
A Decision Tree-based Approach to Dynamic Pointcut Evaluation

Robert Dyer
Department of Computer Science

Iowa State University
rdyer@cs.iastate.edu

Hridesh Rajan
Department of Computer Science

Iowa State University
hridesh@cs.astate.edu

Abstract
Constructs of dynamic nature, e.g., history-based pointcuts
and control-flow based pointcuts, have received significant
attention in recent aspect-oriented literature. A variety of
compelling use cases are presented that motivate the need
for efficiently supporting such constructs in language im-
plementations. The key challenge in implementing dynamic
constructs is to efficiently support runtime adaptation of the
set of intercepted join points at a fine-grained level. This
translates to two high-level requirements. First, since the
set of intercepted join points may change, such implemen-
tations must provide an efficient method to determine this
set membership, i.e., whether the currently executing join
point needs to be intercepted. Second, the frequency with
which such set membership needs to be determined must be
minimized. In previous work, Dyer and Rajan proposed a
dedicated caching mechanism to address the second require-
ment. In this work, we propose a mechanism to address the
first requirement. This requirement translates to efficiently
evaluating whether a join point is intercepted by a set of
pointcut expressions. In the worst case, at every join point
there may be the need to determine whether it is intercepted.
Therefore, even modest savings in such mechanisms is likely
to translate to significant savings in the long run.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-oriented Programming; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features
— Control structures; Procedures, functions, and sub-
routines; D.3.4 [Programming Languages]: Processors —
Code generation, Run-time environments

General Terms Algorithms, Design, Languages

Keywords Pointcut evaluation, decision tree, optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VMIL’08, October 19, 2008, Nashville, TN, USA.
Copyright c© 2008 ACM 978-1-60558-384-6. . . $5.00.

1. Introduction
In aspect-oriented (AO) languages [9, 15], join points are
implicitly-defined by the language as certain kinds of stan-
dard actions (such as method calls) in a program’s execution.
Pointcut designators (PCDs) are used to declaratively select
a subset of join points in the program. These selected join
points are then composed with additional behavior based on
a declarative specification. For this composition (often called
weaving), it is necessary to evaluate the PCDs to deter-
mine the sub-set of join points that they select. In statically-
compiled AO languages, the bulk of the PCD evaluation is
done at compile-time and the remaining evaluation is de-
ferred until run-time (often called dynamic residue) [12].

PCD evaluation needs to be deferred until run-time in
two cases. First, when the necessary information for PCD
evaluation is not known until run-time, e.g., in the case of
if PCDs where the boolean condition needs to be evaluated
at runtime, this PCDs where the exact type of the object
may not be known statically, cflow-like PCDs where the
exact control-flow graph may not be known statically, etc.
Second, when a new PCD is added to the system, e.g.,
by dynamically loading a class containing new PCDs and
thereby changing the system configuration at runtime [21],
by creating new PCDs in more dynamic approaches that
support first-class PCDs [30], etc.

A number of techniques have appeared that optimize
PCD evaluation for the first case, i.e., when PCD evaluation
requires run-time information. Among others, Aotani and
Masuhara [2] optimize analysis-based pointcuts, Avgusti-
nov et al. [3] optimize control-flow based pointcuts, Bod-
den et al. [7] optimize history-based pointcuts, Klose, Oster-
mann and Leuschel [16] use partial evaluation to reduce the
PCD evaluation done at run-time, and most recently Sewe,
Bockisch and Mezini [26] optimize evaluation of dynamic
residues by eliminating common pointcut expression evalu-
ation. The focus of this paper is optimizing the second case,
where new PCDs are added.

Allowing new PCDs to be added to already executing
systems is useful for a number of use cases, e.g., in run-
time monitoring, run-time adaptation to fix bugs or add
features to long running applications, run-time update of
dynamic policy changes, etc. AO constructs of dynamic

flavor that fit into these categories are beginning to ap-
pear [1, 4–6, 8, 11, 13, 14, 18–21, 23–25, 27–29]. For exam-
ple, one may want to dynamically modify the behavior of a
long-running application (such as a web-server) to start mon-
itoring incoming requests, perhaps after sensing a denial-of-
service attack, and then later remove such monitoring once
the attack has been thwarted. To model cflow-like PCDs
one may want to start monitoring the likely join points, once
the execution reaches the desired entry point in the control-
flow, and turn-off monitoring once it reaches the desired exit
points [8, 11].

To support such use cases it is important to investigate
efficient techniques for runtime PCD evaluation. To that end,
this paper makes the following contributions.

• A precise formulation of the PCD evaluation problem and
its two different classes that call for different solutions;
• the notion of predicate ordering – based on evaluation

cost to optimize PCD evaluation; and
• a decision-tree based technique, corresponding algo-

rithms and data structures for PCD evaluation.

The rest of the paper is organized as follows. In the next
section, we formalize the PCD evaluation problem. Section 3
presents our algorithms for PCD evaluation independent of
the predicates used in writing PCD expressions. Our method
for partially evaluating type predicates is discussed in Sec-
tion 4. Section 5 discusses related work and Section 6 con-
cludes.

