
Dynamic Optimization of Bytecode Instrumentation

Yudi Zheng, Lubomír Bulej, Cheng Zhang, Stephen Kell, Danilo Ansaloni, Walter Binder
University of Lugano, Switzerland

firstname.lastname@usi.ch

Abstract
Accuracy, completeness, and performance are all major con-
cerns in the context of dynamic program analysis. Emphasiz-
ing one of these factors may compromise the other factors.
For example, improving completeness of an analysis may
seriously impair performance. In this paper, we present an
analysis model and a framework that enables reducing analy-
sis overhead at runtime through adaptive instrumentation of
the base program. Our approach targets analyses implemented
with code instrumentation techniques on the Java platform.
Overhead reduction is achieved by removing instrumentation
from code locations that are considered unimportant for the
analysis results, thereby avoiding execution of analysis code
for those locations. For some analyses, our approach pre-
serves result accuracy and completeness. For other analyses,
accuracy and completeness may be traded for a major per-
formance improvement. In this paper, we explore accuracy,
completeness, and performance of our approach with two
concrete analyses as case studies.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors - Code generation, Optimization,
Run-time environments

General Terms Measurement, Performance

Keywords JVM bytecode instrumentation, runtime adapta-
tion, performance

1. Introduction
Dynamic program analyses proceed by collecting and pro-
cessing information about a program’s execution. Usually,
this information is collected using program instrumentation.
In general, denser and more fine-grained instrumentation
allows greater accuracy and greater insight to be obtained,
but this comes at the cost of higher performance overheads.
Therefore, dynamic analyses must find a trade-off between
accuracy and detail of the results and the runtime cost of
obtaining them.

A body of existing work has considered optimizing this
trade-off by careful selection (and omission) of instrumenta-
tion sites, both spatially across the program text and tempo-
rally over the execution. Arnold and Ryder [3] use sampling
to reduce the overhead of profiling. Liblit et al. [11] also

rely on sampling to make the slowdown of instrumented pro-
grams tolerable to end users. Meanwhile, static analysis is
often used to identify useful instrumentation points. Ball and
Larus [4] propose to update special integer values at selected
control flow graph edges for path profiling, and Bodden [5]
avoids redundant monitors at program points that are equiva-
lent in terms of type-state. Moreover, Bodden and Havelund
use a static whole-program analysis to soundly reduce the
statements matched by the maybeShared() pointcut in their
AspectJ extension [6], resulting in substantial reduction of
runtime overhead.

Existing systems have devised and implemented specific
optimizations for specific purposes. However, currently it is
difficult to generalize and reuse this work in the context of
new analyses. In this paper, we present a general approach
to the problem of reducing runtime overhead of dynamic
analyses, where we characterize this problem over three
dimensions: accuracy, completeness, and performance. We
begin by defining this three-dimensional model. Based on
this characterization, we present a framework for reducing
analysis overhead via adaptive runtime instrumentation.

Building on top of our dynamic analysis framework
FRANC [2], our approach targets dynamic program anal-
yses implemented by bytecode instrumentation techniques on
the Java platform. Our approach builds on a mechanism for
dynamic undeployment and redeployment of instrumentation,
and focuses on the scenario where as the analysis executes,
code locations may be determined to be unimportant, or no
longer important, regarding the accuracy and/or completeness
of the results, allowing the extent of instrumentation to be
gradually reduced.

We evaluated our approach with two case studies. For
one analysis, namely Stationary Field Analysis (SFA), our
approach significantly improves performance, while preserv-
ing result accuracy and completeness. For the other analysis,
namely method execution time analysis, our approach again
significantly improves performance, while improving the ac-
curacy of the results with a certain sacrifice of completeness.
The observation that the performance and accurarcy of the
analysis are improved at the same time is a little surprising,
as it is contrary to the conventional trade-off in dynamic
analyses. However, it is reasonable, because the reduction
of instrumentation can actually reduce the runtime overhead



as well as the intrusiveness of the analysis. In summary, the
main contributions of this paper are as follows.

1. Using a table-based model of analysis-collected data, we
articulate the key concepts related to accuracy, complete-
ness, and performance of dynamic analyses. We describe
the design and architecture of a framework for dynam-
ically changing the extent of active instrumentation at
runtime. We show how this framework allows program
instrumentation to be dynamically undeployed and rede-
ployed in a highly flexible fashion, adaptable to the needs
of a wide range of analyses.

2. We show the efficacy of our framework in reducing analy-
sis overhead on two case studies with different sensitivity
to overhead introduced by instrumentation. Our approach
generally gains significant performance improvement in
various dynamic analyses while preserving accuracy and
completeness for some of them.

The rest of the paper is organized as follows. Section 2
describes our table-based characterization of the main factors
in dynamic program analyses. Sections 3 and 4 present an
evaluation of our approach to stationary field analysis and
for method execution time analysis, respectively. Section 5
discusses related work and Section 6 concludes the paper.

2. Reducing Analysis Overhead
The value of a dynamic analysis depends on the quality and
utility of its result and the cost of obtaining it. While the
cost is typically associated with performance (in the form
of runtime overhead), the quality of the result is largely
determined by its accuracy and completeness. We begin by
discussing a model of these, then continue by outlining how
this model can support instrumentation adaptation decisions
at runtime.

2.1 Characterizing accuracy and completeness
Distinguishing completeness from accuracy in a precise way
requires some assumptions over the structure of the anal-
ysis’ outputs.1 We assume that the analysis output can be
structured as a table, or mapping from keys to values. Then
the keys in the table typically represent some programmer-
recognizable program elements of interest to the analysis
(e.g., statement, basic block, method, program path, interleav-
ing, etc.), whereas the values in the table associated with the
keys represent the data being collected (e.g., execution count,
execution time, etc.).

