
Virtual machines should be invisible

Stephen Kell
Department of Computer Science

University of Oxford
stephen.kell@cs.ox.ac.uk

Conrad Irwin∗

Corpus Christi College
University of Cambridge

ctji2@cantab.net

Abstract
Current VM designs prioritise implementor freedom and perfor-
mance, at the expense of other concerns of the end programmer.
We motivate an alternative approach to VM design aiming to be
unobtrusive in general, and prioritising two key concerns specifi-
cally: foreign function interfacing and support for runtime analy-
sis tools (such as debuggers, profilers etc.). We describe our expe-
riences building a Python VM in this manner, and identify some
simple constraints that help enable low-overhead foreign function
interfacing and direct use of native tools. We then discuss how to
extend this towards a higher-performance VM suitable for Java or
similar languages.

1. Introduction
Virtual machines exist to support language implementations.1

As Cliff Click memorably summarised at last year’s workshop
keynote, a modern virtual machine (VM) is packed with services,
covering nearly everything that interests a language implementor:
code generation, memory management, linking, loading, optimisa-
tion, profiling, and more.

End programmers care about languages and libraries, not about
virtual machines. While the languages a VM supports can bring
valuable abstractions to the programmer, virtual machines them-
selves bring costly distractions. Each class of VM brings its own set
of invocation interfaces, configuration mechanisms, foreign func-
tion interfacing (FFI) conventions, and suite of tools for debugging
and profiling. Developers are familiar with VMs because their pe-
culiarities are entangled with practicalities of various languages.
Ideally, however, VMs would be invisible: they would exist as li-
braries silently supporting the languages and libraries required by
programmers, as unobtrusively as possible.

In this paper we argue that VMs may be made far less obtru-
sive than they currently are. Our conception of an “invisible” VM
is neither fully achievable nor precisely defined, but is intended to
draw attention to a general phenomenon: that the concerns of end
programmers fail to align with those of implementors. Implemen-
tors are usually motivated to build a system which executes a single

∗Now with Rapportive, Inc.
1 We consider this one of two necessary properties of VMs. The other is that
they define some representation of executable code.

[Copyright notice will appear here once ’preprint’ option is removed.]

language (or a suite of benchmarks) as fast as possible. By contrast,
end programmers want a system which isfast enough(which varies
according to deployment scenario), which lets them analyse their
code using familiar and powerful tools, and which lets them re-use
whatever existing code will shorten their task.

For most of this paper we focus on two specific issues where
current VMs are especially obtrusive: foreign function interfacing
and run-time tool support. By the latter, we refer to debuggers, pro-
filers, race detectors and similar dynamic analysis tools. For the for-
mer problem, our goal (1) is to give programmers the ability to treat
language as aper-function implementation choice, with negligible
interfacing effort in most common cases. For the latter, our goal (2)
is a design that bestows on existingwhole-program analysis tools,
given only minor modifications, a first-class understanding of code
running on our VMs.

Our approach is to consider a minimal set of “reasonable con-
straints” on VM authors, in the form of conventions and skeleton
structures, that can allow cooperation across native–VM and VM–
VM boundaries. This includes sharing of code, data and metadata,
and a shared metamodel. Where possible, we “extend and embrace”
existing facilities in operating systems and native-code compilers in
preference to reinventing them at the VM level. By contrast, current
designs have arisen from giving implementors free rein to reinvent,
customise and optimise.

Specifically, this paper presents the following contributions.

• We describe our efforts implementing the Python language in
invisible fashion, detailing various techniques for minimising
FFI overhead and cooperating with debugging tools.

• We generalise these experiences to identify three design invari-
ants: supporting linkage, data representation, and runtime meta-
data. Together these allow VMs to share a core object model
and descriptive framework with native code, while retaining
freedom to support diverse source languages, intermediate rep-
resentations, and code generation.

• We discuss the evolution of our design towardswhole-program
dynamic optimisation, arguing that the wealth of code trans-
formations within modern VMs should be broken out into a
system-wide service integrated into the dynamic linker.

2. Building an invisible Python
Predating the grandiose ideal of invisible VMs, our original goal
was to build an implementation of our chosen dynamic language,
Python, which could be used to write scripts against native libraries
interactively and dynamically. Whereas conventional wisdom was
that interfacing with native libraries required glue code, generated
either from annotated header files (the approach of Swig [1]) or
metaprogramming (as with other tools such as the approach of
Boost.Python), we considered how to make our implementation
less obtrusive by dispensing with this step.