2. PCD Evaluation Problem
In this section, we model the PCD evaluation problem. This
is inspired from the formalization of the event matching
problem in publish/subscribe systems as described by Fabret
et al. [10].

2.1 Terminology
We show the basic terminology used throughout this paper
in Figure 1. The definition of PCD is fairly straightforward.
A PCD is either a basic predicate pred or a logical conjunc-
tion/disjunction of a pred and a PCD. Note that we do not
have negation of a PCD, as we assume this is easily emulated
using conjunction/disjunction and the operators provided by
the various predicates.

A predicate is defined as a 3-tuple (a, o, v): an attribute,
an operator and a value. Some example attributes are: mod-
ifier(s), return type(s), argument type(s), receiver type, re-
ceiver name, method name, control flow, join point kind, etc.
The collection of attributes available distinguishes the point-
cut expression language. Operators are defined as higher-
order functions o : A× V → (A× V → {true,false}).
A predicate can also be thought of as a function (pred :
A × V → {true,false}) obtained by evaluating the ex-
pression o(a, v).

pred ::= (a , o , v)
fact ::= (a , v)

PCD ::= pred
| (PCD)
| pred && PCD
| pred || PCD

j ::= fact
| fact && j

a ∈ A, the set of attributes
o ∈ O, the set of operators
v ∈ V, the set of values

Figure 1. Basic Terminology

A join point is defined as either a basic fact or a logical
conjunction of a fact and a join point. A fact is defined as
a pair (a, v) meaning that at the join point the attribute a
takes the value v. Evaluating whether a join point satisfies
a predicate is equivalent to evaluating each fact in the join
point w.r.t. the predicate. A fact (a′, v′) satisfies the predicate
(a, o, v) if and only if (o(a, v))(a′, v′) evaluates to true.

2.2 Example
The following example illustrates the terminology for PCD
and join points in the context of a small PCD expression
language. Let,

• A ::= {modifier, type, name},
• V ::= {v : v is a modifier, type or name in the program},

and
• O ::= {==,!=}, where the operators have their usual

meaning.

An example PCD expression in such a language would be:

(modifier, ==, public) &&
(type, !=, void) && (name, ==, "Set")

and an example join point would be:

(modifier, public) && (type, FElement) &&
(name, "Set")

2.3 PCD Evaluation
For a program, let J be the set of join points (possibly
unknown statically) and P be the set of PCD expressions as
defined previously. We present two alternative formulations
of the PCD evaluation problem (PCDEval).

1. Given a join point and a set of pointcut expressions,
we are interested in determining the subset of pointcut
expressions that may select this join point. Formally,
PCDEval : J × 2P → 2P , where 2P is the power
set of P .

2. Given a pointcut and a set of join points, we are interested
in determining the subset of join points that are selected

by such a pointcut. Formally, PCDEval′ : P × 2J →
2J , where 2J is the power set of J .

These formulations are useful for compile-time, load-
time, and runtime pointcut evaluation. For example, most
AO compilers today use the first formulation for weaving.
The rationale is that often the total number of join points
is larger compared to the total number of pointcuts and an
efficient solution to the first formulation may reduce the
number of iterations through the set of join points. This
formulation also fits better with aspect-oriented systems that
allow load-time deployment with a closed-world assumption
for aspects, such as the AspectJ’s load-time weaver. Here,
by closed-world assumption for the set of aspects we mean
that all aspects are loaded before any class is loaded. During
class loading, each join point shadow in the class is matched
with the set of pointcut expressions. Furthermore, aspect-
oriented systems that allow run-time deployment, such as the
Nu virtual machine [8], can also utilize this strategy. In Nu
for example, a lazy strategy is used for run-time weaving,
where a join point is not matched until it executes at least
once.

On the other hand, for incremental compilation of AO
programs, in cases where the increments introduce new PCD
expressions, it would perhaps be more appropriate to use
efficient solutions to the second formulation (PCDEval′).
Load-time weavers with an open world assumption for as-
pects would also benefit from the second formulation, if they
employ an eager strategy for matching. Such an eager strat-
egy would match the PCDs just loaded with join point shad-
ows in all classes already loaded, perhaps to avoid matching
overhead during execution. Similarly, runtime weaving sys-
tems can also utilize PCDEval′ for cases where deployed
aspects affect the “hot” segments and they are unlikely to be
un-deployed. Other formulations can also be conceived that
perhaps take a hybrid approach, but for the purpose of this
paper we will not consider them.

3. PCD Evaluation Algorithm
This section describes our approach for PCD evaluation. The
minimum requirement is fairly straightforward: the worst-
case time complexity of our technique should not exceed
the time complexity of current PCD evaluation methods.
An additional requirement that we impose on our technique
is that its amortized complexity should be independent of
the number of PCDs in the system. Note that in this paper
we are only considering the first formulation PCDEval :
J × 2P → 2P .