Result accuracy and completeness can then be defined as
properties of the (sets of) keys and values in the table. Imagine
that the analysis generates imperfect results—perhaps slightly
wrong, or perhaps completely fictitious. To define accuracy

1 If we assume no structure—say, by considering the output as an opaque
bit-pattern—it is impossible to distinguish which edits to the bit-pattern
(additions, removals, or bit-flips) would affect completeness versus which
would affect accuracy.

Figure 1. Example results of a method execution time analysis.
Table A is the perfect result, while Table B leaves out the key m3

and its value t3 (the result is incomplete but accurate), and Table C
is over-approximated (t′2 > t2) owing to perturbation introduced by
runtime monitoring (the result is complete but inaccurate).

and completeness, we suppose that an oracle has supplied us
the perfect results, which by definition are entirely complete
and accurate. Accuracy and completeness can be then defined
as edit-distance metrics between these two tables. Any edit
which deletes a key reduces completeness, while an edit
which modifies a value reduces accuracy. If values are in
some domain on which orderings are defined, we can talk
about inaccurate values over- or under-approximating the true
value.

Fig. 1 shows example results of a method execution
time profiling, where Table A is the supposed perfect (i.e.,
both accurate and complete) result. In contrast to Table A,
Table B shows result obtained when instrumentation of an
uninteresting method (say m3) has been disabled. Although
Table B shows incomplete results, the results are nevertheless
accurate, and may still be useful (if the analysis’ user is not
interested in m3). Table C shows a different but common
case, where the perturbation introduced by instrumentation
entails that some values are over-approximated. Specifically,
the recorded execution time of method m2 is larger than that
in the perfect result. In this case, the results in Table C have an
entry that is inaccurate, but are still complete. These simple
examples show that accuracy and completeness, according
to our definitions, are distinct properties yet are intuitively
familiar to any dynamic analysis user.

The distinction between keys and values creates some
subtleties. Consider an approximation whose effect is to
generate a result with the wrong key (say, to attribute some
execution time to the wrong method). This can do one of two
things: create a spurious additional entry for a key already
present in the result, or create a spurious entry for a key
which does not exist in the perfect result. In the first case,
we assume the duplicate entry is merged with the colliding
(key-identical) entry and becomes an accuracy flaw. In the
second case, we have a result that is “over-complete”, in
that it contains spurious keys. In another case our results
might be under-complete, meaning some key is missing (but
no key is spurious). Just as values may be accurate, under-
approximate, over-approximate or “neither” (neither over-
nor under-approximate, e.g., when only a partial order is
defined over the values), so the set of keys may be accurate,



Figure 2. State machine tracking an observed field’s stationarity.
If the final state is S0 or S1, the field is considered stationary. Once
the state becomes S2, the field is determined non-stationary and the
instrumentation tracking its status can be removed.

under-complete, over-complete, or otherwise inaccurate (both
missing some true keys, and containing some spurious ones).

For the dimension of performance, we do not prescribe
any particular definition on its own. Rather, we assume that
performance overhead is quantified in some standard way,
such as an overhead factor as measured across the whole run
of the instrumented program.

2.2 Reasoning about dynamically varying
instrumentation

We assume that instrumentation exists to collect data, and
this data is used to update the analysis state. Let us assume
that our table-based view of analysis results—the “output
subset” of the state of a completed analysis—can also be
used to view the analysis’ state at any point in its execution.
This is not unreasonable; for any given analysis run, we
can imagine cutting it short at any point in the observed
execution trace, and asking what the results would be for the
truncated execution. For example, a method-based profiler
can be considered as maintaining a table of per-method counts
or accumulated time values which are continually updated
during execution. In this view, each value in the table is now
a state variable with a defined state machine. For example,
our method profiler has one state variable for each distinct
method executed, and each variable’s state machine is that
of a counter, i.e., the ascending chain of natural numbers
starting at zero. Similarly, a simple coverage tool might define
one state variable per basic block executed so far, and its
state machine is a “ratcheted boolean”: it starts at false, may
progress to true, and once true, remains in that state.

Suppose that an instrumentation site J exists to update a
state variable v. If J can no longer advance the state machine
of v into a different state, the instrumentation site J can be
removed. For example, once a basic block has been covered,
its boolean state variable can never change to a different
state, so the instrumentation covering the basic black can be
removed. In practice, we often need to consider sets of state
variables v ∈ V affected by a given instrumentation site J
(e.g., whenever state variables are per-object, such as lock
sets in a data race detector, since a given instrumentation site
can affect many objects).

2.3 Framework architecture overview
Our adaptive instrumentation framework is built on top of the
FRANC, a framework for expressing instrumentation-based

dynamic analyses on the Java platform. Our system’s archi-
tecture extends that of FRANC, and its overall architecture is
shown in Fig. 3. For details of FRANC, we refer the reader
to a previous publication [2]. We note, however, that some
of FRANC’s unique features are advantageous when extend-
ing analyses to use adaptive instrumentation. In particular,
FRANC offers specific abstractions for pieces of analysis
state. These abstractions are called mappers and updaters.
Updaters can be used naturally to capture state machines of
the kind required by SFA. (Meanwhile mappers are used to
specify, for example, that these machines are maintained on
a per-field classwise basis.)

The architecture is based around two processes, as with
FRANC, since instrumentation occurs in a separate process
from the observed program (as designed in DiSL2 for robust-
ness reasons [12]). A key addition in our system is a user-
defined controller module in the observed JVM, responsible
for monitoring the analysis result and adapting the instrumen-
tation according to some pre-defined strategy. The controller
module can be either integrated into the analysis or run in
a separate thread with full access to the analysis result. The
controller can instruct FRANC to change the scope of the in-
strumentation and trigger retransformation of existing classes,
which is then carried out by FRANC.