1 2011/10/3

typedef struct buffer_s { – data type definition
char* string;

unsigned int length;

unsigned int used;

} Buf;

Buf* buffer_new(); – creates an empty buffer
/* ... + more calls to get/put data into the buffer... */

/* Using CPython (but not Parathin) we would have to write: */

static PyObject* Buf_new(– constructor function
PyTypeObject* type, PyObject*

args, PyObject* kwds) {

BufferWrap* self;

self = (BufferWrap*)type-> – allocate type object (1)
tp_alloc(type, 0);

if (self != NULL) {

self->b = new_buffer(); – call underlying function (2)
if (self->b == NULL) {

Py_DECREF(self); – adjust refcount (3)
return NULL;

} }

return (PyObject*)self; }

Figure 1. Example API and a now-redundant CPython wrapper

2.1 Parathon

Our insight was that compiled-generated debugging information
necessarily offers descriptions of native libraries’ interfaces at run
time. The burden of interpreting native objects could be shouldered
by the interpreter itself, dynamically interpreting this information
much like a debugger, rather than by ahead-of-time glue coding.
We adopted the DWARF format [6], de factostandard on Unix
platforms, and include a brief introduction as an Appendix.

The result was Parathon, an implementation of a usable subset
of Python which understands two kinds of object: those it created,
described by an internal metamodel, and those created by native
code, described by DWARF. Garbage was collected by the con-
servative Boehm collector [2], coexisting well with the C library’s
heap.

Numerous limitations remained: a Pythonic rendering of func-
tions’ output parameters was impossible without extra annotation;
lists and arrays remained largely incompatible; Pythonic structural
treatment of objects was conspicuously unsupported when making
native calls. However, Parathon was sufficient to prove the con-
cept of supporting native Python coding using debugging informa-
tion. Fig. 1 show a simple C API that became an early test-case,
and the CPython wrapper code that would ordinarily be used. In
Parathon, our interpreter performs these operations, or their ana-
logues, without any such direction, using only the DWARF informa-
tion: a DWARF database replaces explicitly managed type objects
(comment 1); underlying functions are called throughlibffi2 (2),
and garbage collection makes reference count adjustments unnec-
essary (3). Arguments are extracted directly from the calling stack
frame, and marshalling is either unnecessary or inferred by com-
paring DWARF types. Fig. 2 shows a sample session, which runs
without any wrapper code generation.

However, Parathon was not entirely satisfactory. There was no
way to debug code at the Python source level. Backtraces did not
exhibit the Python call stack. Internally, a lot of complexity derived
from the split between the two kinds of object. Passing callbacks to
native code involved allocating closures generated bylibffi, but it
was not clear when these could be deallocated. Native objects were
not first-class: for example, Python-style dynamic field insertions
or removals could not be performed on them. To build a proper
Python without huge escalation in complexity, a more uniform
approach was required.

2 http://sourceware.org/libffi/

>>> import c – ensure libc (+DWARF) loaded
>>> s = stat() – construct a stat object
>>> stat("/etc/passwd", s) – call through libffi
>>> print s

{ .st_dev = 42, ... (snipped) } – access fields using DWARF
>>> def bye(): – defining a Python function
... print "Goodbye, world!"

...

>>> atexit(bye) – construct libffi closure
>>> import m – import another library
>>> print log2(s.st_size) – call some more functions
10.6465587102

>>> exit(0)

Goodbye, world!

Figure 2. A trivial Parathon session

// original Parathon version −− ”standard design” ց
ParathonValue∗ FunctionCall :: evaluate(ParathonContext& c)
{ return call function (this−>base phrase−>evaluate(c),

this−>parameter list−>asArgs(c)); }

// less obtrusive DwarfPython version
val FunctionCall :: evaluate () // ← context is the process stack
{ return call function (this−>base phrase−>evaluate(),

this−>parameter list−>asArgs()); }

Figure 3. Using process context as interpreter context

2.2 Towards DwarfPython

Our next insight was that the same DWARF metamodel used to de-
scribe native code and its data could also describe Python code and
its data. Moreover, the dynamism of the Python language could
be supported modern operating systems’ and compilers’ existing
debugging infrastructure. (Any gaps in this would also be weak-
nesses encountered during debugging, hence worth fixingwithin
DWARF). In other words, Python’s main distinction is not its ma-
chine model but its language semantics, and this can be isolated
within our Pythoninterpreter, where it is invisible to other code in
the process—Python becomes an implementation detail that can be
hidden inside a function’s implementation.