3.1 Predicate Ordering
The first step in our PCD evaluation technique is to order
the evaluation of predicates in the PCD. Note that a PCD
consists of conjunction and/or disjunction of one or more
predicates. To determine whether a join point is selected by
a PCD, it is necessary to determine whether there exists a

Figure 2. An Overview of our Decision Tree-based Ap-
proach for PCD Evaluation

satisfiable assignment of the predicate(s) at the join point for
which the PCD evaluates to true.

Let C be an amortized cost function such that C(ai) is the
amortized cost of evaluating the attribute ai over operators
defined for a and the set of values for ai. The first step in
our technique is to order the evaluation of each ai, aj ∈ A
such that ai is evaluated prior to aj , if C(ai) < C(aj). If
C(ai) = C(aj) ordering may be determined heuristically.

The rationale for adopting this policy for predicate eval-
uation ordering is to decrease the amortized cost of PCD
evaluation by eliminating as many PCDs as possible at a
lower cost. This strategy goes back to the efficient ordering
of boolean predicate evaluation in SAT solvers. It has also
recently been applied by Sewe, Bockisch, and Mezini [26]
for optimizing evaluation of dynamic residues.

3.2 Data Structures for PCD Evaluation
An overview of the data structures maintained for our PCD
evaluation algorithm is shown in Figure 2. From the top to
bottom, the figure shows the set of PCD expression evalu-
ation trees, sub-trees for matching attributes in the pointcut
expression language, and a join point (a logical conjunction
of facts) being matched. The number of sub-decision trees
depend on the types of attributes available in the pointcut ex-
pression language. For example, a pointcut expression lan-
guage that only allows matching based on types would just
have one such decision tree.

For languages that provide different kinds of join points,
e.g. execution, handler and set, in an AspectJ-like
language, it would be sensible to maintain this data structure
separately for each join point kind, as these would be dis-
joint. Furthermore, for each join point kind it would be ap-
propriate to customize the set of attribute sub-decision trees,
e.g., decision trees for name and type for set and get join
points.

The PCD expressions are organized into a forest of
PCD expression evaluation trees. These trees may have
cross-links. These cross-links are created for common-
subexpression elimination. Addition of a new PCD to this
forest proceeds as follows:

(a) add the component predicates of the PCD to their respec-
tive attribute decision tree,

(b) add the tree representation of the PCD to the forest, and
(c) create a parent PCD link between attribute nodes and the

leaf node of the PCD expression evaluation tree (shown
as bold dotted arrows in the figure).

Removing a PCD is the reverse of this process, except
that optimizations due to common subexpression elimina-
tion must be taken into account. For this purpose, a sim-
ple reference count is maintained that reflects the number
of PCDs that contain this attribute node or a PCD expression
sub-tree as a parent.

3.3 Optimizations of PCD Expression Tree
We assume that the PCD expressions are locally optimized
before being added to the PCD expression evaluation forest.
For example, parts of a PCD that will never match are elim-
inated, common local subexpressions are eliminated, etc.
Sewe, Bockisch, and Mezini [26] discuss some of these tech-
niques.

We also optimize PCD expressions by reorganizing the
PCD expression trees. An example reorganization is shown
in Figure 3, where the OR operator is successively propa-
gated downward.

The reorganization is done using post-order tree-traversal
technique and it terminates when a classifier attribute is
the root node of every PCD expression tree. Classifiers are
attributes that help pigeonhole PCD expression trees into a
disjoint subset of join points. For example, the join point
shadow kind is a type of classifier as it helps categorize the
PCD expression tree into different classes based on which
join point kind they match.

The reorganization of PCD expression trees has three
benefits:

1. It helps reduce the depth of the PCD expression tree,
2. it helps classify PCD expression trees into disjoint sets

for which separate PCD expression forests could be
maintained, and

3. it enables elimination of certain PCD expressions by par-
tial evaluation.

We will discuss more partial evaluation strategies in Sec-
tion 4. These three benefits directly translate to decrease in
the PCD evaluation overhead potentially reducing the run-
time overhead of dynamic deployment of aspects.

There are no general techniques for maintaining the deci-
sion tree for each attribute. Instead it depends very much on
the kind of the attribute. Efficient matching of modifiers, for

(a) PCD expression tree for execution(..)||execution(..)

(b) OR operator propagated downward in the tree

(c) OR operator propagated further down

Figure 3. Reorganizing pattern tree by propagating OR op-
erator downward

example, requires completely different data structures and
algorithms compared to matching of names and types. In this
paper, we discuss algorithms and data structures for some of
these, but we do not attempt to be exhaustive.

3.4 Matching of Join Point Facts
A join point (or the conjunction of facts about a join point)
is matched against this combination of PCD expression for-
est and attribute decision trees. The PCD evaluation starts
with lowest cost attribute as discussed in Section 3.1. On
traversing the attribute decision tree, at each node decisions
are made about whether the current fact about the join point
implies the predicate represented by that node.

