
The Cog Smalltalk Virtual Machine
writing a JIT in a high-level dynamic language

Eliot Miranda
Independent Consultant

San Francisco
eliot.miranda@gmail.com

Introduction
Cog is an extension of the Squeak VMMaker [1] vir-
tual machine framework for implementing Smalltalk
virtual machines. The framework implements virtual
machines in a subset of Smalltalk and allows their
incremental development and execution within the
Smalltalk IDE, and then translates the code to C to
produce a production VM.
Cog adds a just-in-time compiler for x86 to the exist-
ing interpreter. At this stage in its evolution Cog
produces a VM that runs language-intensive (rather
than library intensive) benchmarks from the com-
puter language shootout [2] at around 5 times faster
than the interpreter. While Cog’s code generation
and message send optimization techniques are not
novel, its plumbing of an x86 simulator into its
framework, which allows full simulation of gener-
ated machine code, is probably of some interest to
the VMIL community. The VM is also well-
modularised and extensible, as exemplified by re-
cently being applied to Newspeak [6].
Cog is fully open-source, released under the MIT
Squeak license. The author maintains a blog with
detailed articles on various components of the sys-
tem [7].
General Terms Virtual Machine Implementa-
tion, High-level language, dynamic language, just-
in-time compiler.

1. Overview
Cog is implemented within the Squeak VMMaker
package and translated to C using the package’s
Slang translator. Being a Smalltalk program, Cog is
evaluable within a Smalltalk environment and hence
allows incremental development and debugging of
most of the system. But to evaluate generated x86
machine code the framework is extended with an
interface to the core processor implementation in the
Bochs [3] IBM PC emulator, which is married to the
byte array object holding the heap and generated
code, and to variables in the Smalltalk interpreter
and JIT objects.
Cog was implemented in a commercial context, the
Qwaq/Teleplace1 [4] application of the Croquet [5]
virtual worlds system to business communication. In
this context, incremental delivery of increased per-
formance over the base interpreter and minimisation
of risk was a major requirement. Hence Cog
evolved in several stages, and forethought was given
to making major components pluggable to support
that evolution.
This paper follows the above sketch. We first cover
the Slang Smalltalk-to-C translator and its exten-
sions, going on to describe the processor simulation
system with Bochs at its core. The next two sections
then look at different aspects of modularity and ex-
tensibility in Cog. The last section presents a couple

1 The company was founded as Qwaq, Inc (see the left of a qwerty keyboard) and changed its name to Teleplace to avoid
offense; try selling Qwaq Forums to a medical establishment.

mailto:eliot.miranda@gmail.com
mailto:eliot.miranda@gmail.com

of cool hacks made possible by using Smalltalk and
then we conclude.

2. Slang
As described in [1] the VMMaker framework uses a
subset of Smalltalk that is easily translated to C. The
translator, called Slang, is a one-pass traversal over
the parse trees of methods in the framework,
straightforwardly writing out C code. This implies
no rich data structures, no Dictionaries (hash maps),
Sets or OrderedCollections (dequeues, stacks), only
Arrays, simple to:by:do: loops, and no polymor-
phism; each message in the framework must have
only one implementation.
The base Interpreter is monolithic, inheriting from
the object representation/heap/garbage collector Ob-
jectMemory. All messages are therefore to self.
Elements of this architecture were far too restrictive
for a JIT and the architecture was extended, by split-
ting the Interpreter from the ObjectMemory, and
keeping the JIT separate from these two. In addition
to this support for multiple classes, there is support
for record and pointer-to-record types which are used
extensively to implement data structures such as in
the Interpreter, a stack page of Smalltalk method ac-
tivations, or in the JIT, an abstract instruction, or an
entry on the simulation stack used to map stack byte-
code to register-based code.
The base Interpreter uses a ByteArray called memory
to model the object heap, using integer addresses in
the memory ByteArray as object references. In Cog
this memory ByteArray is extended with space for
stack pages holding method activations in the form
of stack frames, and with space for generated code.