One illustration of the shift from Parathon to DwarfPython is
in its notion of execution context. Like many interpreters, Parathon
threads an environment and other shared state through its internal
calls, by aParathonContext* pointer. In DwarfPython, there is no
such environment; to a first approximation, “the process context
is the context”.3 The local name environment is discovered by
examining the stack, looking up the DWARF information for the
current frame, and discovering the bindings recorded for frames of
this type. Fig. 3 illustrates this contrast.

Another key difference is our notion of data. In Parathon, we
had a classParathonValue representing all objects in the program,
comprising 9 fields and 25 methods, andParathonValue* pointers
were ubiquitous. When modifying Parathon towards DwarfPython,
one of our first changes replaced this withtypedef void Parathon-
Value;—instead of defining our own notion of object, now an “ob-
ject” is simply the referent of any pointer, and we rely on run-time
availability of debugging information to support interaction with
these objects.

A key property of the DWARF metamodel is its inherent flexi-
bility, arising from the need to accommodate diverse compilers and
peculiar architectures. This allows it to accommodate quirky struc-
tures, such as noncontiguous objects and functions with multiple
start addresses, which turn out to prove useful. Most importantly,
however, DWARF is understood by debuggers and other tools, so
by maintaining a dynamic metamodel of our program as it exe-

3 The only significant exception is the list of top-level imported namespaces.

2 2011/10/3

struct ellipse {

double maj;

double min;

struct point {

double x, y;

} ctr;

}

1.0

my_ellipse

maj

ell_centre

ctr

-1

8

x

y

1.5

1.0

my_ellipse

maj

min

ctr -1

8

x

y

1.5min

Figure 4. Viewing tree-structured objects as heaps

cutes, these tools are able to understand our program’s state with
only minor modifications.

2.3 Unifying object models (and metamodels)

A key property of our design is that it unifies the “native” object
model with that adopted by a VM (DwarfPython in this case). It
does so using several techniques, and these also contribute towards
the debuggability of DwarfPython using native tools.

Native entry points All functions defined in Python have one or
more native entry pointsgenerated for them. This makes them
indistinguishable from native functions in a backtrace (assuming
that symbols can be located—we discuss this in§3.2). In fact,all
callsmade by our interpreter, regardless of target, are implemented
the same way: usinglibffi to call a native entry point.

Heap instrumentation We instrument the C library’s allocator to
record the allocation site of each heap block. Using heuristics, we
map this to the DWARF type allocated by a particular site.4 This is
sufficient to recover a precise DWARF description of dynamically
allocated objects, without relying on imprecise static type infor-
mation. For objects allocated by Python, type information (not the
allocation site) is stored directly in the heap metadata, but treatment
is otherwise similar.

Tree-structured object storage Python has an atomic notion of
objects, where substructure is pushed out into the heap using ref-
erences to other objects. By contrast, the native world, exemplified
by C and C++, adopts a more general model where objects are tree-
structured: they may be contained recursively within another ob-
ject. We unify these models by considering a tree-structured object
to contain implicit references to its subobjects. In languages with a
Python-like flat object model, these fields have the semantics (but
not the representation) of read-only pointers to the contained ob-
jects. This means our Python implementation must hide the dis-
tinction between these “implicit pointers” and the usual kind. Fig.
4 illustrates the two views.

2.4 Making it dynamic

Debugging implements read-only dynamism over native objects,
but mutability of those objects is lacking. (This is essentially the
same problem as both edit-and-continue debugging and dynamic
software update.) DwarfPython uses some additional techniques
and runtime infrastructure to fill this gap. These aspects are a work-
in-progress. (Henceforth in the paper we do not claim a working
implementation of systems we describe, unless stated otherwise.)