2.4 Running example
Having introduced our approach in general terms, we now
step through a specific example based on Stationary Field
Analysis (SFA). Stationary fields represent a generalization
of final fields [15] found, e.g., in the Java language. However,
unlike final fields, stationary fields can be initialized by
multiple writes spanning multiple methods—as long as all
the writes to the field happen before all the reads. Knowing
what fields are stationary simplifies reasoning about object
aliases and opens up opportunities for aggressive compiler
optimizations.

SFA associates a per-class and per-instance state variable
with every instance field of every class loaded during exe-
cution. Each variable represents the state of a simple state
machine (see Fig. 2), which tracks the per-class and per-
instance status of each field during execution. Once any of
the per-instance state variables determine a field to be non-
stationary, the per-class status of the field, which is the one we
are interested in, cannot change for the rest of the execution.

A notable SFA implementation is the rprof tool developed
by Nelson et al. [13]. The tool intercepts field accesses to
identify fields that can be considered final or stationary, i.e.,
fields that are modified once before the constructor method
returns and fields that are not modified after they have been
read, respectively. To handle potentially billions of events, the
original rprof makes use of a map/reduce framework to speed
up the analysis and to avoid out-of-memory situations when
performed on real-world programs. We have reimplemented

2 http://disl.ow2.org/



Figure 3. Architecture of our adaptive instrumentation framework

rprof tool using our framework. Instead of using map/reduce
to mitigate performance problems, we use a simple in-process
analysis and rely on adaptive instrumentation to mitigate
the overhead. (We explore the performance of the resulting
system in Sect. 3; here we focus on illustrating how the
analysis is built.)

Our implementation of SFA can be therefore factored into
two parts: a straightforward implementation of SFA using
the FRANC framework, and additional logic to control the
adaptation of instrumentation over the course of the analysis.

The control logic in this example is straightforward: once
a field is determined non-stationary, we can notify the con-
troller to remove all instrumentation intercepting accesses to
that field. In the case of instrumentation on hot paths, this
will significantly reduce the overhead being imposed on the
observed program.

We expect the performance of our system to be much better
than a comparable implementation without adaptive instru-
mentation, since we can gradually eliminate large amounts of
instrumentation as the status of more and more fields becomes
known. Reduced instrumentation also improves opportunities
for dynamic compiler optimizations (reducing method sizes,
thus enabling method inlining), further improving perfor-
mance. To experimentally validate these claims, we examine
the performance of our system quantitatively in Sect. 3.

3. Case Study: Stationary Field Analysis
(SFA)

We described the application of our approach to SFA in
Sect. 2.4. Here, we discuss a quantitative experimental evalua-
tion of our SFA case study. Our goal is to assess the influence
of adaptive instrumentation on SFA result completeness and
accuracy (as per the table-based model defined in Section 2.1),
as well as on analysis performance.

3.1 Experimental setup
We evaluate two variants of our FRANC-based reimple-
mentation of rprof. One is designed to mimic the original

rprof tool (referred to as Fixed SFA) and only uses fixed3

instrumentation—this variant serves as the baseline. The
other uses adaptive instrumentation (referred to as Adap-
tive SFA), with a controller thread that periodically (every
100 milliseconds) triggers removal of instrumentation for
fields that are known to be non-stationary.

To compare the two variants, we run them on the bench-
marks from the DaCapo4 suite. Of the 14 benchmarks, we
excluded tradesoap, tradebeans, and tomcat due to well
known issues5 unrelated to our framework, which may cause
the benchmarks to fail under expensive instrumentation.

All the benchmarks were run with the largest workload
available6 except for jython, where we used the standard
workload, because it would not finish within 24 hours with
the huge workload. All experiments were conducted on a
64-bit multicore platform with Oracle Hotspot Server VM.7

3.2 Evaluation results
Like the original rprof tool, our FRANC-based SFA imple-
mentations report the stationary status of each field accessed
during program execution. We now analyze the results to eval-
uate the influence of adaptive instrumentation on complete-
ness, accuracy, and performance of SFA. Given the nature
of SFA, we expect the adaptive instrumentation to preserve
completeness and accuracy, while improving performance.
We also expect the adaptive instrumentation to be more effec-
tive with long-running analyses, which provide more time for
amortizing the adaptation overhead.

3 FRANC performs load-time instrumentation on all classes.
4 Release 9.12-bach, http://www.dacapobench.org/.
5 See bug ID 2955469 (hardcoded timeout in tradesoap and tradebeans)
and bug ID 2934521 (StackOverflowError in tomcat) in the DaCapo bug
tracker at http://sourceforge.net/tracker/?group_id=172498&atid=861957.
6 Huge for all benchmarks except fop and luindex, for which standard is the
largest.
7 Dell PowerEdge M620, 1 NUMA node with 64 GB of RAM, Intel Xeon
E5-2680 CPU 2.7GHz with 8 cores, CPU frequency scaling and Turbo Mode
disabled, Oracle JDK 1.6.0 b43 Hotspot Server VM (64-bit) running on
Ubuntu Linux Server 64-bit version 12.04.2 64-bit with kernel 3.5.0-25-
generic.

http://www.dacapobench.org/


Completeness. With respect to completeness, we expect
the Adaptive SFA variant of our tool to report the same fields
as the Fixed SFA variant. Both tool variants were configured
to instrument the same code locations in all classes loaded
by the JVM. Any differences in the sets of fields reported by
the two versions can be attributed either to non-determinism
in the benchmarks, or perturbation caused by the framework.
In both cases, different (or additional) code paths (or classes)
may be executed (or loaded). We note that even in the case of
the single-threaded fop benchmark, there are multiple threads
executing in the JVM. The activity of these threads (usually
in the Java Class Library or in JVM vendor’s proprietary
classes) will be observed by our tool, because it ensures full
bytecode coverage.

To obtain the baseline for comparison, we first collected
data from 10 executions (in different JVMs) of a single
iteration of each benchmark with Fixed SFA. The results
are summarized in Table 1. For the completeness evaluation,
we are mainly interested in the column showing the total
number8 of fields reported. When analyzing the results, we
programatically verified that the reports from all benchmark
executions with Fixed SFA refer to the same fields. In case of
xalan, additional fields9 were identified, which we attribute
to non-determinism in the execution.