If the predicate represented by the current node is im-
plied, a token is sent to the leaf nodes of each parent PCD
expression that contains that predicate as a component. The

(a) Evaluate pred1 (b) Evaluate pred2

(c) Evaluate pred3 (d) Evaluate PCD1

PCD1 pred1 && pred2 && pred3

pred3 (name, ==, "Set") pred2 (type, !=, void) pred1 (modifier, ==, public)

PCD1 pred1 && pred2 && pred3 •

pred3 (name, ==, "Set") pred2 (type, !=, void) pred1 (modifier, ==, public)

PCD1 pred1 && pred2 && pred3 ••

pred3 (name, ==, "Set") pred2 (type, !=, void) pred1 (modifier, ==, public)

PCD1 pred1 && pred2 && pred3 •••

pred3 (name, ==, "Set") pred2 (type, !=, void) pred1 (modifier, ==, public)

Figure 4. Example of matching the join point (modifier, public) && (type, FElement) && (name, “Set”). Dotted lines
represent tokens being sent to a parent node. Bold boxes indicate the predicate being evaluated at that step.

leaf nodes in the PCD expression send tokens up the PCD
expression forest depending on whether their parent node is
a conjunction or a disjunction node.

While traversing the attribute decision tree, the algorithm
keeps track of whether any tokens have been sent to the
PCD expression forest. When the traversal of the attribute
decision tree is complete, i.e., a leaf node in the decision
tree is reached, if no tokens are sent this far to the PCD
expression forest, the PCD evaluation terminates. This helps
ensure that the least costly attributes often help short-circuit
PCD evaluation.

A simple example of PCD evaluation is given in Fig-
ure 4. In this example, there is one PCD in the system.
The PCD is (modifier,==, public) && (type,!=, void)
&& (name,==, “Set”). The join point we are trying to
match is (modifier, public) && (type, FElement) &&
(name, “Set”).

At each step of the example we are evaluating one pred or
PCD (indicated with a bold box). Consider step (a), where
we are evaluating the pred (modifier,==, public). Since
the join point contains (modifier, public) this evaluates to
true. The pred then sends a token to each parent node (in
this case, there is one parent node – PCD1). The action of a
token moving to another node is shown with a dashed line.
In steps (b) and (c), pred2 and pred3 evaluate to true and
similarly each sends a token.

The final step is (d), where PCD1 is evaluated. Since
PCD1 is a conjunction of three pred’s, in order to evaluate to
true it must contain three tokens. In this example it does,
so PCD1 would evaluate to truemeaning that the join point
being matched matches PCD1.

4. Partial Evaluation of Type Predicates
In this section, we describe our techniques for partial eval-
uation of type predicates. The key idea behind our partial
evaluation technique is to utilize the implication relation-
ships between types. These partially evaluated predicates are
then organized as a decision tree that helps optimize runtime
evaluation. In the rest of this section, we describe various
aspects of our technique. First, the partial evaluation results

for logical operators are defined. We then describe a simple
data structure and efficient algorithms that utilize these par-
tial evaluation results.

4.1 Semantics of Type Operators
Let us suppose A, B, C, . . . be the types in the program and
op be the type operator, where op ∈ {l, m, .=, 6=} such that:

• A l B means that A is a strict subtype of B, i.e., it
excludes the case when A

.= B (see below).
• A m B means that A is a strict super-type of B, i.e., it

excludes the case when A
.= B (see below).

• A
.= B means that A is exactly of the same type as B.

• A 6= B means that A is not of the same type as B. In
addition, A is not a strict subtype of B, and B is not a
strict subtype of A.

Note that the meaning of the type operators is slightly
different from the standard definitions. The operators are de-
fined in this manner to facilitate partitioning the type pred-
icates into disjoint subsets. We have used slightly different
symbols to remind readers of the difference.

4.2 Semantics of logical inverse on type operators
Our technique for partially evaluating type predicates relies
on computing the inverse of a predicate. For simplicity we
compute the inverse of a predicate by inverting the operator.
For example, the inverse of (A l B) is computed by invert-
ing the l operation. Below we define the inverse of type
operators. Let us assume that ! is the inverse operator such
that !(A op B) is defined as:

• !(A l B) ≡ A m B ∨ A
.= B ∨ A 6= B

• !(A m B) ≡ A l B ∨ A
.= B ∨ A 6= B

• !(A .= B) ≡ A l B ∨ A m B ∨ A 6= B

• !(A 6= B) ≡ A l B ∨ A m B ∨ A
.= B

4.3 Partial evaluation of logical conjunctions (and) on
type predicates

Let ∧ be the logical conjunction operator, let op = op′ be the
equality operator where op, op′ ∈ {l, m, .=, 6=}, and let T
and F be the Boolean truth values with standard meanings.

Let J1 = (type, A) be a fact in the system where A is a
type. Let P1 = (type, op1, B) and P2 = (type, op2, C) be
type predicates where B and C are types. To see if the fact
matches both predicates, we thus want to evaluate (A op1

B) ∧ (A op2 C).
In order to partially evaluate this expression, we use a

given fact B op C and derive implication rules among the
types B and C. Figure 5 shows the results for all four
operators.

