank loans, recom-

mending criminal sentencing, hiring employees, and so on. It is

important to ensure the fairness of these models so that no dis-

crimination is made based on protected attribute (e.g., race, sex, age)

while decision making. Algorithms have been developed to measure

unfairness and mitigate them to a certain extent. In this paper, we

have focused on the empirical evaluation of fairness and mitiga-

tions on real-world machine learning models. We have created a

benchmark of 40 top-rated models from Kaggle used for 5 different

tasks, and then using a comprehensive set of fairness metrics, eval-

uated their fairness. Then, we have applied 7 mitigation techniques

on these models and analyzed the fairness, mitigation results, and

impacts on performance. We have found that some model optimiza-

tion techniques result in inducing unfairness in the models. On the

other hand, although there are some fairness control mechanisms

in machine learning libraries, they are not documented. The miti-

gation algorithm also exhibit common patterns such as mitigation

in the post-processing is often costly (in terms of performance) and

mitigation in the pre-processing stage is preferred in most cases.

We have also presented different trade-off choices of fairness miti-

gation decisions. Our study suggests future research directions to

reduce the gap between theoretical fairness aware algorithms and

the software engineering methods to leverage them in practice.
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· Software and its engineering→ Software creation andman-

agement; · Computing methodologies→Machine learning.
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1 INTRODUCTION

Since machine learning (ML) models are increasingly being used in

making important decisions that affect human lives, it is important

to ensure that the prediction is not biased toward any protected

attribute such as race, sex, age, marital status, etc. ML fairness

has been studied for about past 10 years [16], and several fairness

metrics and mitigation techniques [8, 11, 15, 20, 34, 36, 50, 52, 52]

have been proposed. Many testing strategies have been developed

[3, 17, 49] to detect unfairness in software systems. Recently, a few

tools have been proposed [2, 4, 44, 48] to enhance fairness of ML

classifiers. However, we are not aware how much fairness issues

exist in ML models from practice. Do the models exhibit bias? If yes,

what are the different bias types and what are the model constructs

related to the bias? Also, is there a pattern of fairness measures

when different mitigation algorithms are applied? In this paper, we

have conducted an empirical study on ML models to understand

these characteristics.

Harrison et al. studied howMLmodel fairness is perceived by 502

Mechanical Turk workers [21]. Recently, Holstein et al. conducted

an empirical study on ML fairness by surveying and interviewing

industry practitioners [22]. They outlined the challenges faced by

the developers and the support they need to build fair ML systems.

They also discussed that it is important to understand the fairness

of existing MLmodels and improve software engineering to achieve

fairness. In this paper, we have analyzed the fairness of 40 ML mod-

els collected from a crowd sourced platform, Kaggle, and answered

the following research questions.

RQ1: (Unfairness) What are the unfairness measures of the ML

models in the wild, and which of them are more or less prone to

bias?

RQ2: (Bias mitigation) What are the root causes of the bias in

ML models, and what kind of techniques can successfully mitigate

those bias?

RQ3: (Impact) What are the impacts of applying different bias

mitigating techniques on ML models?

First, we have created a benchmark of ML models collected

from Kaggle. We have manually verified the models and selected

appropriate ones for the analysis. Second, we have designed an

experimental setup to measure, achieve, and report fairness of

the ML models. Then we have analyzed the result to answer the

research questions. The key findings are: model optimization goals

are configured towards overall performance improvement, causing

unfairness. A fewmodel constructs are directly related to fairness of

the model. However, ML libraries do not explicitly mention fairness

in documentation. Models with effective pre-processing mitigation

algorithm are more reliable and pre-processing mitigations always

retain performance. We have also reported different patterns of
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exhibiting bias and mitigating them. Finally, we have reported the

trade-off concerns evident for those models.

The paper is organized as follows: ğ2 describes the background

and necessary terminology used in this paper. In ğ3, we have de-

scribed the methodology of creating the benchmark and setting

up experiment, and discussed the fairness metrics and mitigation

techniques. ğ4 describes the fairness comparison of the models,

ğ5 describes the mitigation techniques, and ğ9 describes the im-

pacts of mitigation. We have discussed the threats to validity in ğ7,

described the related work in ğ8, and concluded in ğ9.

2 BACKGROUND

The basic idea of ML fairness is that the model should not discrim-

inate between different individuals or groups from the protected

attribute class [16, 17]. Protected attribute (e.g., race, sex, age, re-

ligion) is an input feature, which should not affect the decision

making of the models solely. Chen et al. listed 12 protected at-

tributes for fairness analysis [10]. One trivial idea is to remove the

protected attribute from the dataset and use that as training data.

Pedreshi et al. showed that due to the redundant encoding of train-

ing data, it is possible that protected attribute is propagated to other

correlated attributes [39]. Therefore, we need fairness aware algo-

rithms to avoid bias in MLmodels. In this paper, we have considered

both group fairness and individual fairness. Group fairness mea-

sures whether the model prediction discriminates between different

groups in the protected attribute class (e.g., sex: male/female) [14].

Individual fairness measures whether similar prediction is made for

similar individuals those are only different in protected attribute

[14]. Based on different definitions of fairness, many group and

individual fairness metrics have been proposed. Additionally, many

fairness mitigation techniques have been developed to remove un-

fairness or bias from the model prediction. The fairness metrics and

mitigation techniques have been described in the next section.

3 METHODOLOGY

In this section, first, we have described the methodology to create

the benchmark of ML models for fairness analysis. Then we have

described our experiment design and setup. Finally, we have dis-

cussed the fairness metrics we evaluated and mitigation algorithms

we applied on each model.

3.1 Benchmark Collection

We have collected ML models from Kaggle kernels [25]. Kaggle

is one of the most popular data science (DS) platform owned by

Google. Data scientists, researchers, and developers can host or

take part in DS competition, share dataset, task, and solution. Many

Kaggle solutions resulted in impactful ML algorithms and research

such as neural networks used by Geoffrey Hinton and George Dahl

[12], improving the search for the Higgs Boson at CERN [23], state-

of-the-art HIV research [9], etc. There are 376 competitions and

28,622 datasets in Kaggle to date. The users can submit solutions

for the competitions and dataset-specific tasks. To create a bench-

mark to analyze the fairness of ML models, we have collected 40

kernels from the Kaggle. Each kernel provides solution (code and

description) for a specific data science task. In this study, we have

analyzed ML models that operate on 1) datasets utilized by prior
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Figure 1: Benchmark model collection process

studies on fairness, and 2) datasets with protected attribute (e.g.,

sex, race). With this goal, we have collected the ML models with

different filtering criteria for each category. The overall process of

collecting the benchmark has been depicted in Figure 1.

To identify the datasets used in prior fairness studies, we refer

to the work on fairness testing by Galhotra et al. [17], where two

datasets, German Credit and Adult Census have been used. Udeshi

et al. experimented on models for the Adult Census dataset [49].

Aggarwal et al. used six datasets: German Credit, Adult Census,

Bank Marketing, US Executions, Fraud Detection, and Raw Car

Rentals) [3]. Among these datasets, German Credit, Adult Census

and Bank Marketing dataset are available on Kaggle. From the

solutions for these datasets, we have collected 440 kernels (65 for

German Credit, 302 for Adult Census, and 73 for Bank Marketing).

