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Abstract
Inlining is an important optimization that can lead to significant
runtime improvements. When deciding whether or not to inline a
method call, a virtual machine has to weigh an increase in compile
time against the expected decrease in program time. To estimate
the latter, however, state-of-the-art heuristics only use information
local to the call-site in question. But inlining is a powerful enabling
optimization; by eliminating the actual call it not only offers an
obvious direct benefit but also indirect benefits, as information
about the method’s arguments is propagated from caller to callee.
One such indirect benefit is the elimination of guards in case the
callee inlines a method called on one of its arguments. In this
paper, we show how to enhance an inlining heuristic by accurately
predicting where this further inlining occurs—and where not. To
do so, we only use information readily available to many virtual
machines: the program’s dynamic call graph. An implementation
based on Jikes RVM demonstrates that this information can be used
to successfully exploit inlining’s indirect benefits while at the same
time reducing compilation effort.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization

General Terms Performance

Keywords Inlining, indirect benefits, guard elimination

1. Introduction
Well-designed object-oriented programs typically consist of a large
number of small methods. But such a design comes at a price: Ev-
ery single method call causes overhead which, taken together, can
cause a significant increase in runtime. Modern compilers therefore
use method inlining, which works by replacing a call-site within a
caller method with the body of the respective callee method. This
not only completely removes the overhead of the method call, but
may also enable further optimizations, as static information is now
propagated across method boundaries, i.e., from caller to callee.

The use of method inlining is not free, though. Both code size
and compile time can increase when numerous call-sites are re-
placed by a method’s entire body. The compiler thus has to care-
fully weigh the costs of inlining against its benefits. This cost-
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benefit trade-off is of particular relevance to modern virtual ma-
chines where a just-in-time compiler performs the optimization
at runtime. To this effect, compilers employ a so-called inlining
heuristic that tries to predict both the cost and the benefits of a in-
lining decision at compile time.

State-of-the-art inlining heuristics, however, only use crude ap-
proximations of the indirect benefits of inlining. One important
such benefit is the inlining of further methods the callee calls on its
arguments. Such situations are particularly common when a pro-
gram uses the Command pattern either directly or indirectly, e.g.,
when a compiler resorts to its use to emulate first-class functions:

1 Collections.sort (list, new Comparator() {
2 int compare(Object lhs, Object rhs) {
3 . . .
4 }
5 });

The compare method, which will likely be called numerous
times during sorting, can only be inlined (without guards) if infor-
mation about the precise comparator used is propagated from caller
to callee, i.e., into the body of sort; this happens only if the marked
call-site is inlined. State-of-the-art heuristics therefore encourage
inlining when information about the callee’s arguments, e.g., their
precise types, are known. They do so, however, indiscriminately,
i.e., regardless of whether or not a method is actually called on the
argument in question, in a desire to avoid a detailed static analysis
of the callee’s code.

In this paper we side-step this issue by proposing an inlin-
ing heuristic which instead uses the dynamic call graph to predict
whether such a method call will actually happen. If no matching
edge is found in the call graph, propagating information about the
argument from caller to callee is unlikely to produce the desired in-
direct benefit; inlining for this reason alone should thus be discour-
aged. No static analysis is needed to determine this. This heuristic
reduces both compile time and code size with negligible effects on
code quality.

The contributions of this paper are threefold:

1. We introduce and motivate the prediction problem of further
inlining.

2. We propose an enhanced inlining heuristic that accurately pre-
dicts further inlining and guides inlining accordingly.

3. We rigorously evaluate this heuristic on Jikes RVM [1] using
the DaCapo benchmark suite [5].

This paper is structured as follows: Section 2 provides back-
ground material on the inlining optimization in general and its im-
plementation in Jikes RVM in particular. Section 3 describes our
proposed heuristic, which is then evaluated in Section 4. Section 5
discusses related work, before Section 6 concludes.
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2. Background
In this section, we first provide some background on the inlin-
ing optimization together with a concise notation to reason about
how detailed information about the reference arguments can enable
guardless inlining. We then give an overview of the inlining heuris-
tic used by Jikes RVM [1].

2.1 The Inlining Optimization
Inlining is the process of replacing a method’s call-site with the
body of said method. This optimization avoids creating a stack
frame for the callee method and transferring control from caller to
callee and back. Furthermore, in object-oriented languages, where
calls are dynamically dispatched, the cost of dispatching can often
be avoided by exploiting the fact that in practice many call-sites are
monomorphic rather than polymorphic [15].

Guarded and Guardless Inlining While many call-sites are in-
deed monomorphic, the compiler is not always able to prove this
fact statically, e.g., by applying class-hierarchy analysis [11]. This
is particularly true in modern, managed languages like Java, where
dynamic class loading can grow the class-hierarchy at runtime.