Dynamic DWARF information Just as dynamic and reflective
languages keep amutablemodel of their own objects’ structures,

4 These could more properly be implemented as an extension to compiler-
generated DWARF information, perhapsDW TAG allocation site,
recording the source-level type allocated by a particular call in the text.
This would also allow debuggers to perform dynamic type identification.

so DwarfPython keeps a mutable database of debugging informa-
tion. To accommodate dynamic code definition, we require a pro-
tocol much like that for notifying debuggers of code generated by
a JIT compiler5, notifying the debugger of accommodate dynamic
updates to the available metadata. We have developed a cleaner ap-
proach to this than current protocols, and describe it in§3.2. To
allow per-object layout changes, such as field additions and re-
movals, data types are treated in a copy-on-write fashion: modifi-
cations to an object’s schema fork its descriptive information. This
allows sharing in the common case, but allows unique objects to be
treated uniformly.

Non-contiguous objects To support field addition even on na-
tive objects, we must supporttied storage. This is separately al-
located heap storage whose lifetime is linked with that of a pre-
existing object. Tying to manually-managed heap objects is eas-
ily implemented by interposing onfree(). For GC’d heap objects,
some cooperation with the collector may be required to prevent
early reclamation of parts of an object (since there is no reference
from the tied-to object to later-added storage). We can tie storage
to stack allocations by redirecting their on-stack return address to
a special handler. Since DWARF allows object locations to be non-
contiguous, the resulting object layouts remain describable.6

DWARF extensions DWARF is not always expressive enough for
our needs. One example is source code locations: DWARF encodes
a mapping from program counters to source code coordinates, but
this is insufficient since any location in the interpreter might map
to any Python source file. A small extension to DWARF solves
this by effectively pushing additional arguments (in our case the
current AST node pointer) into the line-number lookup key. An-
other extension is required to capture output parameters written
through stack pointers. In general, this kind of DWARF extension
(which we envisage exploiting through programmer-supplied an-
notations) invariably helps debugging use-cases too. For example,
an extended line-number lookup assists with source-level debug-
ging across code generators (e.g. generalisingyacc’s use of#line
directives), while capturing output parameters enables more mean-
ingful “value returned” reports when stepping through a function
exit.

3. Generalising the approach
DwarfPython is an ongoing effort, but seems promising enough that
we may wonder whether it transfers to other settings. We consider
a Java-like setting. Clearly, the same benefits of a low FFI coding
overhead and native debuggability could be useful here. This raises
several questions which we consider in this section.

• What are the principles underlying the approach?

• What generic shared infrastructure is required?

• How can we deal with the constrained object models offered
by Java-like languages, e.g. the requirement that each object
implements a monitor and a suite of virtual calls? Can we
share the resulting objects across VM–VM boundaries? What
happens to statically-enforced invariants on such objects?

• What are the implications for garbage collection? Can we
still obviate the need for FFI code in the presence of higher-
performance, less conservative garbage collection?

5 A notable example is the LLVM–gdb jit debug register code proto-
col, http://llvm.org/docs/DebuggingJITedCode.html
6 Another implementation of non-contiguous objects is virtualinheritance
in C++, although lacking thegradualandobliviousproperties of ours.

3 2011/10/3

• What are the implications for traditional (dynamic) optimisa-
tions done by VMs? Can we optimise code across VM–VM
and VM–native boundaries?

3.1 Principles

In essence, the whole design of DwarfPython rests on a few simple
invariants.

Invariant 1. There is a shared concept of functions.

This is embodied in the fact that all functions have at least one
native entry point. Functions arenamed, belong to aloadedmod-
ule, and may have multiple entry points corresponding to alterna-
tive calling conventions (such as C versus Pascal versusfastcall).
There is no separate concept of “foreign” functions.

(Confusingly, “foreign” and “native” are often used synony-
mously. We will use “native” to mean code compiled ahead-of-time
to the host architecture, and “foreign” as a relative term: to a given
VM, both native code andotherVMs’ code are foreign.)

Multiple entry points may arise not only from alternative calling
conventions, but alternative signatures (such as pass-by-reference
or pass-by-value of a given argument) and contracts (such as “arg0
is not null” or “arg1 points to at least aWidget”). Multiple signa-
tures and contracts accommodate differing expectations of diverse
callers. Dynamic code naturally accepts arguments by reference,
using this run-time indirection to dynamically discover the con-
crete objects pointed to, and assuming minimal precondition (in-
stead raising exceptions dynamically when errors occur). Static-
typed and/or optimised callers, by contrast, may wish to pass ar-
guments immediately on the stack (for speed) and to call through
a faster path which elides dynamic checks on the strength of static
reasoning (such as Java-style bytecode verification enforcing type
bounds on particular arguments). Our approach relies on dynami-
cally generating distinct entry points to suit such diverse callers.