As an example of how we derived these rules, consider
the case B l C when op1 == l and op2 == l. Thus we
are interested in evaluating A l B ∧ A l C. If we assume
A l B, since we are given B l C we can see this implies
A l C.

Now consider the case B l C when op1 == l and
op2 == m. Thus we are interested in evaluating A l B ∧
A m C. If we assume A l B, since we are given B l C we
already showed this implies A l C. This would contradict
A m C and thus this reduces to false.

Most cases are easily derived in a similar fashion, and
thus omitted for space. We will discuss one interesting case.
Again we have B l C. When op1 = m and op2 =6= we are
interested in evaluating AmB∧A 6= C. This expression can
not be reduced. A m B ∧B l C implies that B is a subtype
of both A and C. A 6= C implies that neither A is a subtype
of C, nor C is a subtype of A. Therefore, in the semantics
of single inheritance languages this would evaluate to F ;
however, in the semantics of languages that support limited
multiple inheritance such as through interfaces in Java this
logical conjunction may not be reduced.

The rules for the m operator is the mirror image of the
l operator along the main diagonal line. The rules for the
.= operator are easily derived, since anything not on the

diagonal is clearly a contradiction and evaluates to F . For
everything else, we can simply choose either of the two
facts, as they are actually identical. Derivation of the rules
for the 6= operator are omitted for space reasons.

4.4 Attribute Decision Tree for Types
In this section, we discuss the algorithms and data structures
for maintaining a decision tree for types. A pointcut expres-
sion language can employ such decision tree for matching
return type, receiver type and argument types of methods,
constructors, etc as part of join points of kind execution,
call, initialization, etc, for types of fields for join
points of kind set, get, for types of exception for join
points of kind handler, just to name a few. Thus, the data
structures and algorithms for this attribute are likely to be

helpful in the implementation of PCD evaluation for com-
mon PCD expression languages.

This attribute decision tree could also be useful for VM-
based implementations of languages that match purely based
on types, such as Ptolemy [22].

We first discuss a technique for adding a type predicate
to the decision tree. This technique makes use of a partial-
evaluation function to optimize the matching process. This
partial evaluation function was described in the previous
section. We then discuss a technique for matching type-
related facts about the join point using this decision tree.
As previously discussed, it would be sensible to maintain
separate copies of this decision tree for each kind, e.g., return
type, argument type, and receiver type.

4.4.1 Addition of Predicates to Type Decision Tree
Our algorithm for adding a type predicate to an existing
decision tree is shown in Algorithm 1 and explained below.

Algorithm 1: Insert: Adds a Type Predicate to the Pred-
icate Tree

Input: Predicate tree: Tree, Predicate: Pred
Current = Tree.Root;1

if Pred == true then2

Current.Parents.Append(Pred);3

return4

while Current.TrueBranch != NULL do5

Current = Current.TrueBranch;6

if Current == Pred then7

Current.Parents.Append(Pred);8

return9

else10

result = PartialEval (Current ∧ Pred);11

if result == Current then12

return13

if result == Pred then14

Swap (Current,Pred);15

return16

if result == false then17

if Current.FalseBranch == NULL then18

Current.FalseBranch = new19

Node(Pred);
return20

else21

Current = Current.FalseBranch22

end23

Current.TrueBranch.Parents.Append(Pred);24

The addition of a type predicate to the predicate tree is
an incremental process that starts with the root node of the
current tree and the predicate that is to be added. The type
predicate evaluation tree is maintained as a binary tree with
two branches labeled TrueBranch and FalseBranch

∧ op2 = l op2 = m op2 = .= op2 = 6=
op1 = l A l B F F F
op1 = m (A m B) ∧ (A l C) A m C A

.= C F or (A m B) ∧ (A 6= C)
op1 = .= A

.= B F F F
op1 = 6= (A 6= B) ∧ (A l C) F F (A 6= B) ∧ (A 6= C)

(a) Case: B l C

∧ op2 = l op2 = m op2 = .= op2 = 6=
op1 = l A l C (A m C) ∧ (A l B) A

.= C (A 6= C) ∧ (A l B)
op1 = m F A m B F F
op1 = .= F A

.= B F F
op1 = 6= F F or (A m C) ∧ (A 6= B) F (A 6= C) ∧ (A 6= B)

(b) Case: B m C - As expected, the partial evaluation matrix in this case is the mirror image of the matrix for
B l C along the main diagonal.

∧ op2 = l op2 = m op2 = .= op2 = 6=
op1 = l A l B F F F
op1 = m F A m B F F
op1 = .= F F A

.= B F
op1 = 6= F F F A 6= B

(c) Case: B .
= C

∧ op2 = l op2 = m op2 = .= op2 = 6=
op1 = l (A l B) ∧ (A l C) F F (A l B) ∧ (A 6= C)
op1 = m F (A m B) ∧ (A m C) F (A m B) ∧ (A 6= C)
op1 = .= F F F A

.= B
op1 = 6= (A 6= B) ∧ (A l C) (A 6= B) ∧ (A m C) A

.= C (A 6= B) ∧ (A 6= C)
(d) Case: B 6= C

Figure 5. Partial Evaluation Rules for Type Predicates

(except for the root node as described below). Both these
branches need to be present at all time.