Still, it may be profitable to inline the most likely callee, even
when the compiler is unable to prove that the call-site in question
is monomorphic. In such cases, compilers resort to guarded inlin-
ing [17]; they insert so-called guards which test whether some pre-
condition is met before executing the inlined callee. If the guard
test fails, dynamic dispatch is performed as a fall-back. In all cases,
however, testing a precondition incurs some minor overhead.

While techniques exist to reduce the overhead of guarded inlin-
ing [2, 12], being able to inline a virtual method without any guard
is better still. In Java, this is mainly possible in two cases:1 when
the receiver’s precise type is statically known and when the receiver
object already pre-exists the call [12].

Notation In order to reason about these cases, we next introduce
notation to discuss the decision the compiler has to make: “Should
a callee B.n() be inlined into a caller A.m()?”

Notation 2.1. A.m()
?
↢ B.n()

Note that B above is the actual target of the call. Should the
compiler decide to inline such a call, with or without a guard test,
an inline sequence is begun. The following notation describes such
sequences: “C.o() is inlined into B.n() which is in turn inlined into
the root method A.m().”

Notation 2.2. A.m() ↢ B.n() ↢ C.o()

Such sequences are of particular interest if inlining propagates
information about the method’s arguments from caller to callee.
We thus extend our notation to include arguments: “Should a callee
B.n() be inlined into a caller A.m() if it has an argument of static
type C?”

Notation 2.3. A.m()
?
↢ B.n(C)

In the above, B.n(C) has just one argument. It may of course
also have several, scalars and arrays alike, of either primitive or
reference type. When making inlining decisions, however, it is
sufficient to consider the arguments one by one. Moreover, as
dispatch in Java is based on a single object only, guard elimination
requires information about just the scalar reference arguments;
both array and primitives can be ignored. Also, the implicit this
argument can, for the purpose of this discussion, be treated like any
other argument.

1 Another case is when the receiver’s precise type is unknown, but final
classes and methods make it possible to deduce a single target method.

1 class A {
2 void m() {
3 B b = . . .
4 C c = new D();
5 b.n(c); // Precise type of argument is D.
6 }
7 }
8
9 class D extends C { . . . }

Figure 1. The type of c is known precisely in A.m(C); inlining the
marked call-site propagates this information into B.n(C).

1 class A {
2 void m(C c) {
3 B b = . . .
4 b.n(c); // Argument exists before call to A.m(C).
5 }
6 }

Figure 2. The value of c pre-exists the invocation of A.m(C); in-
lining the marked call-site propagates this information into B.n(C).

Now, it may be the case that the compiler has additional infor-
mation about an argument, which can be exploited once it has been
propagated from caller to callee. One such piece of information is
the precise type of an argument at the call-site in question. In the
situation depicted in Figure 1, the caller A.m() propagates informa-
tion about the precise type of an argument into the callee B.n(C),
which may allow the compiler to prove call-sites within the callee
monomorphic—if the caller is inlined into the callee.

Notation 2.4. A.m()
?
↢ B.n(D♯ <: C)

Another additional information is that the argument pre-exists
the root method. This pre-existence guarantees that the argument’s
class has been fully loaded before the root method was called [12].
If a method is called on the argument and the respective call-site
is currently provably monomorphic, then no guard is necessary to
inline the call. While it is still possible that the call-site may be-
come potentially polymorphic later on, simply recompiling the call-
ing method is enough to ensure that dynamic dispatch is handled
correctly in all cases; neither on-stack replacement [13] nor code
patching [8] are necessary. In the situation depicted in Figure 2, the
caller A.m(C) propagates the information that the argument that
pre-exists its own invocation into the callee B.n(C)—if the latter is
inlined into the former.

Notation 2.5. A.m(C♭)
?
↢ B.n(C♭)

In either case, information about the argument of B.n(C) is
propagated during inlining into A.m(. . .). If B.n(C) now calls a
method on the argument in question, guardless inlining becomes
possible. In fact, Jikes RVM’s inlining heuristic already handles
both of these cases: precise and extant arguments.2

2.2 The Inlining Heuristic of Jikes RVM
Jikes RVM [1] has two compilers: an extremely fast baseline com-
piler and a much slower optimizing compiler. Only the latter per-
forms inlining, guided by a so-called inline oracle [16].

2 In Jikes RVM, pre-existing arguments are called extant; both terms are
used interchangeably in this paper.

2 2011/9/21



Information Reduction

Reference argument of precise type 15 %
Reference argument pre-exists method call 5 %

Non-null object constant 10 %
null constant 10 %

Integer constant 5 %

Array argument of precise type 5 %
No aastore check required 2 %

Table 1. Estimated reductions in a method’s size if additional
information is available about an argument.