Furthermore, we have filtered the kernels based on three criteria

to select the top-rated ones: 1) contain predictive models (some

kernels only contain exploratory data analysis), 2) at least 5 upvotes,

and 3) accuracy ≥ 65%. Often a kernel contains multiple models

and tries to find the best performing one. In these cases, we have

selected the best performing model from every kernel. Thus, we

have selected the top 8 models based on upvotes for each of the 3

datasets and got 24 ML models.

Chen et al. [10] listed 12 protected attributes, e.g., age, sex, race,

etc. for fairness analysis. We have found 7 competitions in Kaggle,

that contain any of these attributes. From the selected ones, we

have filtered out the competitions that involve prediction decisions

not being favorable to individuals or a specific group. For example,

although this competition [28] has customers age and sex in the

dataset, the classification task is to recommend an appropriate

product to the customers, which we can not classify as fair or

unfair. Thus, we have got two appropriate competitions with several

kernels. To select ML models from these competitions, we have

utilized the same filtering criteria used before and selected 8 models

for each dataset based on the upvotes. Finally, we have created a

benchmark containing 40 top-rated Kaggle models that operate

on 5 datasets. The characteristics of the datasets and tasks in the

benchmark are shown in Table 1.

3.2 Experiment Design

After creating the benchmark, we have experimented on the models,

evaluated performance and fairness metrics, and applied different

bias mitigation techniques to observe the impacts. Our experiment

design process is shown in Figure 2. The experiments on the bench-

mark have been peer reviewed and published as an artifact [7].

In our benchmark, we have models from five dataset categories.

To be able to compare the fairness of different models in each dataset

category, we have used the same data preprocessing strategy. We
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Table 1: The datasets used in the fairness experimentation. # F: Feature count. PA: Protected attribute.

Dataset Size # F PA Description

German Credit [29] 1,000 21 age,

sex

This dataset contains personal information about individuals and predicts credit risk (good

or bad credit). The age protected attribute is categorized into young (< 25) and old (≥ 25)

based on [16].

Adult Census [26] 32,561 12 race,

sex

This dataset comprises of individual information from the 1994 U.S. census. The target

feature of this dataset is to predict whether an individual earns ≥ $50, 000 or not in a year.

BankMarketing [27] 41,188 20 age This dataset contains the direct marketing campaigns data of a Portuguese bank. The goal

is to predict whether a client will subscribe for a term deposit or not.

Home Credit [30] 3,075,11 240 sex This dataset contains data related to loan applications for individuals who do not get loan

from the traditional banks. The target feature is to predict whether an individual who can

repay the loan, get the application accepted or not.

Titanic ML [31] 891 10 sex This dataset contains data about the passengers of Titanic. The target feature is to predict

whether the passenger survived the sinking of Titanic or not. The target of the test set is

not published. So, we have taken the training data and further split it into train and test.
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Figure 2: Experimentation to compute performance, fairness and mitigation impacts of machine learning models.

have processed the missing or invalid values, transformed con-

tinuous features to categorical (e.g., age<25: young, age≥25: old),

and converted non-numerical features to numerical (e.g., female: 0,

male: 1). We have done some further preprocessing to the dataset

to be used for fairness analysis: specify the protected attributes,

privileged and unprivileged group, and what are the favorable label

or outcome of the prediction. For example, in the Home Credit

dataset, sex is the protected attribute, where male is the privileged

group, female is the unprivileged group, and the prediction label is

credit risk of the person i.e., good (favorable label) or bad. For all

the datasets, we have used shuffling and same train-test splitting

(70%-30%) before feeding the data to the models.

For each dataset category, we have eight Kaggle kernels. The

kernels contain solution code written in Python for solving classifi-

cation problems. In general, the kernels follow these stages: data

exploration, preprocessing, feature selection, modeling, training,

evaluation, and prediction. From the kernels, we have manually

extracted the code for modeling, training, and evaluation. For ex-

ample, this kernel [33] loads the German Credit dataset, performs

exploratory analysis and selects a subset of the features for training,

preprocesses data, and finally implements XGBoost classifier for

predicting the credit risk of individuals. We have manually sliced

the code for modeling, training, and evaluation. Often the kernels

try multiple models, evaluate results, and find the best model. From

a single kernel, we have only sliced the best performing model

found by the kernel. Some kernels do not specify the best model.

In this case, we have selected the model with the best accuracy.

For example, this kernel [32] works on Adult Census dataset and

implements four models (Logistic Regression, Decision Tree, K-

Nearest Neighbor and Gradient Boosting) for predicting income

of individuals. We have selected the Gradient Boosting classifier

model since it gives the best accuracy.

After extracting the best model, we train the model and evaluate

performance (accuracy, F1 score). We have found that the model

performance in our experiment is consistent with the prediction

made in the kernel. Then, we have evaluated 7 different fairness

metrics described in ğ3.3.2. Next, we have applied 7 different bias

mitigation algorithms separately and evaluated the performance

and fairness metrics. Thus, we collect the result of 9 metrics (2 per-

formance metric, 7 fairness metric) before applying any mitigation

algorithm and after applying each mitigation algorithm. For each

model, we have done this experiment 10 times and taken the mean

of the results as suggested by [16]. We have used the open-source

Python library AIF 360 [4] developed by IBM for fairness metrics

and bias mitigation algorithms. All experiments have been executed

on a MAC OS 10.15.2, having 4.2 GHz Intel Core i7 processor with

32 GB RAM and Python 3.7.6.

3.3 Measures

We have computed the algorithmic fairness of each subject model

in our benchmark. Let, D = (X ,Y ,Z ) be a dataset where X is the

training data, Y is the binary classification label (Y = 1 if the label

is favorable, otherwise Y = 0), Z is the protected attribute (Z = 1

for privileged group, otherwise Z = 0), and Ŷ is the prediction label
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(1 for favorable decision and 0 for unfavorable decision). If there are

multiple groups for protected attributes, we have employed a binary

grouping strategy (e.g., race attribute in Adult Census dataset has

been changed to white/non-white).

3.3.1 Accuracy Measure. Before measuring the fairness of the

model, we have computed the performance in terms of accuracy,

and F1 score.

Accuracy: Accuracy is given by the ratio of truly classified items

and total number of items.

Accuracy = (# True positive + # True negative)/# Total

F1 Score: This metric is given by the harmonic mean of precision

and recall.

F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall)

3.3.2 Fairness Measure. Many quantitative fairness metrics have

been proposed in the literature [6] based on different definitions

of fairness. For example, AIF 360 toolkit has APIs for computing

71 fairness metrics [4]. In this paper, without being exhaustive, a

representative list of metrics have been selected to evaluate the

fairness of ML models. We have adopted the metrics recommenda-

tion of Friedler et al. [16] and further added the individual fairness

metrics.

Metrics based on base rates:

Disparate Impact (DI): This metric is given by the ratio between the

probability of unprivileged group gets favorable prediction and the

probability of privileged group gets favorable prediction [15, 50].

DI = P[Ŷ = 1|Z = 0]/P[Ŷ = 1|Z = 1]

Statistical Parity Difference (SPD): This measure is similar to DI but

instead of the ratio of probabilities, difference is calculated [8].