3. Bochs
To evaluate generated x86 machine code the frame-
work is extended with an interface to the core proc-

essor implementation in the Bochs [3] IBM PC emu-
lator. This accesses data in the memory ByteArray,
and executes instructions in the generated code por-
tion of the memory ByteArray. Using Bochs is both
less work and doubtless provides faster execution
than implementing an x86 simulator in Smalltalk.
The Bochs x86 simulator is derived by taking the
core processor definition from Bochs, changing the
memory interface so that it fetches/stores from/to the
memory ByteArray and wrapping this up in a Squeak
VM plugin2 with a primitive interface whose re-
ceiver is an Alien3 for the Bochs C++ processor ob-
ject and whose arguments are commonly the memory
ByteArray and some read/write/execute limits. The
primitive interface comprises 6 methods for execu-
tion, single stepping, disassembly, initialization and
error message retrieval. The remaining methods ac-
cess the register state of the x86 represented by the
C++ object.
Machine code is generated into the “method zone”,
located low in the memory ByteArray. Correspond-
ingly there are structures in the memory object, such
as machine-code methods, that must be accessed
from the Smalltalk side of things, and hence proxy
objects are used to wrap addresses in the memory
object (see Figure 1 on page 6). These wrapper
classes are auto-generated from the classes that de-
fine the relevant ADTs, e.g. CogMethod defines the
ADT for a machine-code method header, generates
the C typedef in the Slang translation and generates
CogMethodSurrogate32/64 to access CogMethod
instances in the simulation memory (see appendix).
Accessing methods and variables in the interpreter,
such as the bulk of primitives that are not imple-
mented in machine code (window, file and operating
system interfaces, FFI, save/restore and complex
execution primitives such as perform: (Smalltalk’s
apply)), requires a way of mapping machine code

2 A Squeak VM plugin is a class implementing a set of primitives that either implement or provide an interface to some
useful functionality. It can be either statically or dynamically linked into the VM and is hence a modular extension to the
VM providing encapsulation and platform independence over an FFI based implementation. See [12].

3 An Alien is a wrapper for some external address along with a set of primitives such as longAt:put: for accessing external
memory relative to that address.

accesses to Smalltalk message sends. This is done
using illegal addresses. Each method and/or variable
that needs to be accessed from machine code is given
a unique illegal address and entered in a read and a
write dictionary mapping illegal address to evaluable
(either a Symbol or a Block) that can be used to ei-
ther fetch/store a variable or call a method. Bochs is
invoked to execute machine code until it hits an ille-
gal address, at which point the invocation primitive
fails and maps the Bochs exception into a Smalltalk
ProcessorSimulationTrap Exception subclass that
records the offending instruction, next instruction
address, the illegal address, and register source or
destination. The system simulator then handles
ProcessorSimulationTrap exceptions by looking up
the illegal address in the relevant Dictionary, evaluat-
ing it and continuing execution.
Execution of the simulator (see Figure 1 on page 6)
starts in Smalltalk, the interpreter being pure Small-
talk. But once the CoInterpreter has asked the JIT to
compile a method execution may continue in ma-
chine code, surfacing back up to Smalltalk on en-
countering an illegal address, or the VM being inter-
rupted. Use of single-stepping allows capturing ma-
chine instructions so that one may conveniently ex-
amine the previous N instructions on hitting a bug.

4. Modularity, Evolution and Mixed-
Mode Execution

Cog was implemented in a commercial context, the
Qwaq/Teleplace [4] application of the Croquet [5]
virtual worlds system to business communication. In
this context, incremental delivery of increased per-
formance over the base interpreter and minimisation
of risk was a major requirement. One unique chal-
lenge in implementing a high-performance Smalltalk
virtual machine is efficient access to contexts, Small-
talk’s first-class activation records [8][9]. Such a
machine must map activation records to stack
frames, to be able to apply conventional inline

cacheing techniques, which are focussed on call in-
structions. But the mapping must also allow modifi-
cation of the activation records, causing modification
or destruction of the associated stack frame as ap-
propriate. Such code is complex and Qwaq/
Teleplace management rightly wanted to speed de-
livery of improved performance by requiring that the
context-to-stack mapping machinery was realised
first in the context of a modified interpreter, without
having to wait for the development of the JIT. This
context-to-stack mapping StackInterpreter is typi-
cally about twice as fast as the original context-based
Interpreter for Smalltalk-intensive code. Further,
Qwaq/Teleplace negotiated a naive initial JIT code
generator for early delivery. This code generator has
a one-to-one correspondence between bytecodes and
generated code, hence every bytecode that pushes an
operand results in machine code that also pushes that
operand on the real stack.
Given the StackInterpreter it was natural to use it via
the CoInterpreter subclass4 which married the
context-to-stack mapping machinery, bytecode inter-
preter and primitive set to Cog’s JIT (called the Co-
git), providing a mixed execution model where code
may either be interpreted or compiled to machine
code and freely inter-called. Hence Cog evolved in
five stages, an extended bytecode set and new Small-
talk bytecode compiler that implements full closures
and hence enables context-to-stack mapping, a faster
context-to-stack mapping interpreter, a naive code
generator, a threading model supporting a non-
blocking FFI and a sophisticated code generator, and
is currently being extended with a more efficient ob-
ject representation and a garbage collector that sup-
ports pinning to serve the threaded FFI. This evolu-
tion has been enabled by keeping the VM modular
with forethought given to making things like the ob-
ject representation and bytecode set pluggable.
There are distinct advantages to the mixed execution
model. The Cogit can refuse to compile certain