The Inline Oracle This oracle bases its inlining decisions (no
inlining, guarded inlining, guardless inlining) on both static and
dynamic information available in the current compilation context.
Static information includes a method summary of the callee includ-
ing an estimate of its size as well as the types of both the call’s
receiver object and the call’s arguments, approximated statically
through intra-procedural dataflow analysis. Dynamic information
includes the hotness of the call-edge in question. Furthermore, the
inline oracle is influenced by compiler settings; more than 20 op-
tions exist to fine-tune the cost-benefit analysis performed by the
oracle. The actual decision is reached in a five-step process:

1. Reject certain callees which should not (@NoInline-annotated
methods) or cannot (native methods) be inlined.

2. Accept trivial callees, i.e., methods of negligible size.

3. Use the dynamic call graph to identify the dynamic targets of
the potentially polymorphic call-site.

4. For each dynamic target, decide whether inlining is desirable.

5. Choose appropriate guards for each desirable target.

Of these five steps, the last three are performed only at higher
optimization levels (O1–O2). The most complex step thereby is the
fourth, in which the oracle performs a cost-benefit analysis for each
dynamic target.

Cost-benefit Analysis To estimate the cost, the oracle estimates
both the size of the callee as well as the size of any guards nec-
essary. If the inline oracle has additional information about the
callee’s arguments, it will reduce its estimate of the callee’s size
accordingly. Each argument is considered separately, the respec-
tive reductions are added together and finally applied to the size
estimate. The maximum reduction is limited to 40%; thus, the final
size estimate is at least 60% of the original estimate. Table 1 shows
the (per-argument) size reductions attributed by default to various
information about the arguments.

If the callee’s size, after all reductions have been applied, is
below some configurable threshold, the callee is inlined, a strategy
remarkably similar to that of the Self-93 compiler [17]. At first
glance, the oracle hereby seems to consider the cost of inlining
only. But benefits are also, albeit indirectly, factored into the cost-
benefit trade-off: by reducing the cost of inlining. Since the cost-
benefit trade-off is a simple inequation, reducing the cost has the
same effect on the final inlining decision as increasing the benefit.

Prevalence of Precise and Extant Arguments Table 2 shows
how often the precise type of an argument or its pre-existence
are known to the optimizing compiler of Jikes RVM, i.e., how
prevalant precise and extent arguments are in practice. The first pair
of columns shows the percentage of non-receiver scalar reference
arguments that are extant or precise, respectively. The next pair of
columns shows the percentage of extant or precise receivers, which

Non-receiver Receivers All
Arguments [%] Arguments [%] Arguments [%]

Benchmark Extant Precise Extant Precise Extant Precise

antlr 21.11 39.46 26.41 38.88 25.09 38.95
bloat 19.90 44.87 7.87 69.12 12.78 59.22
chart 8.93 37.55 6.77 70.71 7.75 55.76
fop 43.08 22.56 34.91 34.36 39.29 28.01

hsqldb 21.74 13.64 15.10 29.08 18.56 21.00
jython 43.75 14.83 27.42 46.78 36.89 28.27
luindex 6.83 61.12 38.39 22.81 31.64 30.86
lusearch 22.36 40.39 60.60 22.05 51.82 26.26

pmd 11.29 27.49 17.89 43.42 14.82 35.98
xalan 35.50 11.88 27.31 25.83 30.71 20.05

Average 23.45 31.38 26.27 40.30 26.94 34.44

Table 2. Prevalence of precise and extant scalar reference argu-
ments in the Dacapo benchmark suite [5], eclipse excluded (Arith-
metic mean of 10 compilation plans / benchmark).

are by definition scalars of reference type. The last two columns
show the respective percentages for all arguments, whether explicit
or implicit, i.e., the receiver. As can be seen, size reductions due
to additional information about an argument are frequent. In fact,
58.9 % of methods have at least one precise or extant argument.

3. Problem and Proposed Solution
The inlining heuristic of Jikes RVM, briefly described in Sec-
tion 2.2 above, has one conceptual flaw: It always reduces its size
estimate for the callee when one of its arguments is of a precise
type or pre-existent. It does so regardless of whether or not it is
likely that some indirect benefit will manifest itself when the callee
is inlined. For a callee which, e.g., simply stores its argument in
a field or even ignores it altogether, knowledge about the precise
type of said argument or about its pre-existence is worthless. In
other words, the existing inlining heuristic of Jikes RVM makes no
effort to predict whether the information about reference arguments
can actually be used to good effect; it simply applies some blanket
reductions to the callee’s size (cf. Table 1).