Invariant 2. There is a shared descriptive metamodel spanning
native code and all VMs.

This is embodied in our pervasive use of DWARF, and is nec-
essary for tool support to span VMs and native code. It is also an
enabler of the final invariant.

Invariant 3. An implementation of a particular language on a
particular VM will define mappings between its data types and their
representations in the common DWARF-based metamodel.

This is an obligation on language implementations, in order
to preserve the usefulness of a shared metamodel. In the Python
case, the mapping is straightforward, since essentially any native
object may be interpreted as a Python object (modulo the nontrivial
treatment of tree-structured objects). We must consider how to
apply our approach to more constrained scenarios, e.g. in Java
wherejava.lang.Object brings certain requirements.

3.2 Shared infrastructure

Each of our invariants is maintained by some piece of run-time
infrastructure. Encouragingly, each piece generalises from some
familiar infrastructure.

Dynamic loader The first invariant implies some run-time ser-
vice for tracking what code is loaded. This already exists; it is
the dynamic loader provided (essentially) by the operating system,
such aslibdl on Unix platforms. We extend this in the same spirit
as other extensions, such asdlvsym() (which adds symbol ver-
sioning on GNU and Solaris systems). Ourdlcreate(), dldestroy()
anddlbind() calls allow guest VMs to dynamically manage named
“objects” containing entry points. We also define a four-argument
dldsym analogous todlsym() but providing also for a token de-
scribing calling convention and signature requirements, and for

multiple namespaces. This extended dynamic loader obsoletes the
ad-hoc protocols for registering dynamically generated code as de-
scribed in§2.4, since debuggers already track dynamic changes to
the link map ondlopen() anddlclose() events; our extensions gen-
eralise this support in minimally invasive fashion.7 We have an ini-
tial prototype oflibld for GNU/Linux which can create new objects
with a fixed-size text segment and dynamically populate them (us-
ing Linux-specificlibdl options). This is sufficient for backtraces
to show symbols for dynamic code. (A full implementation would
relax the fixed-size constraint, likely requiring a modifiedld.so.)

Metadata interface We have described DwarfPython’s use of
heap instrumentation and run-time debugging information to un-
derstand the running program. Our core interface for this is im-
plemented by a librarylibpmirror (mostly developed for an earlier
project). As its name suggests, this library conforms (mostly) to
the design principles ofmirrors [4], but reflects a whole process
rather than a single VM. It is separately encapsulated from the pro-
cess it describes; like DWARF debugging information generally, is
stratified in that it may be omitted from processes not requiring it;
and inherits the DWARF metamodel’s fairly direct structural cor-
respondence with the code it models. (This meanslibpmirror is a
cross-language reflection facility, although predictably, it only uni-
fies multiple languages to the extent that DWARF does, which is
limited—see the Appendix.)

Memory infrastructure For tracking heap metadata, we have
implemented a fast associative data structure called amemtable,
which resembles a hash table but uses avery large linear region
of lazy-committed virtual address space, rather than an array in-
dexed by low-order hash bits, as its primary look-up. This exploits
underlying virtual memory hardware’s implementation of sparse,
clustered address-keyed mappings; it is both more space-efficient
and faster than a hash table in our experience.8 Entries are chained
by threading a list through heap blocks (but could be kept less inva-
sively in a separate shadow heap, or more efficiently in reclaimed
malloc header space). Chains are short since each lookup entry
covers a small (1KB) region of address space. Memtables are also
used for trackingtied storage regions; a small librarylibmemtie
provides a runtime interface for this, and adds the necessary in-
strumentation to the host C library’sfree() call (but currently no
collector cooperation, cf.§2.4).

Language implementations The third invariant is handled by the
language implementations themselves. The approach of mapping
languages’ data-types to and from the shared metamodel is what
allows separate VMs to share data. Rather than marshalling data
between separate objects, as done by traditional FFI wrapper code,
we can use support for non-contiguous objects to dynamically ex-
tend objects with additional data required to satisfy per-language
requirements. We consider this in more detail in the next subsec-
tion.