The results for Adaptive SFA are summarized in Table 2.
For clarity, the table only shows differences w.r.t. Fixed SFA
(see Table 1). We observe minor differences in the number
of reported fields compared to the Fixed SFA. Looking into
the differences, we found that they stem from additional code
paths executed in the Java Class Library due to perturbation
(class retransformation10, memory allocation, additional con-
troller thread) caused by our framework. (These two factors
affect all bytecode-based instrumentation systems, and mean
that small divergences such as these are to be expected.) We
thus conclude that our adaptive instrumentation preserves
completeness of SFA results.

Accuracy. With respect to accuracy, we generally ex-
pect Adaptive SFA to classify identical fields the same as
Fixed SFA. Since the state-machine tracking the field status
is identical in both SFA variants, different classification for
the same field can only occur when one of the analysis vari-
ants observes different execution paths that access the field
in a different way. This is not uncommon, especially in the
presence of multi-threading in the workloads. Together with
the fact that SFA (as a dynamic analysis) tends to yield op-
timistic results, expecting completely identical results from
both analysis variants is unrealistic. We therefore proceed
similarly to the above completeness evaluation.

8 The numerical results are meant to identify and convey the extent of fluctu-
ations observed between benchmark executions. However, our conclusions
are based on manual analysis of the differences.
9 All in java.util.concurrent.locks.AbstractQueueSynchronizer class.
10 Fields such as classRedefinedCount, lastRedefinedCount in
java.lang.Class.

To assess the stability of Fixed SFA results, which we use
as the baseline, we first collect data from 10 executions of a
single iteration of each benchmark with Fixed SFA. The re-
sults are summarized in Table 1. For the accuracy evaluation,
we are interested in the columns showing the numbers8 of
declared-final, undeclared-final, and non-final fields classi-
fied either as stationary or non-stationary. We again observe
that even the baseline results exhibit minor fluctuations in the
classification of some fields. Most notable are the cases of
lusearch, pmd, and xalan, where stationary fields fluctuate be-
tween undeclared-final and non-final categories. This means
that depending on the code path executed, the analysis finds
the fields initialized either in the constructor (undeclared-
final), or in another method. In several cases, we observed
final fields (declared and undeclared) fluctuating between sta-
tionary and non-stationary. This is caused by reading a final
field before it is first assigned11, which is legal Java behavior.
Overall, the slight fluctuations in the results are consistent
with the expectation of SFA producing optimistic results that
depend on the code paths executed.

The results for Adaptive SFA are again summarized in
Table 2. Like with Fixed SFA, we observe minor fluctuations
between undeclared-final and non-final stationary fields with
the lusearch, pmd, and xalan benchmarks. Overall, consider-
ing the optimistic nature of SFA, and the comparable scale of
fluctuations and their causes present in Fixed SFA and Adap-
tive SFA results, we conclude that adaptive instrumentation
preserves accuracy of SFA.

Performance. With respect to performance, we generally
expect Adaptive SFA to perform better than Fixed SFA. The
adaptive variant of the analysis incurs additional overhead
due to class retransformation, which will temporarily undo
optimizations performed not only on the retransformed class,
but also on methods in other classes containing, e.g., inlined
code from the methods in the retransformed class. However,
in the long run, the adaptive analysis should incur lower
overhead.

To evaluate the performance of both analysis variants, we
execute them on the benchmarks from the DaCapo suite, and
calculate their overhead compared to uninstrumented execu-
tion of the benchmarks. We then calculate the speedup of
Adaptive SFA with respect to Fixed SFA. Since a developer
would typically run our tool on her code once, our evalua-
tion targets startup (instead of steady-state) performance. We
therefore collect data from a single iteration of each bench-
mark.

The results of the performance evaluation are summarized
in Table 3. As expected, the results for Adaptive SFA show
a significant speedup compared to Fixed SFA—we observe
the highest speedup of a factor of 6.36 with xalan, average
speedup of a factor of 2.54 (calculated from total execution

11 A virtual method in a derived class invoked from the constructor of a super
class can observe a final field in its default state before it is assigned a value
in the constructor.



Total Stationary Field Non Stationary Field
dF uF ¬F dF uF ¬F

Min Range Min Range Min Range Min Range Min Range Min Range Min Range
avrora 1827 0 725 0 531 0 241 0 4 0 6 0 320 0

batik 3460 0 391 0 1781 0 498 0 0 0 15 0 775 0
eclipse 7262 0 1001 +4 2585 +5 1609 +6 3 +4 16 +1 2037 +3

fop 3507 0 400 0 1497 +2 912 0 0 0 13 0 683 +2
h2 2159 0 363 +2 812 +7 453 +7 6 +2 10 +1 505 +3

jython 2629 0 460 0 1162 0 429 0 0 0 10 0 568 0
luindex 1702 0 328 0 654 +2 246 0 0 0 9 0 463 +2

lusearch 1378 0 213 +5 505 +29 278 +21 6 +5 6 +1 331 +14
pmd 2099 0 361 +5 716 +44 469 +35 11 +5 7 +1 472 +26

sunflow 1741 0 309 0 729 0 287 +11 0 0 7 0 398 +11
xalan 2233 +6 342 +6 658 +82 610 +88 7 +6 9 +2 507 +24

Table 1. Minimal and maximal (reported as range, relative to minimum) counts of fields observed and classified (dF: declared final; uF:
undeclared final; ¬F: not final) by Fixed SFA in 10 execution of a single iteration of each benchmark, started in separate JVM processes.