4 Slang was extended to allow methods to be redefined in subclasses, with super sends being expanded during translation.

methods, especially extremely large ones that con-
sume too much code space. Such methods are typi-
cally class initializers and rarely run5; interpreting
them once typically consumes much less space and
is much faster than compiling and running them
once. The Cogit has a fixed size machine code zone,
which has good performance characteristics due to
its small working set size, and is also quick to scan
and update when, for example, redefinition of a
Smalltalk method in the IDE necessitates flushing of
associated machine code and inline caches. The Co-
Interpreter implements an extremely simple policy,
only compiling a method if it has less than a certain
number of literals and has been found in the first-
level method lookup cache. Hence Cog typically
compiles a bytecoded method to machine code on its
second invocation6, avoiding compiling any method
used only once (e.g. for initialization).
When the code zone fills up a reclamation is sched-
uled which throws away least recently used methods
up to a quarter of the space. In a pure JIT in order to
continue execution the VM may have to reclaim
code while attempting to edit that code (e.g. to add a
method to a polymorphic inline cache) which can be
extremely tricky, given that reclamation involves
compacting the space, relocating all methods in it.
But with the mixed mode model reclamation is per-
formed only at suspension points at the next avail-
able opportunity, providing significant simplifica-
tion.

5. Modularity and Extensibility
The first major extension of the VM was the imple-
mentation of a threading model, similar to that in the
Python VM, but using an extremely efficient locking
mechanism [10], where any number of native threads
can share the VM with only one owning the VM at
any one time. This is implemented in the CoInter-

preterMT subclass of the CoInterpreter, itself a sub-
class of StackInterpreter.
The second major extension was the implementation
of a stack-to-register mapping code generator that
avoids reifying operands on the actual stack by
maintaining a simulation stack during compilation
and only generating code to access an operand when
compiling a bytecode that consumes operands such
as a send or instance variable assignment. This sim-
ple technique may have been pioneered by Peter
Deutsch in the ObjectWorks 2.4 Smalltalk VM, but
was not described in the literature. It is similar to the
technique used in the Intel VTune Java JIT [11].
Also developed is a code generator that provides
support for adaptive optimization and speculative
inlining, by adding performance counters to code
generated for conditional branch bytecodes (which
provides basic block frequency information), and
code to reify inline cache state as Smalltalk objects.
Hence the Cogit hierarchy is

 Cogit
 SimpleStackBasedCogit
 StackToRegisterMappingCogit
 StackToRegisterMappingCogitChecker
 SistaStackToRegisterMappingCogit

where StackToRegisterMappingCogitChecker as a
test class that checks stack depths are correct at sus-
pension points, and Sista stands for Speculative In-
lining Small-talk Architecture.
The bytecode decode and generation scheme is plug-
gable; a bytecode set is defined by an Array of Cog-
BytecodeDescriptor instances that contain a message
selector to generate the bytecode (mapped to a func-
tion pointer in C), the number of bytes in the byte-
code, etc. Hence there is no monolithic central
switch statement in the compiler, and bytecode sets
should be easily changed, although to date this has

5 of course during development class initializers may be run often, but they may be evaluated only after redefinition, and
being evaluated on demand by the programmer their performance is typically not an issue.

6 The CoInterpreter will also compile to machine code if a backward branch bytecode (which occurs at the end of all
loops) is evaluated a consecutive number of times in the same method.

only been exercised in adding bytecodes for the
Newspeak implementation.
The object representation is also pluggable, all code
for generating object access being abstracted into a
separate hierarchy, currently with only two classes,
an abstract CogObjectRepresentation and its sole
subclass CogObjectRepresentationForSqueakV3
that implements the current Squeak object format. I
am just starting work on a new object representation
based on a scheme the author used in the 64-bit
VisualWorks implementation where object headers
contain indices into a class table rather than a full-
width pointer to a class object. This has space ad-
vantages but also advantages in inline caches, which
now contain constant class indices instead of class
pointers subject to movement by the garbage collec-
tor.