3.3 Object layout, and other constraints

In contrast to Python, languages such as Java place specific require-
ments on objects: every object owns a monitor and holds a vtable
pointer (or other means to dispatch a particular set of calls). It is
the language implementation’s responsibility to resolve these re-
quirements by generating a hybrid layout. As with field addition

7 We note that standard library interfaces to code loading, such as classload-
ers in Java, may fulfil three distinct functions: dynamic loading (including
from network and other disparate sources), namespacing, andrun-time code
transformation. Only the first two of these are handled by ourlibdl exten-
sion; the third, being a metaprogramming facility, is best handled in VMs’
code generation subsystems.
8 We hope to describe this experience in a future paper or technical report.

4 2011/10/3

1.5

1.0

my_ellipse

maj

min

ctr -1

8

x

y

vtable

mon

base

vtable

mon

base

base object

allocated by

native code

extensions constructed by Java VM after

receiving object

pointer to ctr as a

java.lang.Object

Figure 5. Language implementations may extend objects

in Python, these may be noncontiguous by exploiting tied stor-
age. This results in object layouts akin to C++ virtual inheritance,
but constructed lazily.9 Fig. 5 illustrates this for our ellipse data-
type being made Java-accessible. Two logicalObject instances re-
sult, because of the internal tree structure, but we consider these
one single non-contiguous tree-structured object. This extension is
bootstrapped by the entry point of “most liberal” contract (§3.1):
objects received through this code path are dynamically checked
and extended as necessary, whereas a more restricted entry point
assumes that this has already happened.

Since Java has a nominal typing, interfaces for foreign objects
will have to be generated at compile-time. This may be done trans-
parently from the user, given a Java compiler which can locate and
load debugging information and map it to Java classes and inter-
faces, which is intended by Invariant 3.

Language implementations are also concerned with selecting
which function to call, i.e. with dispatch. Dispatch occurs through
data structures; we consider these structures logically part of an
object layout. Moreover, their contents may logically be defined
by queries over the DWARF metamodel. For example, “the vtable
for classC contains all functions declared lexically withinC, left-
merged with like-signature methods in inherited classes, transi-
tively, excluding methods with thefinal attribute”. Although this
elides some details (e.g. allocation of vtable slots), in general such
queries can embody the overriding rules of a particular language,
while subtly separating them from the data structure’s core def-
inition. Imagine that the debugging information for ourellipse
data type lexically includes some nonvirtual C++ method declara-
tions. Our Java query would populate a vtable with these meth-
ods, whereas in C++ these calls would be early-bound. (This seems
reasonable in preserving the dynamism trade-offs of different lan-
guages, but arguably weakens encapsulation by risking misuse of
the originalellipse implementation. We would welcome discussion
of this issue in the workshop.)

We discussed the illusion of internal references within tree-
structured objects in§2.3. In Python this entailed run-time overhead
to distinguish an implicit pointer from a stored field. In languages
with nominal subtyping it incurs no such overhead because the
distinction is apparent statically in the defining type’s layout.

3.4 FFI coding and garbage collection

As in DwarfPython, our design pushes the load of foreign function
interfacing away from hand-coding done by the end programmer,
and towards code generation done by the VM. We believe this to

9 Since earlier parts of the structure reserve no space for forward pointers,
“forward” navigation between non-contiguous parts of an object can be
supported by associative look-up through a memtable, the same structure
used for heap metadata.

be appropriate: whereas APIs such as JNI are invariably convoluted
by the desire to accommodate all conceivable implementations of
the VM, VM implementors are uniquely aware of their own im-
plementations, so are best placed to bear this effort. We have con-
sidered already the construction and accessing of VM-specific data
representations. The other major source of FFI code is interaction
between garbage collection and foreign code.

In JNI [10], several calls exist to cooperate with moving collec-
tors, namely calls to “get” and “release” array contents and manage
long-lived references (GlobalRef) to objects. Several techniques al-
low relieving the programmer of this burden. In the simplest, for de-
ployments (such as DwarfPython) where a moving collector is not
used, these operations are simply redundant. In a semi-conservative
approach, we may sweep a widened set of roots (e.g. including the
malloc-managed heap) and only move objects having no ambigu-
ous references (at some cost in fragmentation). Alternatively we
may dynamically trap the escape of these pointers into imprecise
roots, by memory-protecting these regions before calling out to na-
tive code. To optimise this, we may accept annotations (perhaps
derived by analysis) that a given function saves no pointers, then
omit memory protection on such calls. Without experimental re-
sults we cannot propose a definitive technique; we are arguing that
some combination of these techniques is likely to allow VMs to
shoulder the burden at reasonable cost. (If this seems unpalatable,
we remind the reader that this is, after all, the spirit of garbage col-
lection: using dynamic analyses to take the place of burdensome
programmer effort.)