SPD = P[Ŷ = 1|Z = 0] − P[Ŷ = 1|Z = 1]

Metrics based on group conditioned rates:

Equal Opportunity Difference (EOD): This is given by the true-

positive rate (TPR) difference between unprivileged and privileged

groups.

TPRu = P[Ŷ = 1|Y = 1,Z = 0] ; TPRp = P[Ŷ = 1|Y = 1,Z = 1]

EOD = TPRu −TPRp

Average Odds Difference (AOD): This is given by the average of

false-positive rate (FPR) difference and true-positive rate difference

between unprivileged and privileged groups [20].

FPRu = P[Ŷ = 1|Y = 0,Z = 0] ; FPRp = P[Ŷ = 1|Y = 0,Z = 1]

AOD =
1

2
{(FPRu − FPRp ) + (TPRu −TPRp )}

Error Rate Difference (ERD): Error rate is given by the addition of

false-positive rate (FPR) and false-negative rate (FNR) [11].

ERR = FPR + FNR

ERD = ERRu − ERRp

Metrics based on individual fairness:

Consistency (CNT): This individual fairness metric measures how

similar the predictions are when the instances are similar [51]. Here,

n_neiдhbors is the number of neighbors for the KNN algorithm.

CNT = 1 −
1

n ∗ n_neiдhbors

n∑

i=1

|ŷi −
∑

j ∈Nn_neiдhbors (xi )

ŷj |

Theil Index (TI): This metric is also called the entropy index which

measures both the group and individual fairness [45]. Theil index

is given by the following equation where bi = ŷi − yi + 1.

TI =
1

n

n∑

i=1

bi

µ
ln
bi

µ

3.4 Bias Mitigation Techniques

In this section, we have discussed the bias mitigation techniques

that have been applied to the models. These techniques can be

broadly classified into preprocessing, in-processing, and postpro-

cessing approaches.

Preprocessing Algorithms. Preprocessing algorithms do not change

the model and only work on the dataset before training so that mod-

els can produce fairer predictions.

Reweighing [34]: In a biased dataset, different weights are assigned

to reduce the effect of favoritism of a specific group. If a class of in-

put has been favored, then a lower weight is assigned in comparison

to the class not been favored.

Disparate Impact Remover [15]: This algorithm is based on the

concept of the metric DI that measures the fraction of individuals

achieves positive outcomes from an unprivileged group in compar-

ison to the privileged group. To remove the bias, this technique

modifies the value of protected attribute to remove distinguishing

factors.

In-processing Algorithms. In-processing algorithms modify the

ML model to mitigate the bias in the original model prediction.

Adversarial Debiasing [52]: This approach modifies the ML model

by introducing backward feedback (negative gradient) for predict-

ing the protected attribute. This is achieved by incorporating an

adversarial model that learns the difference between protected and

other attributes that can be utilized to mitigate the bias.

Prejudice Remover Regularizer [36]: If an MLmodel relies on the de-

cision based on the protected attribute, we call that direct prejudice.

In order to remove that, one could simply remove the protected

attribute or regulate the effect in the ML model. This technique

applies the latter approach, where a regularizer is implemented that

computes the effect of the protected attribute.

Post-processing Algorithms. This genre of techniques modifies

the prediction result instead of the ML models or the input data.

Equalized Odds (E) [20]: This approach changes the output labels

to optimize the EOD metric. In this approach, a linear program is

solved to obtain the probabilities of modifying prediction.

Calibrated Equalized Odds [41]: To achieve fairness, this technique

also optimizes EOD metric by using the calibrated prediction score

produced by the classifier.

Reject Option Classification [35]: This technique favors the in-

stances in privileged group over unprivileged ones that lie in the

decision boundary with high uncertainty.
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4 UNFAIRNESS IN ML MODELS

In this section, we have explored the answer of RQ1 by analyzing

different fairness measures exhibited by the ML models in our

benchmark. Do themodels have bias in their prediction? If so, which

models are fairer and which are more biased? What is causing the

models to be more prone to bias? What kind of fairness metric

is sensitive to different models? To answer these questions, we

have conducted experiment on the ML models and computed the

fairness metrics. The result is presented in Table 2. The unfairness

measures for all the 40 models are depicted in Figure 3. To be able to

compare all the metrics in the same chart, disparate impact (DI), and

consistency (CNT) have been plotted in the log scale. If the value of

a fairness metric is 0, there is no bias in the model according to the

corresponding metric. If the measure is less than or greater than 0,

bias exists. The negative bias denotes that the prediction is biased

towards privileged group and positive bias denotes that prediction

is biased towards unprivileged group.

We have found that all the models exhibit unfairness and mod-

els specific to a dataset show similar bias patterns. From Figure 3,

we can see that all the models exhibit bias with respect to most

of the fairness metrics. For a model, metric values vary since the

metrics follow different definitions of fairness. Therefore, we have

compared bias of different models both cumulatively and using

the specific metric individually. To compare total bias across all

the metrics, we have taken the absolute value of the measures and

computed the sum of bias for each model. In Figure 4, we can see

the total bias exhibited by the models. Although the bias exhibited

by models for each dataset follow similar pattern, certain models

are fairer than others.

Finding 1: Model optimization goals seek overall perfor-

mance improvement, which is causing unfairness.

Model GC1 exhibits the lowest bias among German Credit models.

GC1 is a Random Forest (RFT) classifier model, which is built by

using a grid search over a given range of hyperparameters. After

the grid search, the best found classifier is:

1 RandomFo r e s tC l a s s i f i e r ( b o o t s t r a p =True , c cp_a lpha = 0 . 0 ,

c l a s s _we i g h t =None , c r i t e r i o n = ' g i n i ' , max_depth =3 ,

max_ f ea tu r e s =4 , max_ lea f_nodes=None , max_samples=None ,

m in_ impur i t y_de c r e a s e = 0 . 0 , m i n _ impu r i t y _ s p l i t =None ,

m in_ s amp l e s _ l e a f =1 , m i n _ s amp l e s _ s p l i t =2 ,

m i n _we i g h t _ f r a c t i o n _ l e a f = 0 . 0 , n _ e s t ima t o r s =25 , n_ job s =None ,

oob_sco re = Fa l s e , r andom_s ta t e =2 , warm_s tar t = F a l s e )

We have found that GC6 is also a Random Forest classifier built

through grid search. However, GC6 is less fair in terms of cumula-

tive bias (Figure 4), and individual metrics (Figure 3) except error

rate difference (ERD). We have investigated the reason of the fair-

ness differences in these two models by running both of them by

changing one hyperparameter at a time. We have found that the

fairness difference is caused by the scoring mechanism used by

the two models. GC1 uses scoring='recall', whereas GC6 uses

scoring='precision', as shown in the following code snippet.