Our proposed heuristic provides a partial remedy to this con-
ceptual flaw: It makes a prediction based on information available
in the dynamic call graph: Only if there exists an edge in the dy-
namic call graph which suggests that a method will be called on
one of the callee’s arguments and if the information known about
that argument can be exploited, then inlining the callee should be
encouraged, e.g., by applying a size reduction.

For purpose of illustration, consider the situation in Figure 1
again. Assuming the class hierarchy depicted in Figure 3, the dy-
namic call graph will contain an edge B.n(C)→D.o() if the former
method calls the latter on its argument. However, such an edge may
also be present for other reasons, e.g., if B.n(C) calls said method
on a different instance. A heuristic that relies solely on call-graph

profiles to decide the problem A.m()
?
↢ B.n(D♯ <: C) will oc-

casionally operate under wrong assumptions. In the following, we
are thus careful to use the phrase “an edge suggests that a method
was called on the argument” when we codify the conditions under
which information about the argument can be exploited.

Precise-induced Edges In the previous example, the precise type
matched the edge’s target class. However, the situation is not al-
ways as simple as this: When the heuristic decides the problem

A.m()
?
↢ B.n(G♯ <: C) an edge B.n(C) → G.o() suggests an in-
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Figure 3. A class hierarchy with a virtual method o().

direct benefit whereas an edge B.n(C)→C.o() does not. This gives
rise to the following definition.

Definition 3.1. Given a method B.n(D♯ <: C) and a complete
dynamic call graph, an edge B.n(C) → C′.o() with D <: C′ is
called precise-induced iff (∄ E.o()) D <: E <:

̸=
C′.

In other words, if a method B.n(C) calls a method o() on its
argument of precise type D, then the call graph will show an edge
from B.n(C) to the first definition of o() found when traversing
the class hierarchy from D upwards. This edge is called precise-
induced.

Extant-induced Edges If the argument in question is extant rather
than precise, the above definition has to be modified accordingly;
the argument’s dynamic type can now not only be any subtype
of the argument’s static type but also, in certain cases, one of its
supertypes.

Definition 3.2. Given a method B.n(C♭) and a complete dynamic
call graph, an edge B.n(C) → D.o() with D <: C is called extant-
induced. Furthermore, an edge B.n(C) → C′.o() with C <: C′ is
also called extant-induced if (∄ C′′.o()) C <: C′′ <:

̸=
C′.

Note that both of the above definitions refer to a complete
dynamic call graph. Of course, in practice the dynamic call graph
is often incomplete. However, the adaptive optimization system [3]
of Jikes RVM only selects frequently executed methods for re-
compilation with the optimizing compiler. When the optimizing
compiler has an inline decision to make, it is therefore probable
that the callee has already been executed a number of times; thus,
a call-graph edge probably already exists.

If deciding an inlining problem A.m()
?
↢ B.n(C) our proposed

heuristic therefore attributes a size reduction only if the dynamic
call graph contains either a precise-induced or an extant-induced
edge targeting a method on the argument in question. If no such
edge exists, a positive decision of A.m() ↢ B.n(C) is unlikely to
result in further inlining.

However, even if further inlining takes place, this does not
always mean that a size reduction is warranted for. In particular,
non-virtual calls never require a guard to inline. Our heuristic
therefore consults the dynamic call graph to ensure that the source
of the (precise- or extant-induced) edge corresponds to either an
invokevirtual or invokeinterface instruction before it attributes the
corresponding size reduction (cf. Table 1). If the call was made
using a invokestatic or invokespecial instruction instead, inlining it
without a guard is already possible without additional information;
a size reduction is unwarranted for.3

3 Interestingly, in its method-size estimate (cf. Section 2.2), Jikes RVM
treats virtual and non-virtual calls as incurring the same cost.

4. Evaluation
We next answer several questions regarding our proposed heuristic:
What is the per-decision quality of the proposed heuristic and how
does it compare to the default heuristic? And what are the heuris-
tics’ effects on compile time, program time, and overall runtime?

Our evaluation uses the popular DaCapo benchmark suite (re-
lease 2006-10-MR2) [5], although the eclipse and chart bench-
marks occasionally had to be excluded for technical reasons. Un-
less otherwise noted, we use rigorous replay compilation [14] and
perform matched-pair comparisons with 10 compilation plans per
benchmark. To account for the influence of processor architecture,
all measurements were performed on two quite different machines:

• A 2004 single-core AMD Athlon 64 3200+ processor clocked at
2.2 GHz, with 64 KiB L1 data and instruction caches, 512 KiB
L2 cache, and 1024 MiB RAM running a 32-bit version of
GNU/Linux (Kernel 2.6.32).