This meshes well with generational approaches. For example,
we might have a conservatively- or semiconservatively-collected
heap shared with C and C++ code, but then use a single precise
compacting collector for objects that have not been shared, so can
still be relocated. Since foreign code is typically “distant” code, we
hypothesise that objects that need to be moved into the conservative
heap are probably long-lived; short-lived objects may stay in heaps
that are collected precisely.

3.5 Optimisation

Most intraprocedural optimisations are unaffected by our approach
because they are hidden by the implementation of a particular lan-
guage. Meanwhile, most interprocedural optimisations are also un-
affected (or triviallyuneffected) because JITs only optimise across
code which they themselves generated. We consider two “interest-
ing” cases as (unimplemented) thought experiments. Firstly, there
are optimisations which are textually intraprocedural, but whose
correctness relies on program-wide knowledge. Secondly, there are
optimisations which we would like to support but currently do not:
those that cross VM–VM and VM–native boundaries.

Program-wide knowledge Consider devirtualization by class hi-
erarchy analysis. This relies on whole-program knowledge (namely
the value set of a vtable entry). Since these optimisations are per-
formed on a per-call-site basis, using a particular dispatch infras-
tructure, they appear to be local to a VM. However, recalling
our approach (§3.3) to generating dispatch structures from shared
DWARF information, the queries which were used to generate these
structures are open to invalidation by code loading. This forces
our shared dynamic loading infrastructure (§3.2) to get involved:
queries must be persistent, and when their results are affected by
code loading events, this should trigger reoptimisation.

Whole-program dynamic optimisation In last year’s keynote,
Cliff Click observed that profile-guided optimization in ahead-of-
time compilers is trapped in a cycle of under-use and immaturity.
In stark contrast, many JVMs contain a wealth of complex dynamic
compilation techniques which are continuously exercised and im-
proved. The infrastructure we have outlined is an ideal platform for

5 2011/10/3

breaking out this complexity into a shared service of profile-guided
dynamic optimization acrosswhole programs. Our dynamic loader
tracks loaded code; a whole-program profiler built on this can track
hot paths across multiple VMs and native code. For example, con-
sider optimising some native code by inlining some VM-generated
code which itself rests on some change-prone class hierarchy anal-
ysis. It would not normally be safe to perform this inlining because
if the analysis is invalidated, the native optimiser will not be no-
tified. Given persistent queries, we can solve this bypropagation
of dependencies: the native-code optimiser registers (with the dy-
namic loader) a dependency on the VM-generated code. When the
analysis underlying the latter is invalidated, the native optimiser
is also notified, and can replace the now-unsafe inlined code. At
the heart of this approach is the separation of whole-program facts
(query output, and data gathered by analysis and profiling), which
are concerns managed by the shared infrastructure, from language
and code generation, which remain concerns of individual VMs.
To dynamically optimise native code we may build on the link-
time optimisation and low-level JIT compilation pioneered by the
LLVM project [8]. Finally, by discouraging premature optimisation
of native code, this may help with the currently poor deoptimisation
support in native toolchains—familiar togdb users as frustrating
“value optimized out” messages.

4. Related work
Many tools exist for making FFI code easier to write, but few pro-
vide direct sharing of data, and none addresses debugging the re-
sults. Swig [1] is a popular tool for generating wrappers from C
APIs; Boost.Python10 and SIP11 are similar Python-specific tools
focussing more on C++. Java Native Access12 offers lower over-
heads but still requires programmers to transcribe native interfaces
into Java (rather than generating them from a unified metamodel).

The GNU implementation of Java [3] integrates Java into an
existing compiler infrastructure, and allows native libraries to be
accessed using a much more usable interface (CNI) than Java’s
usual JNI. Roughly, our approach generalises this towards multiple
VMs and dynamic languages.

One implementation of Scheme [12] is an interesting relative of
DwarfPython. It provides a similar degree of wrapper-free integra-
tion, but no specific contribution to tool support, is C-specific, and
does not support dynamism such as object schema update.