1 # Model GC1

2 param_gr id = { " max_depth " : [ 3 , 5 , 7 , 1 0 , None ] , " n _ e s t ima t o r s "

: [ 3 , 5 , 1 0 , 2 5 , 5 0 , 1 5 0 ] , " max_ f ea tu r e s " : [ 4 , 7 , 1 5 , 2 0 ] }

3 GC1 = RandomFo r e s tC l a s s i f i e r ( r andom_s ta t e =2 )

4 g r i d _ s e a r c h = GridSearchCV (GC1 , param_gr id=param_grid , cv =5 ,

s c o r i n g = ' r e c a l l ' , v e rbo se =4 )

5 # Model GC6

6 params = { ' n _ e s t ima t o r s ' : [ 2 5 , 5 0 , 1 0 0 , 1 5 0 , 2 0 0 , 5 0 0 ] , ' max_depth '

: [ 0 . 5 , 1 , 5 , 1 0 ] , ' r andom_s ta t e ' : [ 1 , 1 0 , 2 0 , 4 2 ] , ' n_ j ob s ' : [ 1 , 2 ] }

7 GC6 = RandomFo r e s tC l a s s i f i e r ( )

8 g r i d _ s e a r c h _ c v = GridSearchCV (GC6 , params , s c o r i n g = ' p r e c i s i o n ' )

Further investigation shows, in German Credit dataset, the data

rows are personal information about individuals and task is to pre-

dict their credit risk. The data items are not balancedwhen sex of the

individuals is concerned. The dataset contains 69% data instances

of male and 31% female individuals. When the model is optimized

towards recall (GC1) rather than precision (GC6), the total num-

ber of true-positives decreases and false-negative increases. Since

the number of instances for privileged group (male) is more than

the unprivileged group (female), decrease in the total number of

true-positives also increases the probability of unprivileged group

to be classified as favorable. Therefore, the fairness of GC1 is more

than GC2, although the accuracy is less. Unlike other group fair-

ness metrics, error rate difference (ERD) accounts for false-positive

and false-negative rate difference between privileged and unprivi-

leged group. As described before, optimizing the model for recall

increases the total number of false-negatives. We have found that

the percentage of male categorized as favorable is less than the

percentage of female categorized as favorable. Therefore, an in-

crease in the overall false-negative also increased the error rate of

unprivileged group, which in turn caused GC1 to be more biased

than GC2 in terms of ERD.

From the above discussion, we have observed that the model

optimization hyperparameter only considers the overall rates of

the performance. However, if we split the data instances based

on protected attribute groups, then we see the change of rates

vary for different groups, which induces bias. The libraries for

model construction also do not provide any option to specify model

optimization goals specific to protected attributes and make fairer

prediction.

Here, we have seen that GC1 has less bias than GC6 by com-

promising little accuracy. Do all the models achieve fairness by

compromising with performance? We have found that models can

achieve fairness along with high performance. To compare model

performance with the amount of bias, we have plotted the accuracy

and F1 score of the models with the cumulative bias in Figure 4.

We can see that GC6 is the most efficient model in terms of perfor-

mance and has less bias than 5 out of 7 other models in German

Credit data. AC6 has more accuracy and F1 score than any other

models in Adult Census, and exhibits less bias than AC1, AC2, AC4,

AC5, and AC7. Therefore, models can have better performance and

fairness at the same time.

Finding 2: Libraries for model creation do not explicitly

mention fairness concerns in model constructs.

From Figure 3, we can see that HC1 and HC2 show difference in

most of the fairness metrics, while operating on the same dataset

i.e., Home Credit. HC2 is fairer than HC1 with respect to all the

metrics except DI. From Table 2, we can see that HC1 has positive

bias, whereas HC2 exhibit negative bias. This indicates that HC1

is biased towards unprivileged group and HC2 is biased towards

privileged group. We have found that HC1 and HC2 both are using
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Figure 3: Unfairness exhibited by the ML models with respect to different metrics

Light Gradient Boost (LGB) model for prediction. The code for

building the two models are:

1 # Model HC1

2 HC1 = lgb . LGBMCla s s i f i e r ( n _ e s t ima t o r s =10000 , o b j e c t i v e = ' b i n a ry ' ,

c l a s s _we i g h t = ' b a l anced ' , l e a r n i n g _ r a t e = 0 . 0 5 , r e g_a l pha = 0 . 1 ,

reg_ lambda = 0 . 1 , subsample = 0 . 8 , n_ job s =−1 , r andom_s ta t e =50 )

3 HC1 . f i t ( X_ t ra in , y _ t r a i n , e v a l _me t r i c = ' auc ' ,

c a t e g o r i c a l _ f e a t u r e = c a t _ i n d i c e s , v e rbo se = 2 0 0 )

4 # Model HC2

5 HC2 = LGBMCla s s i f i e r ( n _ e s t ima t o r s =4000 , l e a r n i n g _ r a t e = 0 . 0 3 ,

num_leaves =30 , c o l s amp l e _ by t r e e = . 8 , subsample = . 9 , max_depth

=7 , r e g_a l pha = . 1 , reg_ lambda = . 1 , m i n _ s p l i t _ g a i n = . 0 1 ,

m in_ch i l d_we igh t =2 , s i l e n t =−1 , v e rbo se =−1)

6 HC2 . f i t ( X_ t ra in , y _ t r a i n , e v a l _me t r i c = ' auc ' , v e rbo se = 1 0 0 )

We have executed both the models with varied hyperparam-

eter combinations and found that class_weight='balanced' is

causing HC1 not to be biased towards privileged group. By spec-

ifying class_weight, we can set more weight to the data items

belonging to an infrequent class. Higher class weight implies that

the data items are getting more emphasis in prediction. When the

class weight is set to balanced, the model automatically accounts

for class imbalance and adjust the weight of data items inversely

proportional to the frequency of the class [24, 42]. In this case, HC1

mitigates the male-female imbalance in its prediction. Therefore,

it does not exhibit bias towards the privileged group (male). On

the other hand, HC2 has less bias but it is biased towards privi-

leged group. Although we want models to be fair with respect to

all groups and individuals, trade-off might be needed and in some

cases, bias toward unprivileged may be a desirable trait.

We have observed that class_weight hyperparameter in LGBM-

Classifier allows developers to control group fairness directly. How-

ever, the library documentation of LGB classifier suggests that this

parameter is used for improving performance of the models [42, 46].

Though the library documentation mentions about probability cali-

bration of classes to boost the prediction performance using this

parameter, however, there is no suggestion regarding the effect on

the bias introduced due to the wrong choice of this parameter.
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Figure 4: Cumulative bias and performance of the models
From the discussions, we can conclude that library developers

still do not provide explicit ways to control fairness of the mod-

els. Although some parameters directly control the fairness of the

models, libraries do not explicitly mention that.

Finding 3: Standardizing features before training models

can help to remove disparity between groups in the protected

class.

From Figure 3 and Figure 4, we observe that except BM5, other mod-

els in Bank Marketing exhibit similar unfairness. BM5 is a Support

Vector Classifier (SVC) tuned using a grid search over given range

of parameters. In the modeling pipeline, before training the best

found SVC, the features are transformed using StandardScalar.

