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Quantification is a distinguishing characteristic of
AspectJ-like aspect-oriented languages. Such languages use
advice constructs to modify the behavior of execution points.
In this work, we contribute an approach and a language de-
sign for quantification based on type hierarchies that we call
type-based quantification. The key idea is to superimpose a
crosscutting type hierarchy over the object-oriented inheri-
tance hierarchy. This crosscutting type hierarchy can then
be utilized for quantification, instead of or in addition to
current syntactic quantification mechanisms based on regu-
lar expressions. A subsequent evaluation reveals that type-
based quantification improves the robustness of the advising
code against base code changes, and makes it easier for the
advice constructs to uniformly access contextual information
about the join point without breaking the encapsulation of
the advised code.
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jects, Modules and Packages
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1. INTRODUCTION
Aspect-oriented languages [26, 15] have shown the poten-

tial to improve the separation of traditionally non-modular
concerns. Aspect-oriented languages in the style of AspectJ
use predicates, called pointcuts, to select points in the execu-
tion of the object-oriented program (base code [29]), called
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join points, for behavioral modifications by by advice con-
structs. Advice is patterned on ideas in Common Lisp Ob-
ject System (CLOS) [40, ch 28]. Using predicates to select
join points is also referred to as quantification in the aspect-
oriented terminology [16, 18]. Except for a few approaches
such as SetPoint [3], Functional Queries [14], etc, promi-
nent means of quantification are lexical. Lexical pointcuts
are fragile [41, 46], exhibit quantification failures [43], and
make it unnecessarily hard to uniformly access relevant con-
textual information at the join point [43, pp. 170].

The contribution of this work is an alternative approach
for join point selection. The key idea is to superimpose
a crosscutting type hierarchy over the object-oriented type
hierarchy. This superimposed type hierarchy explicitly cre-
ates another view of the program that is of interest from
the perspective of another concern [22]. The advantages of
explicitly imposing a type hierarchy are observed in a more
robust quantification approach with respect to the base code
changes, precise interfaces between the advised code and the
code being advised that preserves encapsulation, and in the
improved abilities to provide uniform contextual informa-
tion to the advice construct.

The rest of this paper is organized as follows. Section
2 briefly describes aspect-oriented programming. Section 3
and 4 motivate and present out approach. Section 3 de-
scribes the problems in more detail. In Section 4, we first
present our ideas at an abstract level introducing the no-
tion of the types of a join point and type-based quantifica-
tion of join points. We then present a language design that
adopts our ideas in current aspect language design. Section
7 presents a discussion of related issues. Section 8 compares
and contrasts our approach with related work and Section 9
concludes.

2. ASPECT-ORIENTED PROGRAMMING
Aspect-oriented software development (AOSD) tech-

niques [15, 26] aim to improve the software engineers’ ability
to separate conceptual concerns by providing new design and
implementation mechanisms. The key argument for AOSD
is that all dimensions of design decisions, or concerns, are
not amenable to modularization by a single dimension of
decomposition [45]. Instead, some concerns cut across the
dominant dimension of decomposition. An aspect-oriented
approach typically extends an object-oriented language to
include concepts such as join point, which refers to a point
in the execution of the program, and constructs to add
additional behavior to be executed at these join points.
These constructs improve the separation of traditionally
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1 aspect Tracing {

2 pointcut tracedCall():

3 execution(* *(..));

4 before(): tracedExecution() {

5 /* Trace the Execution */

6 }

7 }

Figure 1: A Simple Example Aspect

non-modular concerns thereby enhancing modularity.
Typically, the part of the system that can be adequately

modularized using object-oriented techniques is referred to
as the base [29]. Following the tradition of a popular lan-
guage AspectJ [25], the module that encapsulates the (tra-
ditionally non-modular) new behavior added to the base is
called an aspect. Not all techniques make such distinction,
however [36, 39]. These languages add five key constructs
to the object-oriented model: join points, pointcuts, advice,
inter-type declarations, and aspects. Inter-type declarations
are beyond the scope of this work, so we will not discuss
them here.

A simple example is shown in Figure 1 to make the points
concrete. An aspect (lines 1-7), modifies the behavior of
a program at certain selected execution events exposed to
such modification by the semantics of the programming lan-
guage. These events are called join points. The execution
of a method in the program in which the Tracing aspect ap-
pears is an example of a join point. A pointcut (lines 2-3) is
a predicate that selects a subset of join points for such mod-
ification declaratively – here, execution of any method. This
selection process is often referred to as quantification [16,
17]. In AspectJ [4], for example, the expression call(public

Point.SetX(..)) would mean selecting the join point call
to the method SetX of the class Point. Selecting join points
using these syntactic regular expressions is convenient, al-
lowing join points that span over a large section of a program
to be selected using simple expressions. For example, a sim-
ple expression calls(* *.*(..) selects all method calls in
the program. An advice (see lines 4-6) is a special method-
like constructs that effect such a modification at each join
point selected by a pointcut. For example, statements to
output the trace at all method calls could be added. An ad-
vice would often access the context at the join points, such
as to find the name of the method that is being called for
tracing output. An aspect is a class–like module that uses
these constructs to modify behaviors defined by the classes
of a software system.