• A modern 4-core/8-thread Intel Core i7-870 processor clocked
at 2.93 GHz with 4 × 32KiB L1 data and instruction caches,
4 × 256KiB L2 cache, 8 MiB L3 cache, and 4096 MiB RAM
running a 64-bit version of GNU/Linux (Kernel 2.6.32).

A production configuration of Jikes RVM (SVN revision
16061) was used, in which most VM code is compiled ahead-
of-time at the highest optimization level (O2). When compiling
the boot-image, which contains the VM’s code, we resort to the
default heuristic of Jikes RVM; only code compiled at runtime is
affected by our proposed heuristic. The VM’s heap size was fixed
at 512 MiB to reduce non-determinism due to garbage collection.

4.1 Per-Decision Quality of Inlining Heuristics
The heuristic proposed in Section 3 uses the notions of precise- and
extant-induced edges to predict whether a given method will call
another method on one of its precise or extant arguments. If this is
the case, it is likely that the latter method can be inlined as well. In
the following, we will evaluate how accurate these predictions are
in practice by comparing them with the actual inlining decisions
made by Jikes RVM’s (default) inline oracle.

Our evaluation records all inlining problems decided by the
default heuristic of Jikes RVM. Since our proposed heuristic never
causes more inlining than the default, basing evaluation of the
former on inlining problems encountered by the latter is reasonable.

Of all problems A.m()
?
↢B.n(D♯ <: C) and A.m()

?
↢B.n(C♭)

decided during the benchmark runs, we exclude those where the de-
fault heuristic decides not to inline: A.m() ̸↢ B.n(C). This is again
reasonable, as further inlining becomes obviously impossible when
there is no inlining in the first place. But if the default heuristic
does decide to inline, there are four cases to consider:

True positive (t+) The heuristic under evaluation correctly pre-
dicts further inlining suggestive of indirect benefits (cf. Sec-
tion 3): (∃ C′.o()) A.m() ↢ B.n(C) ↢ C′.o(), with a precise-
or extant-induced edge B.n(C) → C′.o().

False positive (f+) The evaluated heuristic incorrectly predicts
such further inlining.

True negative (t−) The evaluated heuristic correctly predicts that
no such further inlining occurs.

False negative (f−) The evaluated heuristic incorrectly predicts
that no such further inlining occurs.

By classifying each prediction made by the heuristic under eval-
uation, we can now assess their quality using four standard metrics
for information-retrieval systems shown in Figure 4: accuracy, F1-
measure, precision and recall.
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Accuracy =
t+ + t−

t+ + f+ + t− + f−
Precision =

t+
t+ + f+

F1-Measure = 2× Precision × Recall
Precision + Recall

Recall =
t+

t+ + f−

Figure 4. Standard metrics for information-retrieval systems.

The accuracy is the ratio of correct predictions to the number of
all predictions. The so-called F1-measure is the harmonic mean of
precision and recall, where precision measures how often further
inlining actually occurs when predicted by the heuristic and recall
measures how often further inlining was predicted correctly by the
heuristic when it actually occurs. The higher the precision, the less
likely it is for the compiler to inline a callee just because of an
unwarranted size reduction. The higher the recall, the more likely
it is that the compiler exploits all opportunities for further inlining.
For the proposed heuristic, low recall is caused by an incomplete
dynamic call graph.

Using these metrics we can compare the proposed heuristic with
the heuristic employed by the default inline oracle; the latter opti-
mistically “predicts” further inlining for all precise and extant ar-
guments. We also compare our proposed heuristic to a hypothet-
ical random heuristic, which predicts further inlining and conse-
quently awards size reductions with probability µ, which is the
overall probability with which further inlining along a precise- or
extant-induced edge actually occurs during benchmark execution.

Figure 5 summarizes the results for the three heuristics consid-
ered. The accuracy of the proposed heuristic is good, ranging from
89.94 % (jython) to 97.47 % (pmd). In fact, it is always better than
the random heuristic. Both the proposed and the random heuristics
outperform Jikes RVM’s inlining heuristic by a large margin; the
default heuristic’s accuracy is at most 19.93 %.

The high accuracy of the proposed heuristic is mainly due to its
high precision; whenever it predicts further inlining, such inlining
is very likely to actually occur. Both the default and the random
heuristic have equally low precision; the default heuristic always
predicting further inlining is as likely to be correct as simply pre-
dicting this fact with probability µ. The default heuristic’s low pre-
cision is also the reason for its low accuracy. In fact, its precision
and accuracy are exactly the same, as the heuristic never makes a
negative prediction—be it false or true negative.