Below is the model construction code for BM5 with the best found

hyperparameters:

1 t uned_pa rame te r s = [ { ' k e r n e l ' : [ ' r b f ' ] , ' gamma ' : [ 0 . 1 ] , 'C ' :

[ 1 ] } ]

2 SVC = GridSearchCV ( SVC ( ) , tuned_paramete r s , cv =5 , s c o r i n g = '

p r e c i s i o n ' )

3 # Be s t found SVC a f t e r g r i d s e a r ch

4 # SVC (C=1 , b r e a k _ t i e s = Fa l s e , c a c h e _ s i z e =200 , c l a s s _we i g h t =None ,

c o e f 0 = 0 . 0 , d e c i s i o n _ f u n c t i o n _ s h a p e = ' ovr ' , d eg ree =3 , gamma

=0 . 1 , k e r n e l = ' r b f ' , max_ i t e r =−1 , p r o b a b i l i t y =True ,

r andom_s ta t e =None , s h r i n k i n g =True , t o l = 0 . 0 0 1 )

5 model = make_p ipe l i ne ( S t a n d a r d S c a l e r ( ) , SVC )

6 mdl = model . f i t ( X_ t ra in , y _ t r a i n )

We have found that the usage of StandardScalar in the model

pipeline is causing the model BM5 to be fairer. Especially DI of BM5

is 0.14 whereas, the mean of other seven BM models is very high

(0.74). StandardScalar transforms the data features independently

so that the mean value becomes 0 and the standard deviation be-

comes 1. Essentially, if a feature has variance in orders of magnitude

than another feature, the model might learn from the dominating

feature more, which might not be desirable [43]. In this case, Bank

Marketing dataset has 55 features among which 41 has mean close

to 0 ([0, 0.35]). However, age is the protected attribute having a

mean value 0.97 (older : 1, younger : 0), since the number of older is

significantly more than younger. Therefore, age is the dominating

feature in these BM models. BM5 mitigates that effect by using

standard scaling to all features. Therefore, balancing the impor-

tance of protected feature with other features can help to reduce

bias in the models. This example also shows the importance of

understanding the underlying properties of protected features and

their effectiveness on prediction.

Finding 4: Dropping a feature from the dataset can change

the model fairness effectively.

Both the models AC5 and AC6 are using XGB classifier for predic-

tion but AC6 is fairer than AC5. Among the metrics, in terms of

consistency (CNT), AC5 shows bias 3.61 times more than AC6. We

have investigated the model construction and found that AC5 and

AC6 differ in three constructs: features used in the model, number
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of trees used in the random forest, and learning rate of the classifier.

We have observed that the number of trees and learning rate did

not change the bias of the models. In AC5, the model excluded one

feature from the training data. Bank Marketing dataset contains

personal information about individuals and predicts whether the

person has an annual income more than 50K dollars or not. In AC5,

the model developer dropped one feature that contains number of

years of education, since there is other categorical feature which

represents education of the person (e.g., bachelors, doctorate, etc.).

AC6 is using all the features in the dataset. CNT measures the indi-

vidual fairness of the models i.e., how two similar individuals (not

necessarily from different groups of protected attribute class) are

classified to different outcomes. Therefore, dropping the number

of years of education is causing the model to classify similar indi-

viduals to different outcome, which in turn generating individual

unfairness.

Finding 5: Different metrics are needed to understand bias

in different models.

From Figure 3, we can see that the models show different patterns

of bias in terms of different fairness metrics. For example, compared

to any Bank Marketing models, BM5 has disparity impact (DI) less

than half but the error rate difference (ERD) more than twice. If

the model developer only accounts for DI, then the model would

appear fairer than what it actually is. As another example, GC6 is

fairer than 90% of all the models in terms of total bias but if we

only consider consistency (CNT), GC6 is fairer than only 50% of

all the models. However, previous studies show that achieving fair-

ness with respect to all the metrics is difficult and for some pair of

metrics, mathematically impossible [5, 11, 37]. Also, the definition

of fairness can vary depending on the application context and the

stakeholders. Therefore, it is important to report on comprehensive

set of fairness measures and evaluate the trade-off between the

metrics to build fairer. We have plotted the correlation between dif-

ferent metrics from two datasets in Figure 5. A fewmetric pairs have

a similar correlation in both the datasets such as (SPD, EOD), (SPD,

AOD). This is understandable from the definitions of these metrics

because they are calculated using same or correlated group condi-

tioned rates (true-positives and false-positives). Although there are

many metric pairs which are positively or negatively correlated,

there is no pattern in correlation values between the two datasets.

For instance, CNT and TI are highly negatively correlated in Ger-

man Credit models but positively correlated in Titanic ML models.

Therefore, we need a comprehensive set of metrics to evaluate fair-

ness.

Finding 6: Except DI, EOD, and AOD, all the fairness mea-

sures remain consistent over multiple training and prediction.

To measure the stability of the fairness and performance metrics,

we have computed the standard deviation of each metric over 10

runs similar to [16]. In each run, the dataset is shuffled before the

train-test split, and model is trained on a new randomized training

set. We have seen that the models are stable for the performance

metrics and most of the fairness metrics. In particular, the average

German Credit 
Titanic ML 

Figure 5: Corelation between the metrics. Bottom diagonal

is for German Credit models, top diagonal is for Titanic ML

models.

of the standard deviations of accuracy, F1 score, DI, SPD, EOD,

AOD, ERD, CNT and TI over all the models are 0.01, 0.01, 0.12,

0.03, 0.04, 0.04, 0.03, 0.01, 0.01, respectively. Except for DI, EOD and

AOD, the average standard deviation is very low (less than 0.03).

For these three metrics, we have plotted the standard deviations in

Figure 6. We can see that the trend of standard deviations is similar

to the models of a specific dataset. In our benchmark, the largest

dataset is Home Credit, which has the lowest standard deviation

and the smallest dataset is Titanic ML, which has the most. Since in

larger dataset, even after shuffling the training data remains more

consistent, the deviation is less. On the other hand, the Titanic ML

dataset is the smallest in size, having 891 data instances. The class

distribution of data instances do not remain consistent when a ran-

dom training set is chosen. Therefore, while dealing with smaller

datasets, it is important to choose a training set that represents the

original data and evaluate fairness multiple times.
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Figure 6: Standard deviation of the metrics: DI, EOD and

AOD over multiple experiments. Other metrics have very

low standard deviation.

DI has more standard deviation than other metrics. DI is com-

puted using the ratio of two probabilities, Pu/Pp , where Pu is the

probability of unprivileged group getting favorable label, and Pp
is the probability of privileged group getting favorable label. Even

the probability difference is very low, the value of DI can be very

high. Therefore, DI fluctuates more frequently than other metrics.
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Table 2: Unfairness measures of the models before and after the mitigations