Total Stationary Field Non Stationary Field
dF uF ¬F dF uF ¬F

Min Range Min Range Min Range Min Range Min Range Min Range Min Range
avrora 0 +6 0 0 -1 +1 0 +6 0 0 0 0 0 +1

batik 0 0 0 0 -1 0 0 0 0 0 0 0 +1 0
eclipse +5 0 -1 -1 -9 +6 +6 +4 +2 -1 0 -1 +3 0

fop 0 +5 0 0 -1 +1 0 +5 0 0 0 0 0 +1
h2 0 0 +1 0 -7 +8 0 +5 -1 0 0 -1 0 0

jython 0 0 0 0 -1 0 0 0 0 0 0 0 +1 0
luindex 0 0 0 0 0 0 0 0 0 0 0 0 0 0

lusearch 0 0 -2 0 -27 +25 +1 +18 +2 0 0 +1 -2 +11
pmd +5 0 0 +1 -1 -4 +17 -4 -1 +1 +1 +1 +2 -6

sunflow -5 0 -2 0 -3 +5 +1 -2 0 0 0 0 -1 -1
xalan +6 0 -1 0 -12 +13 +14 -6 +1 0 -1 0 -1 +5

Table 2. Difference (w.r.t. Table 1) in minimal and maximal (reported as range, relative to minimum) counts of fields observed and classified
(dF: declared final; uF: undeclared final; ¬F: not final) by Adaptive SFA in 10 executions of a single iteration of each benchmark, started in
separate JVM processes.

Uninstrumented Fixed SFA Adaptive SFA
Exec. time [s] Exec. time [s] ovh. Exec. time [s] ovh. Speedup

avrora 14.74 698.33 47.38 307.63 20.87 2.27
batik 5.92 74.77 12.63 66.72 11.27 1.12

eclipse 74.26 8124.28 109.40 3180.25 42.83 2.55
fop 3.07 54.68 17.81 41.68 13.58 1.31
h2 40.72 2352.87 57.78 1047.30 25.72 2.25

jython 14.20 542.11 38.18 295.45 20.81 1.83
luindex 1.52 74.49 49.01 29.46 19.38 2.53

lusearch 2.99 281.07 94.00 75.58 25.28 3.72
pmd 6.80 121.94 17.93 76.86 11.30 1.59

sunflow 4.12 1097.21 266.31 796.78 193.39 1.38
xalan 10.18 2497.54 245.34 392.84 38.59 6.36
Total 178.52 15919.29 89.17 6310.55 35.35 2.52

Table 3. Execution times and overhead factors for Fixed SFA and Adaptive SFA. Overheads calculated with respect to uninstrumented
benchmark execution, speedup for Adaptive SFA calculated with respect to Fixed SFA.

time), and the smallest speedup of a factor of 1.12 with
batik. For the three longest-running benchmarks (eclipse,
h2, and avrora—accounting for approx. 72% of the total
execution time of the whole uninstrumented benchmark
suite), the speedup factor was over 2. This is consistent with
our expectation that the adaptive instrumentation will have
the biggest impact on long-running analyses. Based on the
measurements, we conclude that adaptive instrumentation
significantly improves SFA performance, while preserving
completeness and accuracy to a large extent.

4. Case Study: Method Execution Time
Analysis

Compared to the previous case study, which maintains a
per-field state machine to classify the field access pattern,
the dynamic analysis in our second case study measures
execution time of each method invocation. Hence, in the
second case study, measurement perturbation due to inserted
instrumentation code influences the analysis results.

To evaluate our approach with this type of analysis, we
use a FRANC-based recast of JRat12, a profiler that measures
execution time of each method invocation, and produces a call

12 http://jrat.sourceforge.net/



graph with execution time statistics, which allows attributing
the time spent in a particular method to individual callers.
To gather the necessary data, JRat instruments each method
entry and exit to collect a time stamp and to update the call
graph for the current thread. Our implementation reuses parts
of JRat responsible for collecting data and producing traces,
and replaces the instrumentation part with a FRANC-based
variant to enable adaptive instrumentation at runtime.

The instrumentation required by JRat introduces signifi-
cant overhead. The overhead is caused both directly by the
instrumentation code at each method entry and exit, and indi-
rectly by inflating method bodies and thus limiting inlining
and other compiler optimizations. Since the measured method
execution time includes the instrumentation overhead, the re-
sults tend to over-approximate the actual execution times—a
“light” method that just calls many other methods may easily
accumulate more execution time than a “heavy” computa-
tional method that does not invoke any other methods.

Since the original JRat measures execution times with
1-millisecond resolution, methods with execution time less
than the resolution are considered unimportant. However, if
such a method is invoked many times in a loop, its execution
time will accumulate in the caller, whose execution time may
become significant.

Based on this observation, we have implemented an adap-
tive controller for our implementation of JRat that eliminates
instrumentation from unimportant methods at runtime. To
identify such methods at runtime, the controller measures
execution time of all methods for some time, and for methods
that have been executed at least a certain number of times, it
marks those with execution time below a certain threshold
as unimportant. It then periodically triggers retransformation
of the corresponding classes to remove instrumentation from
those methods, thus improving tool performance.

This approach has a drawback in that there is a risk of
eliminating instrumentation from methods with variable exe-
cution times depending on their parameters. This may hap-
pen if we fail to obtain a representative sample of execution
times for a method during its first few tens or hundreds of
invocations. This situation could be alleviated by switching
first to a different instrumentation that might sample method
execution times selectively, but longer into program execu-
tion, and possibly completely eliminating the instrumentation
later. For this type of analysis, eliminating instrumentation
from a method will inevitably result in less complete results.
However, unless it affects methods at the top of the resultant
profile, the loss of completeness might not be considered an
issue. The reduced instrumentation overhead will also influ-
ence the accuracy of the results, yet we would expect this
influence to be mainly positive.

To quantify the effects of adaptive instrumentation on
the results and performance of a method execution time
analysis, we performed an experimental evaluation of our

FRANC-based reimplementation of JRat. We now discuss
the experimental setup and results.