In contrast to the proposed and random heuristics, however, the
default heuristic has perfect recall. As it always awards a size re-
duction for precise- or extant arguments, it never misses an oppor-
tunity to perform further inlining. But while recall of the proposed
heuristic is less than perfect, it is still much better than that of the
random heuristic, which is again µ.

To summarize, the quality of the proposed heuristic is high:
Both its accuracy and F1-measure are superior to the default and
random heuristic.

4.2 Performance Measurements
As we have shown in the previous section, our proposed heuristic
makes high-quality predictions. However, this does not necessarily
mean that it improves program time. The slightly lower recall in
particular may mean that our proposed heuristic misses important
inlining opportunities which the default heuristic would have ex-
ploited. In the following, we thus present a series of performance
measurements comparing both heuristics: the default heuristic of
Jikes RVM and our proposal.

The implementation of our proposed heuristic is deliberately
minimal. The presence or absence of precise- and extant-induced
edges only determines whether the respective size reduction is
awarded; all other reductions are awarded as before (cf. Table 1).

Performance with Replay Compilation The first set of measure-
ments has been conducted using replay compilation [14], a method-
ology to control the non-determinism inherent in modern VMs that
perform adaptive optimizations [3]. First, optimization decisions
made during an invocation of the benchmark are recorded in a so-
called compilation plan.4 Then, these decisions are replayed ac-
cording to the plan in a second invocation of the benchmark. This
invocation’s first iteration is called the mixed run, while all its other
iterations are called stable runs. As we are primarily interested in
the trade-off between program time and compile time, our perfor-
mance evaluation considers the mixed runs only.

Figure 6 shows the results for mixed runs of all benchmark’s
except eclipse, which is incompatible with replay-compilation, on
both the Athlon and Core i7 architectures.5 Each scatter plot depicts
the runtime of 20 runs conducted with 10 different compilation
plans using the two heuristics of interest: the default heuristic
of Jikes RVM and our proposed heuristic. In this matched-pair
comparison [14] every compilation plan is therefore used twice,
once by each heuristic. This ensures that the differences are indeed
due to the heuristics used rather than due to different compilation
advice. The fact that several benchmarks, e.g., antlr on the Athlon,
exhibit outliers serves to illustrate how important it is to consider a
large number of compilation plans in one’s evaluation.

The scatter plots of Figure 6 show compilation time on the
x-axis and program time, i.e., time spend outside of the just-in-
time compiler, on the y-axis. The diagonals thus represent overall
runtime; two runs placed on the same diagonal took the same time
to complete, even if the time spend within and without the compiler
differed. The closer a run is to the plot’s lower left corner, the
better its performance. In all plots, the distance of two diagonal
lines represents 2.5 % of the average runtime of the respective
benchmark when using the default heuristic. A higher line density
thus indicates larger relative differences between individual runs.

As can be seen in Figure 6, using the proposed heuristic gener-
ally decreases compile time. This effect can best be observed for
the bloat, hsqldb, and pmd benchmarks on the Athlon and for the
bloat and luindex benchmarks on the Core i7. In a few cases, alas,
this decrease in compile time is cancelled out by an increase in
program time, an effect that can most clearly be observed for the
pmd benchmark on the Athlon; the overall runtime stays almost
constant. In other cases like bloat, luindex, or hsqldb, however, in-
lining less but more purposeful does not have a detrimental effect
on pure program time; the decrease in compile time hence results
in a decrease in runtime as well.

Figure 7 summarizes the results of Figure 6 for both the Athlon
and Core i7 architectures by showing the per-benchmark speed-up.
This per-benchmark speed-up is the geometric mean of the 10 in-
dividual per-plan speed-ups. As can be seen, for no benchmark be-
sides jython does the proposed heuristic significantly degrade per-
formance. In fact, for six benchmarks (bloat, chart, fop, hsqldb,
luindex, and xalan) we observe a significant speed-up of up to
8.4 %. Also, the slowdown in the case of jython has to be taken
with a grain of salt: As this benchmark uses a custom classloader
which Jikes RVM does not handle properly during replay compila-
tion, about two-thirds of the edges in the dynamic call-graph pro-
file can never be matched as precise- or extant-induced edges; this
severely disadvantages the proposed heuristic.