The current tree is traversed until an appropriate position
for the current predicate is found. The root node of the tree
represents the predicate true and it trivially matches any
fact during the matching. As a special case all value types
go to the false branch and all reference types go to the true
branch of root.

All predicates ret <: object are trivially implied,
if we are traversing the reference type branch. Therefore,
if the predicate being added is that, it is simply appended
to the root of the reference subtree. In particular, a parent
PCD link is created from this node to the leaf node of PCD
expression tree such that whenever this predicate evaluates
to true parent PCDs can be notified. This step facilitates
common-predicate elimination.

The algorithm terminates when the true branch of the root
node does not exist. The new predicate is then added to the
true branch of the root node.

If the true branch exists and the added predicate is not
the trivially implied predicate ret <: object the main
loop of the algorithm begins that continues until the current
predicate being explored evaluates to null.

In this loop, implication relationships are used to deter-
mine the branch of the decision tree traversed. These rela-
tionships are computed using our partial evaluation rules for
types as shown in Section 4. The function PartialEval
facilitates that. If the result of this function is the current
predicate Current or the predicate being added Pred,
it means that true/false evaluation of one predicate implies
true/false evaluation of the other. This works in general be-
cause implication is a transitive relation.

4.4.2 Simultaneous Evaluation of Predicates in the
Type Decision Tree

Our algorithm for matching a type-related fact in an existing
decision tree is shown in Algorithm 2 and explained below.

The evaluation of a type predicate tree against a fact starts
at the root node of the tree. Note that the root node represents
the predicate true and therefore any fact trivially matches
this predicate. If there are complex predicates that contain
true type predicates they are immediately notified.

If the fact implies the current predicate being evaluated,
the current predicate and all predicates implied by it are au-
tomatically evaluated to be true and the matching algorithm
terminates. If on the other hand the fact does not imply the
current predicate being evaluated, we compute the relation-

Algorithm 2: Match - Evaluate a fact against a predicate
tree, resulting in tokens at predicates that evaluate true
for the fact

Input: Predicate tree: Tree, Fact: fact
Current = Tree.Root;1

NotifyParents (Current);2

while Current != NULL do3

result = PartialEval (Current ∧ fact);4

if result == Current then5

NotifyParents (Current);6

return7

if result == Pred then8

Current = Current.TrueBranch9

else10

Current = Current.FalseBranch11

if fact == Current then12

NotifyParents (Current);13

return14

end15

ships between the type value in the fact fact.Value and
the type value in current predicate current.Value to
minimize matching. In particular, we evaluate the logical re-
lationships that exist between these types (e.g., strict subtype
of, strict supertype of, etc) as defined in Section 4.1.

The logical relationship between the type value in the fact
and the type value in the current predicate is then used to
lookup the partial evaluation results. We will describe these
in details in later section. For understanding this algorithm,
it is sufficient to know that the looking up statically com-
puted partial evaluation results returns three different results.
First, that suggests that the fact implies current predicate.
Second, that suggests that the current predicate implies the
fact. Third, that suggests that the fact may never imply the
current predicate or vice-versa and fourth, that suggests that
these values cannot be partially reduced.

The first case implies that the current predicate and all
predicates implied by it will evaluate to true for the fact
being matched. The second case implies that even though
the current predicate will not evaluate to true for this fact,
only predicates in its true subtree may evaluate to true (by
construction), therefore only exploring the true subtree of the
current predicate will be sufficient. The third and the fourth
case imply that the current predicate and all predicates in its
true branch will not evaluate to true for this fact, therefore
only exploring the false subtree of the current predicate will
be sufficient.

4.4.3 Implementations for Java
Very fast mechanisms exist for computing logical relation-
ships between types such as the implementation of the
instanceof construct in Java. The relationship informa-

tion that we require can be computed with an instanceof
and an equals comparison. Further discussion is beyond
the scope of this paper, but it suffices to say that for a
further reduced cost, an operator can also be implemented
in the virtual machine that utilizes the information main-
tained for efficiently computing the instanceof relation-
ships to compute these logical relationships at the cost of an
instanceof operator.

There are two optimizations (not shown in Algorithm 2)
implemented for languages such as Java, that support primi-
tive value types and reference types and a top type object.
The type predicate tree maintains a subtree for primitive
value types and another subtree for reference types. If the
fact is a value type, the evaluation proceeds with the value
type subtree otherwise the reference type subtree is explored.
Furthermore, all facts that proceed to match the reference
type subtree, implicitly match the top type object.

5. Related Work
Recently, Sewe et al. described a method of using ordered bi-
nary decision diagrams (BDD) to eliminate redundant eval-
uations of dynamic residues [26]. Dynamic residues are the
result of compilers statically performing partial evaluation
on the pointcuts [17]. By converting the residues into an or-
dered BDD, they are able to evaluate the dynamic residues
of all pointcuts for a given join point while only evaluating
each atomic residue at most once.