Before mitigation After mitigation
Model

Acc F1 DI SPD EOD AOD ERD CNT TI Acc F1 DI SPD EOD AOD ERD CNT TI Rank

GC1-RFT .687 .814 .002 .002 0 .004 .052 -.002 .058 .683 .811 .002 .002 0 .004 -.032 -.002 .058 RAOD/PCE

GC2-XGB .743 .828 -.076 -.058 -.039 -.036 .047 -.282 .142 .709 .829 0 0 0 0 .067 0 .057 AORD/PCE

GC3-XGB .742 .827 -.105 -.079 -.043 -.065 .036 -.173 .149 .729 .831 -.045 -.040 -.006 -.043 .037 -.095 .100 AR/DPOCE

GC4-SVC .753 .832 -.138 -.104 -.081 -.068 .070 -.338 .153 .716 .834 0 0 0 0 .090 0 .057 AORD/PEC

GC5-EVC .743 .826 -.148 -.116 -.075 -.089 .067 -.286 .127 .687 .814 0 0 0 0 .112 0 .058 AORD/PEC

GC6-RFT .761 .845 -.103 -.083 -.023 -.085 .005 -.183 .121 .759 .844 -.071 -.058 -.023 -.085 -.027 -.183 .121 RD/APCEO

GC7-XGB .751 .831 -.073 -.056 .009 -.072 -.033 -.293 .144 .709 .829 0 0 0 0 .047 0 .057 ADR/POCE

G
er
m
an

C
re
d
it
(S
ex
)*

GC8-KNN .698 .815 .003 .002 0 .011 .081 -.041 .090 .702 .825 0 0 0 0 .086 0 .057 AR/DPCOE

AC1-LRG .845 .657 -.654 -.104 -.100 -.069 -.050 -.045 .127 .261 .399 .023 .023 .017 .021 .120 -.019 .040 ORCDAP/E

AC2-RFT .846 .657 -.582 -.098 -.047 -.046 -.060 -.236 .119 .787 .249 -.354 -.014 .007 .003 -.086 -.005 .232 AROC/DPE

AC3-GBC .858 .677 -.496 -.079 -.041 -.031 -.045 -.010 .120 .858 .675 -.131 -.024 -.041 -.031 -.004 -.010 .120 ROAC/DPE

AC4-CBC .869 .712 -.616 -.102 -.077 -.056 -.044 -.069 .107 .805 .683 -.127 -.044 .080 .044 -.001 -.102 .082 ORAC/PDE

AC5-XGB .867 .708 -.588 -.097 -.073 -.051 -.043 -.224 .111 .865 .705 -.203 -.039 -.073 -.051 -.002 -.224 .111 ROAC/PDE

AC6-XGB .871 .717 -.570 -.096 -.044 -.036 -.047 -.062 .106 .808 .691 -.132 -.046 .072 .044 .009 -.094 .078 ORAC/PDE

AC7-RFT .852 .678 -.615 -.104 -.078 -.059 -.051 -.235 .117 .638 .329 -.289 -.024 -.005 -.009 -.039 -.009 .187 AORCD/PE

A
d
u
lt
C
en
su
s
(R
ac
e)
*

AC8-DCT .853 .675 -.519 -.086 -.040 -.035 -.050 -.068 .121 .852 .673 -.153 -.029 -.040 -.035 -.010 -.068 .121 ROAC/DPE

BM1-XGB .906 .582 .627 .087 .074 .053 .051 -.078 .074 .905 .581 .274 .032 .074 .053 .017 -.078 .074 ROCPD/EA

BM2-LGB .908 .606 .593 .083 .004 .022 .069 -.034 .072 .772 .498 .076 .026 -.037 -.037 -.031 -.040 .066 ORDC/PAE

BM3-GBC .908 .604 .688 .100 .083 .056 .051 -.032 .072 .852 .529 .066 .013 -.059 -.052 006 -.089 078 CODR/APE

BM4-XGB .887 .330 .810 .048 .067 .042 .074 -.010 .111 .887 .328 .442 .022 .067 .042 .001 -.010 .111 RCA/OPDE

BM5-SVC .875 .175 .139 .003 -.077 -.031 .126 -.032 .126 .873 .002 .139 0 -.001 0 .110 0 .136 ERCDO/AP

BM6-GBC .908 .612 .698 .105 .030 .038 .076 -.033 .071 .795 .521 .110 .034 -.072 -.053 -.019 -.039 .065 OCRD/PAE

BM7-XGB .910 .611 .713 .107 .051 .052 .072 -.047 .070 .829 .485 .022 .004 -.037 -.044 -.007 -.122 .085 CODRA/PE

B
an
k
M
ar
k
et
in
g
(A
g
e)

BM8-RFT .899 .435 .834 .066 .091 .058 .064 -.023 .097 .795 .462 .289 .042 -.048 -.027 .005 -.052 .073 ORACDP/E

HC1-LGB .883 .249 .574 .046 .065 .052 .051 -.110 .083 .238 .132 -.025 -.002 -.003 -.002 -.020 -.006 .030 APECR/OD

HC2-LGB .920 .094 -.698 -.006 -.016 -.010 -.032 -.012 .081 .919 .002 .076 0 0 0 -.033 0 .084 PECROA/D

HC3-GNB .913 .010 .974 .999 .007 .005 .006 -2.449 0 .732 .194 .181 .857 .047 .019 .031 -2.285 0 OA/DECPR

HC4-XGB .919 .046 .868 .994 .003 .013 .007 -2.482 0 .918 .012 -.103 .998 0 -.003 -.002 -2.468 0 CEDRP/OA

HC5-CBC .870 .302 .744 .865 .085 .140 .106 -2.524 0 .552 .075 -.134 .999 -.025 -.017 -.021 -2.772 .001 ACEPR/DO

HC6-CBC .869 .305 .735 .085 .144 .107 .068 -.147 .080 .583 .074 .021 0 0 0 .007 0 .056 ACPER/DO

HC7-XGB .911 .211 .953 .953 .033 .084 .054 -2.533 0 .907 .090 .408 .966 .009 -.052 -.019 -2.453 0 ECPR/DOA

H
o
m
e
C
re
d
it
(S
ex
)

HC8-RFT .661 .239 .383 .719 .147 .129 .133 -2.449 .001 .645 .226 .337 .681 .133 .098 .112 -2.426 .001 CPRD/AEO

TM1-XGB .807 .720 -2.247 -.705 -.631 -.559 -.056 -.341 .153 .649 .580 -.082 -.039 .027 .177 .115 -.272 .189 OAERDP/C

TM2-RFT .816 .753 -2.013 -.709 -.635 -.515 .022 -.293 .142 .644 .566 -.106 -.045 .059 .166 .023 -.269 .223 OAERDP/C

TM3-EBG .799 .725 -2.125 -.674 -.637 -.514 -.017 -.333 .165 .647 .572 -.108 -.045 .031 .148 .050 -.317 .223 OAERD/PC

TM4-LRG .800 .732 -2.439 -.808 -.729 -.694 -.051 -.381 .144 .658 .577 -.075 -.034 .072 .160 .038 -.327 .207 OAEPRD/C

TM5-GBC .816 .740 -2.268 -.708 -.647 -.542 -.022 -.357 .151 .651 .572 -.087 -.033 .097 .174 .029 -.332 .205 OAERD/CP

TM6-XGB .804 .730 -1.948 -.665 -.583 -.499 -.042 -.345 .146 .625 .568 -.079 -.038 .075 .157 .092 -.367 .190 OAERD/CP

TM7-RFT .825 .747 -2.232 -.639 -.555 -.411 -.029 -.285 .161 .653 .577 -.099 -.043 .100 .188 .003 -.261 .219 OAERDP/CT
it
an
ic
M
L
(S
ex
)

TM8-RFT .814 .732 -2.306 -.716 -.633 -.563 -.051 -.321 .149 .649 .596 -.082 -.042 .011 .166 .157 -.327 .172 OAERD/PC

*Experiment has been conducted for multiple protected attributes. RFT: Random Forest, XGB: XGBoost, SVC: Support Vector Classifier, EVC: Ensemble Voting Classifier, KNN:
K-Nearest Neighbors, LRG: Logistic Regression, GBC: Gradient Boosting Classifier, CBC: Cat Boost Classifier, DCT: Decision Tree, LGB: Light Gradient Boost, GNB: Gaussian Naive

Bayes, EBG: Ensemble Bagging. Mitigation techniques applied to the models are as follows. Result is shown for the best mitigation. Rank of mitigation uses acronym below
(mitigations before ‘/’ have been able to mitigate bias, rest have not.)