Performance without Replay Compilation The proposed heuris-
tic relies on the dynamic call-graph profile to make its predictions.
Thus, the closer the profile matches reality, the better predictions

4 In Jikes RVM, each compilation plan consists of compiler advice, an intra-
procedural edge profile, and an inter-procedural dynamic call graph profile.
5 For technical reasons, results for chart are only available on the 32-bit
version of GNU/Linux, hence on the Athlon architecture.
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Figure 5. The per-decision quality of three inlining heuristics: the default heuristic of Jikes RVM ( ), the random heuristic ( ), and the
proposed heuristic ( ).

the heuristic can make. Now, one effect of replay compilation is that
the entire profile is available from the very beginning of the bench-
mark run. Compared to a non-replay run, during which the profile
is build up over time, having the entire profile available immedi-
ately may overestimate the heuristic’s effectiveness in a real-world,
non-replay scenario. We have therefore conducted all our perfor-
mance measurements also without replay compilation. Figures 8a
and 8b show the results, whereby the former mirrors Figure 6 and
covers those benchmarks for which replay compilation is supported
and the latter covers the eclipse benchmark. Here, each scatter plot
depicts 30 runs instead of the 20 runs per benchmark of Figure 6.
This increase in the number of runs per benchmark and heuristic,
from 10 to 15, compensates the higher degree of non-determinism
inherent in measurements made without replay compilation [14].

As was the case when using replay compilation, the proposed
heuristic significantly reduces compile time. Figure 9 shows the
speed-up attainable in a non-replay setting. On the one hand, more
time is spend compiling in such a setting, as methods may be re-
compiled several times. On the other hand, the dynamic call-graph
profile is less complete than in a replay-setting, which reduces the
proposed heuristic’s effectiveness.

Note that benchmarks run on the Athlon architecture account
for most of the speed-ups observed in this setting. This can be ex-
plain by the fact that on this architecture the ratio of compile time
to program time is higher; Jikes RVM spends a larger portion of its
time compiling. As the proposed heuristic works by reducing (un-
necessary) inlining and hence compile time, the overall speed-up is
higher on the Athlon than on the Core i7. Whether this bias can be
avoided by better tuning the just-in-time compiler towards a par-
ticular architecture [18] and how this in turn affects the proposed
inlining heuristic is beyond the scope of this paper.

5. Related Work
The cost-benefit inherent in inlining has been subject to much
research, of which we can give only a brief overview here.

Grove et al. [15] investigated how offline profiles can be used to
predict the receiver class at a given call-site; they then exploited this
information by implementing profile-guided inlining. The authors
also introduced the k-CCP (Call Chain Profile) model and found
that inlining becomes the more effective the more calling context
is available at a call-site. This observation is also at the core of this
work. However, where the implementation of Grove et al. merely
reaps the (indirect) benefits of further inlining, our work actively
seeks such situations.

Hazelwood and Grove [16] subsequently implemented a context-
sensitive inlining heuristic using online profiles. Their heuristic,
like ours implemented in Jikes RVM, significantly reduced both
compile time and code size at the expense of a minimal perfor-
mance degradation. Compared to our work, their approach is again
reactive rather than proactive.

Bradel and Abdelrahman [6] used offline profiles in the form
of traces to direct inlining decisions. As the collected traces may
span several methods, inline decisions can also account for the
benefits of further inlining. While this approach leads to improved
code quality, it substantially increases both compile time and code
size. Also, unlike re-using the dynamic call graph to direct inlining
decisions, collecting traces online would incur extra overhead.

Arnold et al. [4] modelled the cost-benefit trade-off inherit to in-
lining as a knapsack problem. Using this common framework, they
compared three inlining heuristics based on the static call graph
and the dynamic call graph with either node or edge frequencies.
Using offline profiles, the authors approximated the globally opti-
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Figure 6. The effect of the default ( ) and proposed heuristics ( ) on compile and program time. Each mark represents a benchmark
invocation with a single compilation plan (10 plans overall). The diagonal lines represent total runtime.
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Figure 7. Speed-up achieved when using the proposed heuristic
rather than the default heuristic of Jikes RVM on the Athlon ( )
and Core i7 ( ), respectively (Geometric mean of matched-pair
speed-up for 10 compilation plans).

mal solutions to their respective inlining problems and found that
a heuristic based on the dynamic call graph annotated with edge
frequencies works best. Our approach, which also relies on the dy-
namic call graph, differs from the heuristics presented by Arnold
et al. by taking indirect benefits into account; their heuristics only
model the trade-off between increasing code size and decreasing
the number of method calls.

Steiner et al. [20] compared a knapsack-based heuristic against
two aggressive heuristics which inline in a depth-first or breadth-
first fashion, respectively, until they reach an upper limit to either
inlining depth and code expansion. In the comparison, the authors
found that only the heuristic that performs a cost-benefit analysis,
namely the knapsack-based heuristic, consistently improved per-
formance. The authors remark, however, that “the hardest prob-
lem [. . . ] is calculating good estimates of the benefits and costs
of inlining [. . . ],” a problem partly addressed by our work.