Similar to our technique, they also order the evaluation of
the atomic pointcuts using the cost of their evaluations for
improved efficiency. Our matching technique however does
not focus on the dynamic residues left over from previous
partial evaluation of pointcuts by compilers. Instead, it fo-
cuses on dynamically evaluating the set of full pointcuts in
the system against a join point. Both approaches do however
make use of decision trees during the matching process.

Previous work by Klose et al. has shown that the use of
partial evaluation techniques can reduce the amount of work
needed to match a PCD at runtime [16]. Their specializer
generates efficient checks for the program, however this is
done offline. Similar to their approach, we use partial eval-
uation techniques to try and minimize the cost of matching
a PCD, however our partial evaluation is performed online
using dynamic information about the classes in the system.
Thus, while we incur an overhead of performing the par-
tial evaluation at runtime, we potentially have more infor-
mation available for even more efficient PCD matching. This
trade-off is most beneficial in systems where the set of PCDs
changes often or systems that execute for a long period of
time.

6. Conclusion and Future Work
The need for efficient support of dynamic aspect-oriented
constructs dictates that more efficient techniques are pro-
vided in virtual machines for PCD evaluation. The use cases

for dynamic aspect-oriented constructs are attractive and
with the availability of more efficient implementations, more
applications for such constructs can be explored, where con-
cerns about overhead are an important factor in adoption.
The decision-tree based technique for PCD evaluation that
we present in this work seems promising in that regard, al-
though a rigorous evaluation is needed to exactly character-
ize the benefits in terms of space and time complexity. In
particular, it will be interesting to study the following pa-
rameters.

1. Total number of predicates in the system: Studying this
parameter will show how the performance scales with the
total number of predicates in the system.

2. Sub-classing (sub-typing) relationship: how many predi-
cate values in the system are in the type hierarchy of other
predicate values, i.e., strict super type of, strict subtype
of, or equal.

3. Unrelated types: how many predicate values in the sys-
tem are not related to other predicate values?

4. True predicates: studying this parameter will show how
pointcuts that use a significant amount of wild-cards in-
fluence the performance of the type decision tree.

5. Percentage of successful matches: this parameter will
show how successful matches contribute to the cost of
performance evaluation. It will also help characterize the
one time cost paid by the join points that match in a
dynamic AO language model.

6. Percentage of unsuccessful matches: study of this param-
eter will show how unsuccessful matches contribute to
the cost of performance evaluation. This will help deter-
mine the one time cost paid by the join points that do not
match in a dynamic AO language model. In particular,
the sooner the decision tree can determine that the join
point is not going to match, the better.

Acknowledgments
This work is supported in part by Iowa State University’s
generous startup grant and the NSF grants CNS-06-27354
and CNS-07-09217. Thanks to the anonymous reviewers of
the VMIL workshop for their comments.

References
[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Lau-

rie Hendren, Sascha Kuzins, Ondřej Lhoták, Oege de Moor,
Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Adding trace matching with free variables to AspectJ. In
OOPSLA ’05: Proceedings of the 20th international confer-
ence on Object-Oriented Programs, Systems, Languages, and
Applications, New York, NY, USA, 2005. ACM Press.

[2] Tomoyuki Aotani and Hidehiko Masuhara. SCoPE: an
AspectJ compiler for supporting user-defined analysis-based
pointcuts. In AOSD ’07: Proceedings of the 6th international
conference on Aspect-Oriented Software Development, pages
161–172, New York, NY, USA, 2007. ACM Press.

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhoták, Ondřej Lhoták, Oege
de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. Optimising AspectJ. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Programming Language
Design and Implementation, pages 117–128, New York, NY,
USA, 2005. ACM Press.

[4] Jason Baker and Wilson Hsieh. Runtime aspect weaving
through metaprogramming. In AOSD ’02: Proceedings of
the 1st international conference on Aspect-Oriented Software
Development, pages 86–95, New York, NY, USA, 2002.
ACM Press.

[5] Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, and
Mira Mezini. Adapting virtual machine techniques for
seamless aspect support. In OOPSLA ’06: Proceedings
of the 21st international conference on Object-Oriented
Programming Systems, Languages, and Applications, pages
109–124, New York, NY, USA, 2006. ACM Press.

[6] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus
Ostermann. Virtual machine support for dynamic join points.
In AOSD ’04: Proceedings of the 3rd international conference
on Aspect-Oriented Software Development, pages 83–92,
New York, NY, USA, 2004. ACM Press.

[7] Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged
static program analysis to improve the performance of
runtime monitoring. In ECOOP ’07: Proceedings of the 21st
European Conference on Object-Oriented Programming,
pages 525–549. Springer-Verlag, 2007.

[8] Robert Dyer and Hridesh Rajan. Nu: a dynamic aspect-
oriented intermediate language model and virtual machine
for flexible runtime adaptation. In AOSD ’08: Proceedings of
the 7th international conference on Aspect-Oriented Software
Development, New York, NY, USA, 2008. ACM Press.

[9] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-
oriented programming: Introduction. Communications of the
ACM, 44(10):29–32, 2001.