4.1 Experimental setup
In our experiments, we again evaluate two variants of the tool.
One is designed to mimic the original JRat tool as closely
as possible (referred to as Fixed JRat) and only uses fixed
instrumentation. The other uses adaptive instrumentation
(referred to as Adaptive JRat), with a controller thread that
periodically (every 500 milliseconds) triggers removal of
instrumentation from unimportant methods. To identify such
methods, the controller observes method execution times and
looks for methods with execution times below 1 millisecond
that have been invoked at least 100 times.

To compare the two variants, we use the benchmarks
from the DaCapo suite. The selection of benchmarks and the
experimental environment is carried over from the previous
case study.

4.2 Evaluation results
Completeness. Unlike in the previous case study, we know
that adaptive instrumentation necessarily impairs result com-
pleteness. However, as discussed in Sect. 2.1, this need not
be detrimental to result accuracy. Our evaluation is therefore
aimed at quantifying the impact on completeness, followed
by evaluation of accuracy achieved with adaptive instrumen-
tation.

To assess the impact on completeness, we determine the
number of code locations considered unimportant by the
adaptive instrumentation controller when executing a single
iteration of each DaCapo benchmark with Adaptive JRat.
We contrast this with the total number of code locations
instrumented when running the benchmarks with Fixed JRat,
which serves as the baseline.

The results are summarized in Table 4. We observe that
the adaptive instrumentation avoids instrumenting 12-39%
of code locations that would normally be instrumented, as
shown in the results for Fixed JRat. This directly quantifies
the decrease in result completeness. However, given the type
of analysis, a developer will be mostly interested in several
methods at the top of the profile and the loss of completeness
will hardly be an issue.

To illustrate the effect of the adaptive instrumentation at
runtime, Table 4 also shows the number of analysis invoca-
tions that were avoided by eliminating the instrumentation
from unimportant methods. We observe that Adaptive JRat
avoided 35-93% of analysis code invocations.

Accuracy. To evaluate the effect of adaptive instrumenta-
tion on accuracy, we compare the profiles produced by our
tools to a profile obtained using hprof executing in CPU
sampling mode. The sampling profiler introduces minimal
overhead, which will cause only minor measurement pertur-
bation. Hence, the hotness profiles produced by the sampling
profiler offer good accuracy. Here we measure how closely



Fixed JRat Adaptive JRat
Instr.

Locations
Analysis

Invocations
Avoided

Locations
Avoided

Invocations
avrora 2376 3.97E+09 648 27.27% 2.68E+09 67.47%

batik 5463 5.68E+07 1587 29.05% 3.65E+07 64.21%
eclipse 13440 3.52E+09 5250 39.06% 3.28E+09 93.32%

fop 5162 4.99E+07 1476 28.59% 3.80E+07 76.27%
h2 3492 6.67E+09 1057 30.27% 5.24E+09 78.56%

jython 5453 6.78E+09 1649 30.24% 6.29E+09 92.81%
luindex 2301 1.14E+08 504 21.90% 5.34E+07 46.93%

lusearch 1799 7.57E+08 427 23.74% 2.64E+08 34.94%
pmd 4044 2.52E+08 1233 30.49% 1.68E+08 66.70%

sunflow 2549 4.45E+09 310 12.16% 3.70E+09 83.22%
xalan 3314 4.51E+09 1445 43.60% 3.32E+09 73.58%

Table 4. Number of instrumented code locations and analysis invocations for Fixed JRat, followed by the number and percentage of code
locations and analysis invocations avoided by Adaptive JRat.

Fixed JRat Adaptive JRat
match sad mad match sad mad

avrora 13 154 9 13 117 7
batik 11 3983 248 14 3738 233

eclipse 10 10739 671 11 9991 624
fop 15 3638 227 15 3380 211
h2 8 5658 353 8 4764 297

jython 13 3322 207 12 2828 176
luindex 14 1609 100 14 1534 95

lusearch 10 224 14 10 218 13
pmd 11 198 12 11 156 9

sunflow 16 32 2 16 4 0
xalan 8 501 31 8 458 28

Table 5. Distance metrics between the hprof profile and profiles from the Fixed JRat and Adaptive JRat variants of the JRat tool. Calculated
for 16 top-ranking methods in the hprof profile. The metrics include the number of the match methods , the Sum and the Mean of the Absolute
Distances.

Uninstrumented Fixed JRat Adaptive JRat
Ex. time [s] Ex. time [s] ovh. Ex. time [s] ovh. speedup

avrora 14.74 363.80 24.68 273.10 18.53 1.33
batik 5.92 31.52 5.33 31.15 5.27 1.01

eclipse 74.26 1285.46 17.31 504.10 6.79 2.55
fop 3.07 25.87 8.43 23.68 7.72 1.09
h2 40.72 1098.44 26.98 266.83 6.55 4.12

jython 32.37 1453.87 44.91 255.08 7.88 5.70
luindex 1.52 30.28 19.89 21.25 13.96 1.42

lusearch 2.99 58.76 19.64 47.39 15.84 1.24
pmd 6.80 33.19 4.88 67.58 9.94 0.49

sunflow 4.12 200.15 48.64 47.82 11.62 4.19
xalan 10.18 157.40 15.46 127.56 12.53 1.23
Total 196.69 4738.74 24.09 1665.54 8.47 2.85

Table 6. Execution times and overhead factors for the Fixed JRat and Adaptive JRat variants of the JRat tool. Overheads calculated with
respect to uninstrumented benchmark execution, speedup for Adaptive JRat calculated with respect to Fixed JRat.

the profiles produced by our versions of JRat approximate the
sampling profiles. However, please note that the profiles gen-
erated by JRat provide more information than the sampling
profiles (otherwise, JRat would be obsolete).