Cavazos and O’Boyle [7] used genetic algorithms to automat-
ically tune Jikes RVM’s inlining heuristics. In a similar fashion,
Hoste et al. [18] used machine-learning techniques to automatically
tune a just-in-time compiler, including its inlining heuristic. Both
works report significant reductions in overall runtime. While highly
effective, automated tuning of heuristics relies on the availability of
useful features to the machine-learning algorithm. If a feature, e.g.,
the presence of call-graph edges suggestive of further inlining, is
not exposed to the algorithm, it simply cannot be taken into ac-
count. Our work is thus complementary to such approaches.

Judging a-priori whether inlining a method offers any indirect
benefits is difficult. Dean and Chambers [9] therefore proposed in-
lining trials, a technique in which the compiler experimentally in-
lines a method and keeps a record of how much information prop-
agated from caller to callee was actually used for further optimiza-
tions. If another decision has to be made to inline such a method,
these records are consulted to judge the indirect benefits possible
in the current context. Using this technique, the authors were able
to significantly reduce compile time with only minor increases in
program time.

Suganuma et al. [21] present a similar approach to judge the
benefits of specialization in a Java virtual machine: impact anal-
ysis. Here, at higher optimization levels the just-in-time compiler
performs a special, static dataflow analysis. This allows for special-
ization decisions which take the additional information about the
types and values of arguments and certain global variables into ac-

count. In contrast to the impact analysis of Suganuma et al., which
relies on prior compilation of the method in question by the opti-
mizing compiler, our inlining heuristic can already predict benefits
when the optimizing compiler compiles a method for the first time.
However, pushing a light-weight static analysis into Jikes RVM’s
baseline compiler might further improve the accuracy of our call-
graph-based heuristic.

Dean et al. [10] developed an algorithm to judge the benefits of
specialization in the Vortex compiler for Cecil. Like our heuristic,
their algorithm bases its judgement on methods called on so-called
pass-through arguments. Also, similar to our work, the judgement
is based on the program’s dynamic call-graph, which Dean et al.
gather in a separate profiling run. Together with dataflow informa-
tion about which arguments are indeed passed through, the Vortex
compiler decides whether to specialize with respect to a given ar-
gument or not. The main difference between their work and ours is
that between explicit specialization and the implicit specialization
offered by inlining.

Further inlining is not the only indirect benefit one can reap
when inlining a method; thus, the work by Shankar et. al [19] is
only one example of a wider range of research. In it, the authors
developed Jolt, a lightweight dynamic churn optimizer, which care-
fully guides inlining such that escape analysis becomes more effec-
tive and stack allocation of short-lived objects becomes possible.

6. Conclusions
In this paper, we have presented a heuristic which is able to better
exploit inlining’s indirect benefits by predicting when further inlin-
ing will be possible. To do so, our heuristic uses only information
that is readily available in many modern virtual machines, namely
an approximation of the dynamic call-graph; no static analysis or
speculative compilation is required. This heuristic is highly accu-
rate and can improve performance both in replay and non-replay
settings by reducing compile time and code size. At the same time,
its effect on code quality and hence program time is negligible.

This means, however, that the proposed inlining heuristic ipso
facto does not improve code quality. This is because it only dis-
courages inlining in cases where no indirect benefits due to further
inlining are to be expected; it does not encourage inlining above and
beyond what the original heuristic proposes. But being more con-
servative about one’s inlining decisions may reduce register pres-
sure and the number of instruction-cache misses. A detailed study
of these positive effects, however, is subject to future work.

The proposed heuristic operates under the assumption that
guardless inlining is the only indirect benefit caused by precise
or extant arguments. If no edge in the dynamic call graph sug-
gests that guardless inlining becomes possible, no size reduction
is awarded. The elimination of dynamic type checks (checkcast,
instanceof), however, is another indirect benefits that may manifest
itself if additional information about arguments becomes available.
Modelling this fact more accurately would require splitting the size
reduction into two parts: a static part which is always awarded and
which accounts for any type checks that might be eliminated and a
dynamic part which is awarded based on the heuristic proposed in
this paper.

Another way to further increase the heuristic’s accuracy requires
an enhanced dynamic call-graph profile: Whenever a method call is
recorded, the enhanced profiler would also record which argument
of the caller (if any) receives the call in question. This enhancement
would do away with the need to approximate the possibility of
further inlining through the notion of precise- and extant-induced
edges,6 albeit at the expense of some profiling overhead.

6 Some Java virtual machines, most notably Oracle’s HotSpot VM, do not
build a dynamic call graph; thus, they would require such an enhancement.
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Figure 8a. The effect of the default ( ) and proposed heuristics ( ) on compile and program time. Each mark represents a benchmark
invocation (15 invocations overall). The diagonal lines represent total runtime.
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