[10] Françoise Fabret, H. Arno Jacobsen, François Llirbat, Joăo
Pereira, Kenneth A. Ross, and Dennis Shasha. Filtering al-
gorithms and implementation for very fast publish/subscribe
systems. In SIGMOD ’01: Proceedings of the 2001 interna-
tional conference on Management of Data, pages 115–126,
New York, NY, USA, 2001. ACM.

[11] Stefan Hanenberg, Robert Hirschfeld, and Rainer Unland.
Morphing aspects: incompletely woven aspects and continu-
ous weaving. In AOSD ’04: Proceedings of the 3rd interna-
tional conference on Aspect-Oriented Software Development,
pages 46–55, New York, NY, USA, 2004.

[12] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ.
In AOSD ’04: Proceedings of the 3rd international conference
on Aspect-Oriented Software Development, pages 26–35,
New York, NY, USA, 2004. ACM Press.

[13] Robert Hirschfeld. AspectS - aspect-oriented programming
with Squeak. In NODe ’02: Revised Papers from the interna-
tional conference NetObjectDays on Objects, Components,
Architectures, Services, and Applications for a Networked
World, pages 216–232, London, UK, 2003. Springer-Verlag.

[14] Robert Hirschfeld and Stefan Hanenberg. Open aspects.

Computer Languages, Systems & Structures, 32(2-3):87–
108, 2006.

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. In ECOOP ’97:
Proceedings of the 11th European Conference on Object-
Oriented Programming, Finland, June 1997. Springer-Verlag.

[16] Karl Klose, Klaus Ostermann, and Michael Leuschel. Partial
Evaluation of Pointcuts. In PADL ’07: Proceedings of the 9th
international symposium on Practical Aspects of Declarative
Languages, volume 4354, pages 320–334. Springer-Verlag,
2007.

[17] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn.
A compilation and optimization model for aspect-oriented
programs. In CC ’03: Proceedings of the 12th conference on
Compiler Construction, pages 46–60. Springer-Verlag, 2003.

[18] Francisco Ortin and Juan Manuel Cueva. Dynamic adaptation
of application aspects. Journal of Systems and Software,
71(3):229–243, 2004.

[19] Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and
Gerard Florin. JAC: A flexible solution for aspect-oriented
programming in Java. In REFLECTION ’01: Proceedings of
the 3rd international conference on Metalevel Architectures
and Separation of Crosscutting Concerns, pages 1–24,
London, UK, 2001. Springer-Verlag.

[20] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-
in-time aspects: efficient dynamic weaving for Java. In
AOSD ’03: Proceedings of the 2nd international conference
on Aspect-Oriented Software Development, New York, NY,
USA, 2003. ACM Press.

[21] Andrei Popovici, Thomas Gross, and Gustavo Alonso.
Dynamic weaving for aspect-oriented programming. In
AOSD ’02: Proceedings of the 1st international conference
on Aspect-Oriented Software Development, pages 141–147,
New York, NY, USA, 2002. ACM Press.

[22] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language
with quantified, typed events. In ECOOP ’08: Proceedings
of the 22nd European Conference on Object-Oriented
Programming. Springer-Verlag, July 2008.

[23] Hridesh Rajan and Kevin J. Sullivan. Eos: instance-level
aspects for integrated system design. In ESEC/FSE-11:
Proceedings of the 9th European Software Engineering
Conference held jointly with 11th international symposium
on Foundations of Software Engineering, pages 297–306,
New York, NY, USA, 2003. ACM Press.

[24] Hridesh Rajan and Kevin J. Sullivan. Need for instance level
aspect language with rich pointcut language. In SPLAT ’03:
Software engineering Properties of Languages for Aspect
Technologies, 2003.

[25] Hridesh Rajan and Kevin J. Sullivan. Classpects: unifying
aspect- and object-oriented language design. In ICSE
’05: Proceedings of the 27th International Conference on
Software Engineering, pages 59–68, New York, NY, USA,
2005. ACM Press.

[26] Andreas Sewe, Christoph Bockisch, and Mira Mezini.
Redundancy-free residual dispatch. In FOAL ’08: Foun-
dations of Aspect-Oriented Languages workshop, 2008.

[27] Volker Stolz and Eric Bodden. Temporal assertions using
AspectJ. In RV ’05: 5th workshop on Runtime Verification,
2005.

[28] Volker Stolz and Eric Bodden. Tracechecks: Defining seman-
tic interfaces with temporal logic. Software Composition,
pages 147–162, 2006.

[29] Davy Suvée, Wim Vanderperren, and Viviane Jonckers.
JAsCo: an aspect-oriented approach tailored for component
based software development. In AOSD ’03: Proceedings
of the 2nd international conference on Aspect-Oriented
Software Development, pages 21–29, New York, NY, USA,
2003. ACM Press.

[30] David B. Tucker and Shriram Krishnamurthi. Pointcuts and
advice in higher-order languages. In AOSD ’03: Proceedings
of the 2nd international conference on Aspect-oriented
software development, pages 158–167. ACM, 2003.