Cross-language debugging tools overlap somewhat with our
goals. Blink [9] uses a controlling master process to provide a
consistent interface onto multiple runtime-specific debuggers, at a
cost of per-environment integration effort (since each new environ-
ment brings another debugger which must be integrated by hand).
In essence, Blink embraces diversity of environments, whereas we
attempt to synthesise a single underlying environment.

There is a clear demand for cross-language and cross-VM tool
support, as witnessed by extant patches to Valgrind13, andgdb14,
machine-level Python heap profiling15, cross-language Java debug-
ging information16, per-VM “providers” for the DTrace tool [5] and
many others. These approaches are “point fixes” for some pairing
of tool and VM, rather than direct solutions.

There is also considerable demand for sharing objects across
VMs, for which the most relevant existing system is CoLoRS [13],

10http://www.boost.org/doc/libs/1 35 0/libs/python
11http://riverbankcomputing.co.uk/software/sip/
12http://github.com/twall/jna
13https://spideroak.com/code
14http://llvm.org/docs/DebuggingJITedCode.html
15http://us.pycon.org/2011/schedule/presentations/25/
16http://jcp.org/en/jsr/detail?id=45

which extends stock VMs with shared objects. However, it does
not support sharing with native code, nor unifying run-time tool
support for the resulting system.

VMKit [7] has a similar approach of factoring managed run-
times, but instead of providing for sharing across multiple colo-
cated VMs, instead considers constructing and experimenting with
individual specialised VMs.

A philosophically similar approach is that of subject-oriented
composition [11], which considers reconciling multiple overlap-
ping views of the same application domain model. Our approach
is essentially its analogue at machine- rather than application-level.

5. Concluding remarks
We have argued that virtual machines can and should be made far
less obtrusive for developers to use. We have focused on FFI and
debugging issues; there remain other ways in which VMs are obtru-
sive, especially their configuration (e.g. code search paths, resource
limits, security models), which are worth rethinking. In any case,
our immediate plans are: to produce a complete, optimised imple-
mentation of DwarfPython; then to apply our techniques within
VMKit’s j3 JVM [7], including whole-program dynamic optimiza-
tions. We are also interested in embracing functional languages
(especially with lazy evaluation, which remain difficult to debug),
moving a wide range of VMs closer to the invisible ideal.

Acknowledgments
The authors acknowledge Manuel J. Simoni for an idea which
seeded their train of thought, and helpful comments from Max
Bolingbroke, Nishanth Sastry and Jukka Lehtosalo.

References
[1] D. Beazley. Swig: An easy to use tool for integrating scripting lan-

guages with C and C++. InProceedings of the 4th USENIX Tcl/Tk
Workshop, pages 129–139, 1996.

[2] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment.Softw. Pract. Exper., 18(9):807–820, 1988.

[3] P. Bothner. Compiling Java with GCJ.Linux Journal, 2003.

[4] G. Bracha and D. Ungar. Mirrors: design principles for meta-level fa-
cilities of object-oriented programming languages. InProc. OOPSLA,
2004.

[5] B. Cantrill. Hidden in plain sight.ACM Queue, 4(1):26–36, 2006.

[6] Free Standards Group.DWARF Debugging Information Format ver-
sion 3, December 2005.

[7] N. Geoffray. Fostering Systems Research with Managed Runtimes.
PhD thesis, Paris, France, September 2009.

[8] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. InProc. Intl. Symp. on Code
generation and optimization, page 75. IEEE Computer Society, 2004.

[9] B. Lee, M. Hirzel, R. Grimm, and K. S. McKinley. Debug all your
code: portable mixed-environment debugging. InProc. OOPSLA,
pages 207–226, New York, NY, USA, 2009. ACM.

[10] S. Liang.The Java Native Interface: Programmer’s Guide and Speci-
fication. Addison-Wesley Professional, 1999.

[11] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal. Subject-
oriented composition rules. InProc. OOPSLA, pages 235–250, 1995.

[12] J. Rose and H. Muller. Integrating the Scheme and C languages.
In Proceedings of the 1992 ACM conference on Lisp and functional
programming, pages 247–259. ACM, 1992.

[13] M. Wegiel and C. Krintz. Cross-language, type-safe, and transparent
object sharing for co-located managed runtimes. InProc. SPLASH,
OOPSLA ’10, pages 223–240, 2010.

A. A brief introduction to DWARF

See the first author’s web page:www.cs.ox.ac.uk/people/stephen.kell/.

6 2011/10/3