Reweighing (R) DI Remover (D) Adversarial Debiasing (A) Prejudice Remover (P) Equalized Odds(E) Calibrated Equalized Odds (C) Reject Option Classification (O)

Finding 7: A fair model with respect to one protected at-

tribute is not necessarily fair with respect to another protected

attribute.

To understand the behavior of the same models on different pro-

tected attributes, we have analyzed the fairness of German Credit

and Adult Census models on two protected attributes. In Figure 7,

we have plotted the fairness measures of German Credit models

on sex and age and Adult Census models on sex and race. We have

found that the models can show different fairness when different

protected attribute is considered. The total bias exhibited by Ger-

man Credit dataset are: for sex attribute 4.82 and for age attribute

7.72. For Adult Census, the total bias are: for sex attribute 15.15 and

for race attribute 8.56. However, most of the models exhibit similar

trend of difference in the fairness when considering two different

attributes.

GC1 and GC6 show cumulative bias 0.12 and 0.60 when sex is

considered. Surprisingly, GC1 and GC6 shows cumulative bias 0.85

and 0.88 when age is considered. GC1 is much fairer model than

GC6 in the first case but in the second case, the fairness is almost

similar. We have discussed the behavior of these two models in

Finding 1 and explained how GC1 is fairer when sex is the protected

attribute. However, the fair prediction does not persist for the age

because there is no imbalance in German Credit with respect to age

groups. Therefore, GC1 and GC6 show similar fairness when age is

considered.
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Figure 7: Fairness ofMLmodelswith respect to different pro-

tected attributes
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5 MITIGATION

In this section, we have investigated the fairness results of the mod-

els after applying bias mitigation techniques. We have employed 7

different bias mitigation algorithms separately on 40 models and

compared the fairness results with the original fairness exhibited by

the models. For each model, we have selected the most successful

mitigation algorithm and plotted the fairness values after mitiga-

tion in Figure 8. We have observed that similar to Figure 3, the

fairness patterns are similar for the models in a dataset. DI, SPD,

and CNT are the most difficult metrics to mitigate.

To understand the root causes of unfairness, we have focused

on the models which exhibit more or less bias and then investi-

gated the effects of different mitigation algorithms. Here, among

the mitigation algorithms, the preprocessing techniques operate

on the training data and retrain the original model to remove bias.

On the other hand, post-processing techniques do not change the

training data or original model but change the prediction made by

the model. The in-processing techniques do not alter the dataset or

prediction result but employ completely new modeling technique.

Finding 8: Models with effective preprocessing mitigation

technique is preferable than others.

We have found that Reweighing algorithm has effectively debiased

many models: GC1, GC6, AC3, AC5, AC8, BM1 and BM4. These

models produce fairer results when the dataset is pre-processed

using Reweighing. In other words, these models do not propagate

bias themselves. In other cases where pre-processing techniques

are not effective, we had to change the model or alter the prediction,

which implies that bias is induced or propagated by the models.

Another advantage is that in these models, after mitigations the

models have retained the accuracy and F1 score. Other mitigation

techniques often hampered the performance of the model. For a

few other models (GC3, GC8, AC1, AC2, AC4, AC6, BM2, BM5,

BM8), Reweighing has been the second most successful mitigation

algorithm. Among these models, in AC1, AC2, BM2, and BM5, the

most successful algorithm to mitigate bias loss accuracy or F1 score

at least 22%. In all of these cases, Reweighing has retained both

accuracy and F1 score.

Finding 9: Models with more bias are debiased effectively

by post-processing techniques, whereas originally fairer mod-

els are debiased effectively by preprocessing or in-processing

techniques.

From Table 2, we can see that 21 out of 40 models are debiased

by one of the three post-processing algorithms i.e., Equalized odds

(EO), Calibrated equalized odds (CEO), and Reject option classi-

fier (ROC). These algorithms have been able to mitigate bias (not

necessarily the most successful) in 90% of the models. Especially,

ROC and CEO are the dominant post-processing techniques. ROC

takes the model prediction, and gives the favorable outcome to the

unprivileged group and unfavorable outcome to privileged group

with a certain confidence around the decision boundary [35]. CEO

takes the probability distribution score generated by the classifier

and find the probability of changing outcome label and maximize

equalized odds [41]. EO also changes the outcome label with cer-

tain probability obtained by solving a linear program [20]. We have

found that these post-processing methods have been able to miti-

gate bias more effectively when the original model produces more

biased results. From Figure 4, we can see that the most biased 5

models are TM4, TM8, TM5, TM1, HC7, where the post-processing

has been the most successful algorithms. On the contrary, in case

of the 5 least biased model (GC1, GC8, BM5, GC6, GC3), rather than

mitigating, all three post-processing techniques increased bias.

In Table 2, we have shown the rank of mitigation algorithms

to debias each model. In Table 3, we have shown the mean of the

ranks of each mitigation algorithms, where rank of most successful

algorithm is 1 and least is 7. We can see that for most biased models,

Reject option classification and Equalized odds have been more

successful than all others. For the least biased models, both prepro-

cessing algorithms and Adversarial Debiasing have been effective,

and the post-processing algorithms have been ineffective.

Table 3: Mean rank of each bias mitigation algorithm for 10

least biased models (LBM), 10 most biased models (MBM),

and overall.

Stage Algorithms LBM MBM All

Reweighing (R) 2.1 4.5 3.03
Preprocessing

Disparate Impact Remover (D) 3.7 4.8 4.58
Adversarial Debiasing (A) 3 2.9 3

In-processing
Prejudice Remover Regularizer (P) 4.5 5.3 4.98
Equalized Odds (E) 5.8 2.8 5.18
Calibrated Equalized Odds (C) 4.8 5.1 4.33Post-processing
Reject Option Classification (O) 4.1 2.6 2.93

6 IMPACT

While mitigating bias, there is a chance that the performance of

the model is diminished. The most successful algorithm in debias-

ing a model does not always give good performance. So, often the

developers have to trade-off between fairness and performance. In

this section, we have investigated the answer to RQ3. What are the

impacts when the bias mitigation algorithms are applied to the mod-

els? We have analyzed the accuracy and F1 score of the models after

applying the mitigation algorithms. First, for each model, we have

analyzed the impacts of the most effective mitigation algorithms in

removing bias. In Figure 9, we have plotted the change in accuracy,

F1 score, and total bias when the most successful mitigating algo-

rithms are applied. We can see that while mitigating bias, many

models are losing their performance. From Table 2, pre-processing

algorithms, especially Reweighing has been the most effective in

model GC1, GC6, AC3, AC5, AC8, BM1, and BM3. From Figure 9,

these models always retain their performance after mitigation.