6. Clever Tricks
The utility of being able to use Smalltalk, a
scriptable dynamic language, to run queries during
simulation, for example to gather statistics from in-
line caches, should not be underestimated.

Preceding sections have been glib about the details
of simulation. One issue is integer overflow in C
and its absence in Smalltalk (which has bignum sup-
port). Hence the framework uses simulator sub-
classes to implement certain methods that reconcile
Smalltalk and C’s peculiarities and provide
simulation-only debugging code. For example,
 ObjectMemory methods for interpreter access
 isIntegerValue: intValue
 ^ (intValue bitXor: (intValue << 1)) >= 0

 ObjectMemorySimulator methods for simulation
 isIntegerValue: valueWord
 ^ valueWord >= 16r-40000000 and: [valueWord
<= 16r3FFFFFFF]

So CoInterpreter started life with a substantial sub-
class CogVMSimulator. When CoInterpreterMT was
added, I wanted to avoid maintaining two simulator
subclasses with essentially the same code. So
CogVMSimulator inherits from CoInterpreterMT and

at start-up, using reflection, arranges that all methods
implemented in CoInterpreter and overridden in Co-
InterpreterMT have an override in CogVMSimulator
that invokes either the CoInterpreter version or the
CoInterpreterMT version depending on CoInterpre-
terMTʼs cogThreadManager instance variable being
nil or non-nil. For example:
 CogVMSimulator methods for simulation switch
 initializeInterpreter: bytesToShift
 "Auto-generated by CogVMSimulator>>
ensureMultiThreadingOverridesAreUpToDate"

 ^self perform: #initializeInterpreter:
 withArguments: {bytesToShift}
 inSuperclass: (cogThreadManager
 ifNil: [CoInterpreter]
 ifNotNil: [CoInterpreterMT])
In adding threading the system needed to simulate
multiple processors. This was implemented by
wrapping the Bochs Alien with a proxy that essen-
tially implements only doesNotUnderstand:. The
doesNotUnderstand: method then checks the current
process and if it has changed, saves the register set
and switches it to that of the current process.

7. Conclusion
Cog is a new implementation of the Smalltalk-80
virtual machine for Squeak. It is a Smalltalk pro-
gram, providing incremental development and high-
level debugging, while it is a JIT, depending on ex-
ternal processor simulators to efficiently simulate
machine code execution. It is well modularised and
extensible and as such provides a sound basis for the
evolution of Smalltalk execution engines. It is in
active development and is the standard execution
engine for the Squeak and Pharo Smalltalk dialects
and for the Newspeak programming language.

Acknowledgements
I wish to thank Andreas Raab and Greg Nuyens ex of
Qwaq/Teleplace, where Cog started and matured,
and Yaron Kashai at Cadence Design Systems, Inc,
where I have the opportunity to continue Cog’s evo-
lution and apply it to Newspeak.

run-time linkage
< 3kb

machine-code
methods
e.g. 1Mb

stack pages
e.g. 32kb

Smalltalk object
heap

 e.g. several Mb

free space

proxy instances
created as necessary
wrap addresses/indices
within memory ByteArray

memory ByteArray

CogMethodSurrogate32

CogMethodSurrogate32

Figure 1. Cog simulation architecture

NewCoObjectMemory

CoInterpreter

StackToRegister-
MappingCogit

CogObject
Representation
ForSqueakV3

major simulation objects
set-up on initialization

CogMethodZone

Cogit

CogStackPageSurrogate32

References
[1] Dan Ingalls, Ted Kaehler, John Maloney, Scott
Wallace, and Alan Kay , “Back to the future: the
story of Squeak, a practical Smalltalk written in it-
self”, Proceedings of the 1997 ACM SIGPLAN con-
ference on Object-oriented programming systems,
languages and applications, pp 318–326, ACM, 1997

[2] computer language benchmarks game
http://shootout.alioth.debian.org/

[3] Bochs, http://en.wikipedia.org/wiki/Bochs,
http://bochs.sourceforge.net/

[4] Qwaq/Teleplace, http://www.teleplace.com/

[5] Croquet,
http://en.wikipedia.org/wiki/Croquet_Project

[6] Newspeak, http://newspeaklanguage.org/

[7] Cog blog, http://www.mirandabanda.org/cogblog

[8] http://www.mirandabanda.org/cogblog/2009/
01/14/under-cover-contexts-and-the-big-frame-up

[9] Eliot Miranda, “Context management in Visual-
Works 5i”, OOPSLA '99 Workshop on Simplicity,
Performance and Portability in Virtual Machine De-
sign, November 1999, Denver, CO.
http://www.esug.org/data/Articles/misc/oopsla99-con
texts.pdf

[10] David Simmons, private communication.

