
Lab 1 Page 1

LAB 1: Introduction to Frances-A

Objectives:

a) Become familiar with the Frances-A tool.

b) Understand the components Frances-A.

c) Introduce some syntax of a low level language.

d) Understand memory allocation and register use.

1) Background: Frances-A is a tool designed to help teach computer architecture and

assembly language. This tool graphically shows the relationships between high-level

programming languages and machine languages. It also shows the machine state and

allows the user to step through execution one instruction at a time. Color coding is used to

show the relationship between high-level code constructs and assembly code (see legend

at the bottom left of the tool’s website). Additionally, color coding shows which

components of the machine state have been accessed and modified by the latest

instruction.

i) Red- indicates changes to the content of a memory location;

ii) Yellow – indicates memory access;

iii) Green – indicates locations that change with every step.

2) Go to the Frances-A site at http://www.cs.iastate.edu/~sapha/tools/frances/frances-a/ and

click on the link for the Web Tool. For most of the exercises you will use the C language

for the high-level language. This is Frances-A’s default language. Use it unless otherwise

directed.

a) The default is a program that does nothing. Click “Compile”

i) The assembly code for the program is generated and is shown in the box to the

right of the source code. Additionally, the registers and stack are shown to the far

right of the screen

b) Click “Execute next instruction”. Notice that the first instruction in the assembly is

now in the “Last Instruction” box, highlighted in green, above the registers and the

“Next Instruction” box contains the second instruction. The “Last Instruction” was just

executed and the “Next Instruction” is the next one to be executed.

c) To the left of the “Execute next instruction” button is the “Last instruction” button.

This button allows you to go backwards in the execution and re-execute the instruction

in the “Last Instruction” box above the registers.

d) Finally, the “Reset” button located to the left of the “Last Instruction” button allows

you to enter new source code to be complied.

3) x86 AT&T Assembly Language. Just as there are various high-level languages there are

various low-level languages. Examples of high-level languages are C, Java, C++ and

COBOL. There are also various low-level languages such as AT&T and Intel. Here we

will discuss the x86 AT&T assembly language.

a) The format of a basic data movement instructions in the AT&T format is

mnemonic source, destination

Where mnemonic is the operation and the source and destination are the locations of

the data being moved.

b) Registers are prefixed by the % sign. For example, %esp, %ebx, %edi. Values are

prefixed by a '$' sign. For example, $29 is the decimal value 29, $0x5 and $0xc are

the hexadecimal values 5 and c (decimal 12), respectively. So the instruction,

http://www.cs.iastate.edu/~sapha/tools/frances/frances-a/

Lab 1 Page 2

mov $0x10, %eax moves the value 0x10 (decimal 16) into the eax

register.

By placing a value in front of a register, it adds the value to the value in the register.

As an example consider the first assembly instruction of the program:

lea 0x4(%esp), %ecx

lea is the command load effective address, which taking the address stored in the

register esp adding 4 to it and loading it into the register ecx.

4) Exercises:

a) Type the following code into Frances-A and answer the questions.

int main(){

 int x=5;

 }

i) What assembly code is the same as the default program?

ii) What assembly code is different?

iii) The assembly code from the default program prior to the new code is setting up the

processor (registers) to process this program. That which appears after is restoring

the processor (registers) to their previous state so that the computer may resume

the process running prior to your program being called. Step through the program.

Describe what is occurring in each of the new assembly lines?

Figure 1

Lab 1 Page 3

b) In Figure 1 are the registers as given in Frances-A. Put them in the following

categories (some may go into multiple categories): General Purpose, Data, Address,

Condition Codes.

c) Given the register values in Figure 1

i) Near which address in memory would one find the assembly code for the program

being executed?

ii) After the next instruction executes which register(s) will change value?

iii) After the next instruction executes what will be the value of the changed

register(s)?

d) Given Figure 2

i) At which memory location is the variable x stored? In hexadecimal? Relative to

ebp?

ii) At which assembly line is the value 2 put into this memory location?

iii) Write the above C program in Frances-A. After execution of step 13 what are the

values of eax and the stack? After step 14 what are these values?

Lab 1 Page 4

Figure 2