Finding 10: Whenmitigating bias effectively, in-processing

mitigation algorithms show uncertain behavior in their per-

formance.

Among in-processing algorithms, Adversarial debiasing has been

the most effective in 11 models (GC2, GC3, GC4, GC5, AC2, AC7,

HC1, HC5, HC6), and Prejudice remover has been the most effective

in 1 model (HC2). We have found that for German Credit models Ad-

versarial debiasing has been effective without losing performance.
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Figure 8: The fairness exhibited by the models after applying the bias mitigation techniques. The color coding in Table 2 is

used to denote the most successful mitigation algorithm for each model.
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Figure 9: Change of performance and bias after applying

bias mitigation technique (negative value indicates reduc-

tion)

But in other cases, AC1, AC7, HC1, and HC7, the accuracy has de-

creased at least 21.4%. In HC2, Prejudice remover also loses F1 score

while mitigating the bias. Since, in-processing techniques employ

newmodel and ignore the prediction of the original model, in all sit-

uations (dataset and task), it is not giving better performance. In our

evaluation, adversarial debiasing is giving good performance with

German Credit dataset but not on Adult Census or Home Credit

dataset. Therefore, in-processing techniques are not appropriate

when we can not change the original modeling. Also, since these

techniques are uncertain in retaining performance, the developers

should be careful about the accuracy of prediction after the inter-

vention.

Finding 11: Although post-processing algorithms are the

most dominating in debiasing, they are always diminishing

the model accuracy and F1 score.

From Table 2, we can see that in 21 out of 40 models, one of the

post-processing algorithms are being the most successful. But in all

of the cases they are losing performance. The average accuracy re-

duction in these models is 7.49% and average F1 decrease is 10.07%.

For example, in AC1, the most bias mitigating algorithm is Reject

option classification but the model is loosing 26.1% accuracy and

40% F1 score. In these cases, developers should move to the next

best mitigation algorithm. In a few other cases such as HC8, the

Reject Option classification mitigates bias with only 1.6% loss in ac-

curacy and 1.3% loss in f1 score. In such situations, post-processing

techniques can be applied to mitigate the bias.

Finding 12: Trade-off between performance and fairness

exists, and post-processing algorithms have most competitive

replacement.

Since some most mitigating algorithms are having performance

reduction, for each model, we have compared the most successful

algorithm with the next best mitigation algorithm in Figure 10.

We have found that for 18 out of 40 models, the performance of

the 2nd ranked algorithm is same or better than the 1st ranked

algorithm. Among them, in AC4, AC6, BM5, HC5, and HC8, the

2nd ranked algorithm has bias very close (not more than 0.1) to

the 1st ranked one. All of these, except HC5, the 1st ranked bias

mitigation algorithm is a post-processing technique. We observe

that competitive alternative mitigation technique is more common

for post-processing mitigation algorithms. Therefore, if we increase

the tolerable range of bias, then other mitigation techniques would

be better alternative in terms of performance.
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Figure 10: Change of performance and bias between the 1st

and 2nd most successful mitigation algorithms (negative

value indicates reduction)

7 THREATS TO VALIDITY

Benchmark Creation. To avoid experimenting on low-quality ker-

nels, we have only considered the kernels with more than 5 votes.

In addition, we have excluded the kernels where the model accu-

racy is very low (less than 65%). Finally, we have selected the top

voted ones from the list. We have also verified that the collected

kernels are runnable. To ensure the models collected from Kaggle

are appropriate for fairness study, we have first selected the fair-

ness analysis datasets from previous works and searched models

for those datasets. Finally, we have searched competitions that use

dataset with protected attributes used in the literature.

Fairness and performance evaluation. Our collected models give

the same performance, as mentioned in the corresponding Kaggle

kernels. For evaluating fairness and applying mitigation algorithms

we have used AIF 360 toolkit [4] developed by IBM. Bellamy et

al. presented fairness results (4 metrics) for two models (Logistic

regression and Random forest) on Adult Census dataset with pro-

tected attribute race [4]. We have done experiment with the same

setup and validated our result [4]. Similar to [16], for each metric,
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we have evaluated 10 times and taken the mean of the values. The

stability comparison of the results is shown in ğ4.

Fairness comparison. As different metrics are computed based

on different definitions of fairness, we have compared bias using

a specific metric or cumulatively. Finally, in this paper, we have

focused on comparing fairness of different models. Therefore, for

each dataset, we followed the same method to pre-process training

and testing data.

8 RELATED WORKS

SE for Fairness in ML. This line of work is the closest to our work.

FairTest [48] proposes methodology to detect unwarranted fea-

ture associations and potential biases in a dataset using manually

written tests. Themis [17] generates random tests automatically

to detect causal fairness using black-box decision making process.

Aequitas [49] is a fully automated directed test generation module

to generate discriminatory inputs in ML models, which can be used

to validate individual fairness. FairML [1] introduces an orthogonal

transformation methodology to quantify the relative dependence

of black-box models to its input features, with the goal of assessing

fairness. A more recent work [3] proposes black-box fairness test-

ing method to detect individual discrimination in ML models. They

[3] propose a test case generation algorithm based on symbolic

execution and local explainability. The above works have proposed

novel techniques to detect and test fairness in ML systems. How-

ever, we have focused on empirical evaluation of fairness in ML

models written by practitioners and reported our findings. Friedler

et al. also worked on an empirical study but compared between

fairness enhancing interventions and not models [16]. Harrison

et al. conducted survey based empirical study to understand how

fairness of different models is perceived by humans [21]. Holstein

et al. also conducted survey on industry developers to find the

challenges for developing fairness-aware tools and models [22].

However, no empirical study has been conducted to measure and

compare fairness of ML models in practice, and analyze the impacts

of mitigation algorithms on the models.

Fairness measure and algorithms. The machine learning com-

munity has focused on novel techniques to identify, measure and

mitigate bias [8, 11, 13ś15, 18, 20, 36, 38, 50]. This body of work

concentrate on the theoretical aspects of bias in ML classifiers.

Different fairness measures and mitigation algorithms have been

discussed in ğ3.3 and ğ3.4. In this work, we have focused on the

software engineering aspects of ML models used in practice.

ML model testing. DeepCheck [19] proposes lightweight white-

box symbolic analysis to validate deep neural networks (DNN).

DeepXplore [40] proposes a white-box framework to generate test

input that can exploit the incorrect behavior of DNNs. DeepTest

[47] uses domain-specific metamorphic relations to detect errors in

DNN based software. These works have focused on the robustness

property of ML systems, whereas we have studied fairness property

that is fundamentally different from robustness [49].

9 CONCLUSION

ML fairness has received much attention recently. However, ML

libraries do not provide enough support to address the issue in

practice. In this paper, we have empirically evaluated the fairness

of ML models and discussed our findings of software engineering

aspects. First, we have created a benchmark of 40 ML models from

5 different problem domains. Then, we have used a comprehensive

set of fairness metrics to measure fairness. After that, we have

applied 7 mitigation techniques on the models and computed the

fairness metric again. We have also evaluated the performance

impact of the models after mitigation techniques are applied. We

have found what kind of bias is more common and how they could

be addressed. Our study also suggests that further SE research and

library enhancements are needed to make fairness concerns more

accessible to developers.
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