[11] Ali-Reza Adl-Tabatabai, Michael Cierniak,
Guei-Yuan Lueh, Vishesh M. Parikh, James M.
Stichnoth, "Fast, Effective Code Generation in a
Just-In-Time Java Compiler", In Proceedings of the
SIGPLAN `98 Conference on Programming Lan-
guage Design and Implementation, pp 280-290.
Published as SIGPLAN Notices 33(5), May 1998.

[12] Tim Rowledge, “A Tour of the Squeak Object
Engine”,
http://www.google.com/search?q=%22A+Tour+of+th
e+Squeak+Object+Engine%22+filetype%3Apdf

Appendix - CogMethod code
VMStructType
 subclass: #CogBlockMethod
 instanceVariableNames:
 'objectHeader homeOffset startpc padToWord
 cmNumArgs cmType cmRefersToYoung
 cmIsUnlinked cmUsageCount stackCheckOffset'

CogBlockMethod
 subclass: #CogMethod
 instanceVariableNames:
 'blockSize blockEntryOffset methodObject
 methodHeader selector'

CogMethod auto-generated typedef:

 typedef struct {
	 sqInt	 	 objectHeader;
	 unsigned	 cmNumArgs : 8;
	 unsigned	 cmType : 3;
	 unsigned	 cmRefersToYoung : 1;
	 unsigned	 cmIsUnlinked : 1;
	 unsigned	 cmUsageCount : 3;
	 unsigned	 stackCheckOffset : 16;
	 ushort		 blockSize;
	 ushort		 blockEntryOffset;
	 sqInt	 	 methodObject;
	 sqInt	 	 methodHeader;
	 sqInt	 	 selector;
 } CogMethod;

Sample auto-generated CogMethodSurrogate32 meth-
ods:
 cmNumArgs
 ^memory unsignedByteAt: address + 5

 cmType
 ^(memory unsignedByteAt: address + 6) bitAnd: 16r7

 cmType: aValue
 self assert: (aValue between: 0 and: 16r7).
 memory
 unsignedByteAt: address + 6
 put: ((memory unsignedByteAt: address + 6)
 bitAnd: 16rF8) + aValue.
" ^aValue

 cmRefersToYoung
 ^(((memory unsignedByteAt: address + 6)
 bitShift: -3) bitAnd: 16r1) ~= 0

 methodObject: aValue
 ^memory unsignedLongAt: address + 13 put: aValue

http://shootout.alioth.debian.org
http://shootout.alioth.debian.org
http://en.wikipedia.org/wiki/Bochs
http://en.wikipedia.org/wiki/Bochs
http://bochs.sourceforge.net
http://bochs.sourceforge.net
http://www.teleplace.com/
http://www.teleplace.com/
http://en.wikipedia.org/wiki/Croquet_Project
http://en.wikipedia.org/wiki/Croquet_Project
http://newspeaklanguage.org
http://newspeaklanguage.org
http://www.mirandabanda.org/cogblog
http://www.mirandabanda.org/cogblog
http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts-and-the-big-frame-up
http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts-and-the-big-frame-up
http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts-and-the-big-frame-up
http://www.mirandabanda.org/cogblog/2009/01/14/under-cover-contexts-and-the-big-frame-up
http://www.esug.org/data/Articles/misc/oopsla99-contexts.pdf
http://www.esug.org/data/Articles/misc/oopsla99-contexts.pdf
http://www.esug.org/data/Articles/misc/oopsla99-contexts.pdf
http://www.esug.org/data/Articles/misc/oopsla99-contexts.pdf
http://www.google.com/search?q=%22A+Tour+of+the+Squeak+Object+Engine%22+filetype%3Apdf
http://www.google.com/search?q=%22A+Tour+of+the+Squeak+Object+Engine%22+filetype%3Apdf
http://www.google.com/search?q=%22A+Tour+of+the+Squeak+Object+Engine%22+filetype%3Apdf
http://www.google.com/search?q=%22A+Tour+of+the+Squeak+Object+Engine%22+filetype%3Apdf