The comparison entails three metrics. We first calculate
the cardinality of intersection between sets of 16 methods
that have accumulated the most execution time (including
time spent in the callees). Then, for the set of 16 top-ranked
methods in the hprof profile, we calculate the sum and
mean absolute difference between their rankings in the hprof
profile and the profiles produced by our tools. We report both
metrics, because while the sum of absolute differences better
captures the distance between two profiles, the mean absolute
difference is the more intuitive of the two.

The results of the comparison are shown in Table 5. The
“match” column corresponds to the cardinality of intersection
between the sets of 16 top-ranked methods, while the “sad”
and “mad” columns correspond to the sum and mean absolute
difference in rankings, respectively. We observe that due to
its high overhead, the Fixed JRat analysis produces results
that show considerable distance from the hprof profile. The
Adaptive JRat analysis produces results that are closer to
the hprof baseline, thereby improving result accuracy with
respect to the metrics used. Based on the results, we therefore
conclude that the adaptive instrumentation slightly improves
result accuracy.

Performance. Like in the previous case study, we expect
the adaptive instrumentation to improve performance of the



dynamic analysis represented by JRat. Even though this
analysis is not as “heavy” as SFA, the reasons for the expected
performance improvement remain the same.

To evaluate the performance of our FRANC-based vari-
ants of JRat, we execute them on the benchmarks from the
DaCapo suite, and calculate their overhead compared to unin-
strumented execution of the benchmarks. We then calculate
the speedup of Adaptive JRat with respect to Fixed JRat,
which serves as the baseline. Again, to mimic the typical
usage of a tool like JRat, we target startup (instead of steady-
state) performance. Consequently, we collect data from a
single iteration of each benchmark.

The results are summarized in Table 6. As expected, the
results for Adaptive JRat indicate a significant performance
increase over the Fixed JRat variant of the analysis. We
observe the highest speedup of a factor of 5.70 with jython,
average speedup of a factor of 2.85 (calculated from total
execution time), and the lowest speedup of a factor of 0.49
(or a slow-down of a factor of 2.04) in case of pmd. The
slowdown with pmd was caused by the retransformation
overhead associated with the adaptive instrumentation. The
overhead grows with the number of cores available to the
JVM, and in the case of pmd was not amortized by the
relatively short execution.

Overall, the increased performance of Adaptive JRat cor-
responds to the number of analysis invocations avoided by
using adaptive instrumentation (see Table 4). Based on the
results, we conclude that adaptive instrumentation signifi-
cantly improves performance of instrumentation-based dy-
namic method execution-time analysis as represented by JRat.
While completeness is reduced, the accuracy is slightly im-
proved compared to the baseline results produced by the
Fixed JRat variant.

5. Related Work
Our framework is technically an application of the Java code
hotswapping technique which allows redefinition of previ-
ously loaded classes and thus enables dynamic adaptation
of bytecode instrumentation. An early technique, JFluid [8],
implements Java code hotswapping by modifying the JVM.
Although our framework uses standard JVMTI interfaces in
later versions of the JVM, it shares common restrictions of
Java code hotswapping: Only method bodies can be modified;
fields and methods cannot be added, removed, or renamed;
method signatures and the class hierarchy cannot be changed.
Nevertheless, the current implementation of our framework
is an embodiment of our characterization of dynamic anal-
yses, providing a general view and an operational way of
adaptive instrumentation. In contrast to the presented general
framework, our previous work on dynamic aspect-oriented
programming [1, 16] supported only a limited set of dynamic
analyses.

Program profiling is indispensable in code optimizations
and performance tuning, but its runtime overhead may be

prohibitively high or distort the resulting profiles. Arnold and
Ryder [3] propose to reduce instrumentation using counter-
based sampling combined with code duplication. Their ap-
proach maintains a global counter and starts collecting data
when the counter reaches a certain threshold. The data col-
lection is performed on a duplicated version of the original
program; code instrumentation concentrates in the duplicated
version. Similar to this approach, our adaptation of code in-
strumentation is triggered by certain runtime events, while
we use state machines instead of a global counter. However,
since our framework supports runtime undeployment and
redeployment, no code duplication is required. Path profiles
are particularly useful to path-based optimizations, but path
profiling is generally much more expensive than basic block
profiling or edge profiling due to the sheer number of paths
in non-trivial CFGs. For efficient path profiling, instead of
placing instrumentation on both edges of each branch state-
ment, Ball and Larus [4] use a spanning tree of the CFG to
select edges for instrumentation. In addition, the edges are
assigned certain integer values so that each path computes
a unique value by going through its corresponding edges.
Sumner et al. [14] extend Ball and Larus’ approach to pre-
cisely encode calling contexts, by handling recursive contexts
and using stack offsets to disambiguate contexts. In these
approaches the overhead reduction comes from properties
of specific structures (i.e., control flow graphs, call graphs,
and stacks) and specially designed algorithms. The places
for instrumentation are determined by static analysis prior to
program execution. Our framework is orthogonal to such kind
of approaches in that it can take effect at runtime to achieve
further performance improvement, especially when complete-
ness (or even accuracy) is no longer strictly demanded. More
importantly, our framework is generally applicable to differ-
ent profiling techniques.

In solving software engineering problems, a lot of tech-
niques use sophisticated program instrumentation to control
runtime overhead. Liblit et al. [11] design a remote sampling
framework to collect execution information from large user
communities, in order to help localize and diagnose bugs.
Their sampling framework is similar to that proposed by
Arnold and Ryder [3] in that both frameworks are based on
sampling and code duplication. However, Liblit et al. propose
to use numbers from geometric distributions together with
weights of acyclic regions to decide the execution of instru-
mented code. Our framework can be incorporated into this
remote sampling framework to remove the necessity of du-
plicate code and, more importantly, to enable adaptive instru-
mentation driven by fault-related information only available
at runtime.

There is a number of frameworks for runtime monitor-
ing, among which JavaMOP [10] is a full-fledged framework
which enables parametric properties and supports multiple
logical formalisms to express properties. JavaMOP incorpo-
rates knowledge of specific properties and uses static analysis



to avoid creating or retaining unnecessary monitors [7, 9].
Differing from JavaMOP, our framework does not focus on
checking runtime properties. Meanwhile, the optimizations
in JavaMOP focus on creating fewer monitors or removing
useless ones via garbage collection. Our framework is based
on hotswapping techniques, thus it can also support optimiza-
tions by lazily creating monitors, that is, monitors can be
created on-demand and enabled at runtime. It is also worth
noting that our framework is built on the top of FRANC so
that it is more flexible than AspectJ, which JavaMOP relies
on, in terms of choosing locations for program instrumenta-
tion.

6. Conclusion
The value of a dynamic analysis largely depends on the qual-
ity and utility of the results it provides and the cost associated
with obtaining them. While the cost is typically associated
with performance, the quality of the results is largely deter-
mined by their completeness and accuracy. Dynamic analyses
providing the most insight often require denser, more fine-
grained instrumentation, which in turn comes at a greater cost
in terms of performance overhead. Completeness, accuracy,
and performance are therefore the main concerns for both
authors and users of dynamic program analyses.

In this paper, we presented a framework that enables
runtime adaptation of program instrumentation. This allows
reducing the cost of certain dynamic program analyses by
removing instrumentation and avoiding execution of analysis
code in situations that do not contribute to the analysis
results. We evaluated our framework on two case studies with
different sensitivity to performance overhead and adaptation
requirements, studying the impact of adaptive instrumentation
on completeness and accuracy of the results.

In both cases, using adaptive instrumentation resulted in
a significant performance improvement. For the analysis in-
sensitive to performance overhead, both completeness and
accuracy of the results were preserved. For the analysis where
performance overhead directly influenced the results, the per-
formance improvement was traded for reduced completeness,
while slightly improving accuracy of the results. While adap-
tive instrumentation does not come entirely for free, the as-
sociated overhead is easily amortized in heavy, long-running
dynamic analyses, where it provides the most benefit.

Acknowledgments
This work was supported by the Swiss National Science Foun-
dation (project CRSII2_136225), by a Sino-Swiss Science and
Technology Cooperation (SSSTC) Institutional Partnership (project
IP04–092010), and by the European Commission (Seventh Frame-
work Programme grant 287746).

References
[1] D. Ansaloni, W. Binder, P. Moret, and A. Villazón. Dynamic aspect-

oriented programming in Java: the HotWave experience. In G. T.
Leavens, S. Chiba, M. Haupt, K. Ostermann, and E. Wohlstadter,

editors, Transactions on Aspect-Oriented Software Development IX,
pages 92–122. 2012.

[2] D. Ansaloni, S. Kell, Y. Zheng, L. Bulej, W. Binder, and P. Tůma.
Enabling modularity and re-use in dynamic program analysis tools
for the Java virtual machine. In Proceedings of the 27th European
Conference on Object-Oriented Programming, ECOOP ’13, pages 352–
377, 2013.

[3] M. Arnold and B. G. Ryder. A framework for reducing the cost
of instrumented code. In Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation,
PLDI ’01, pages 168–179, 2001.

[4] T. Ball and J. R. Larus. Efficient path profiling. In Proceedings of the
29th annual ACM/IEEE international symposium on Microarchitecture,
MICRO 29, pages 46–57, 1996.

[5] E. Bodden. Efficient hybrid typestate analysis by determining
continuation-equivalent states. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE
’10, pages 5–14, 2010.

[6] E. Bodden and K. Havelund. Aspect-oriented race detection in Java.
IEEE Trans. Softw. Eng., 36(4):509–527, 2010.

[7] F. Chen, P. O. Meredith, D. Jin, and G. Rosu. Efficient formalism-
independent monitoring of parametric properties. In Proceedings of
the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ASE ’09, pages 383–394, 2009.

[8] M. Dmitriev. Profiling Java applications using code hotswapping and
dynamic call graph revelation. In Proceedings of the 4th international
workshop on Software and performance, WOSP ’04, pages 139–150,
2004.

[9] D. Jin, P. O. Meredith, D. Griffith, and G. Rosu. Garbage collection
for monitoring parametric properties. In Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’11, pages 415–424, 2011.

[10] D. Jin, P. O. Meredith, C. Lee, and G. Roşu. JavaMOP: efficient
parametric runtime monitoring framework. In Proceedings of the 2012
International Conference on Software Engineering, ICSE 2012, pages
1427–1430, 2012.

[11] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation
via remote program sampling. In Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation,
PLDI ’03, pages 141–154, 2003.

[12] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi.
DiSL: a domain-specific language for bytecode instrumentation. In
Proceedings of the 11th annual international conference on Aspect-
oriented Software Development, AOSD ’12, pages 239–250, 2012.

[13] S. Nelson, D. J. Pearce, and J. Noble. Profiling object initialization for
Java. In Proceedings of the Conference on Runtime Verification, RV
’12, pages 292–307, 2012.

[14] W. N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise calling
context encoding. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages
525–534, 2010.

[15] C. Unkel and M. S. Lam. Automatic inference of stationary fields: a
generalization of Java’s final fields. In Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’08, pages 183–195, 2008.

[16] A. Villazón, W. Binder, D. Ansaloni, and P. Moret. Advanced runtime
adaptation for Java. In Proceedings of the eighth international confer-
ence on Generative programming and component engineering, GPCE
’09, pages 85–94, 2009.


	Introduction
	Reducing Analysis Overhead
	Characterizing accuracy and completeness
	Reasoning about dynamically varying instrumentation
	Framework architecture overview
	Running example

	Case Study: Stationary Field Analysis (SFA)
	Experimental setup
	Evaluation results

	Case Study: Method Execution Time Analysis
	Experimental setup
	Evaluation results

	Related Work
	Conclusion