3. MOTIVATION

3.1 Untyped View of Join Points
The notion of join points is central to the notion of aspect-

orientation, however, it has not received the attention that
it deserves. Most attention is directed towards formalizing
and validating the behavior modifications that happen at
these join points [9, 48, 12, 28, 47]. The common knowledge
is largely informal. The AspectJ programming guide [4], for
example, informally defines a join point as a new concept
and explains that it is a well-defined point in the execution
of the program. Informally, we know that a certain point

in the execution of a program is a kind of method-execution
join point or a kind of field execution join point, etc. Beyond
this macroscopic classification technique, current literature
does not provide any other mean to classify or define these
concepts in an aspect language design. The central research
question of this work is what defines a join point? We con-
test the argument that being a point in the execution of a
program fully defines a join point. Instead, we argue that a
join point is defined by its type.

At this juncture, we would like to direct the reader’s at-
tention to Cardelli and Wegner’s argument [7] twenty-one
year ago.

As soon as we start working in an untyped
universe, we begin to organize it in different ways
for different purposes. Types arise informally
in any domain to categorize objects according to
their usage and behavior. The classification of
objects in terms of the purposes for which they
are used eventually results in a more or less well-
defined type system. Types arise naturally, even
starting from untyped universes.

Untyped universes of computational objects
decompose naturally into subsets with uniform
behavior. Sets of objects with uniform behav-
ior may be named and are referred to as types.
For example, all integers exhibit uniform behav-
ior by having the same set of applicable opera-
tions. Functions from integers to integers behave
uniformly in that they apply to objects of a given
type and produce values of a given type.

After a valiant organization effort, then, we
may start thinking of untyped universes as if they
were typed. But this is just an illusion, because
it is very easy to violate the type distinctions we
have just created. [7, pp. 471]

Join points are also traveling on the exact same road.
From the completely untyped universe, where a point in
the program is a join point, a “seemingly typed” world has
emerged where an organization is imposed upon these com-
putational objects. Completely untyped points in the pro-
grams are now organized into these kinds or types of join
point based on their behavior. Embarrassing questions, sim-
ilar to those that Cardelli and Wegner [7] point out, are
asked about these computational entities. For example, can
we view these entities uniformly from a behavioral modifi-
cation point of view?

In the rest of this section, we discuss four problems that
arise partially due to the untyped view of join points.

3.2 Fragile Pointcuts
The first problem is that due to the lack of an alterna-

tive, principled way, to select a subset of these join points
for behavioral modification, current language designs em-
ploy mostly syntactic predicates as quantification mecha-
nism. These syntactic predicates are likely to change in the
face of base code modifications. Some have called this prob-
lem the fragile pointcut problem [41], others AOSD evolution
paradox [46].

To illustrate let us consider the source code in Figure 2.
The Figure shows two implementations. A simple List

implementation that uses an inner collection, provides a
method to add an element, and a method to add an array of
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1 class List {
2 collection innerList;
3 public bool add(Element e){ return innerList.add(e); }
4 public bool add(Element[] elist){
5 foreach(Element e in elist)
6 if(!innerList.add(e)) return false;
7 return true;
8 }
9 // Simple Element Counter Aspect

10 aspect Counter {
11 int counter=0;
12 after(): call(public bool List.add(..)){ counter++; }
13 }

Figure 2: A Simple List Implementation

1 class List {
2 collection innerList;
3 public bool add(Element e){ return innerList.add(e); }
4 public bool add(Element[] elist){
5 foreach(Element e in elist)
6 if(!add(e)) return false;
7 return true;
8 }
9 }

Figure 3: A traditionally encapsulated change in the
list implementation breaks the aspect

elements. A simple aspect Counter that counts the number
of elements in the list using an after advice. An alternative
implementation of the List class is shown in Figure 3 in
which the method to add multiple elements is modified to
use the method to add a single element multiple times. The
listing shows that a seemingly innocuous change that should
have been encapsulated in the class List is propagating to
the aspects of the system triggering changes that may not
be obvious without a through analysis of the encapsulated
implementation.

3.3 Quantification Failure
The second problem is what Sullivan et al [43] have called

quantification failure. In the context of the AO design of the
Hypercast system, they observed that “many join points
that have to be advised in the same way cannot be captured
by a quantified PCD, e.g., using wild-card notations. A sep-
arate PCD is required for each join point. There were about
180 places in the base code where logging was required. Most
of the join points do not follow a common pattern. Not only
is there a lack of meaningful naming conventions across the
set of join points, but also variation in syntax: method calls,
field setting, etc.” [43, pp. 170] In addition to that, they
observe that many join points of interest are not available
as interface elements but deeply embedded into the methods
such as in iteration and conditional statements. Expos-
ing such join points as additional language constructs [21,
38] seems to be a solution to the quantification failure, how-
ever, these constructs further couple the aspects with the
base code and expose the implementation details of the base
code violating encapsulation.

The root of quantification failure lies in existing tech-
niques for join point classification and quantification. These
techniques work by determining, for a given point in the
program, whether it is a kind of execution, call, field access,
etc. We can understand these techniques better by drawing
an analogy to the untyped set theory. Let J be the set of all

potential join points in a program. The join point classifica-
tion can be thought of as partitioning J into disjoint subsets⋃

Jkind = J , where kind ∈ KIND the set of different kinds
of join points such as method-execution, field-access, etc.
Some of these subsets may not be available for behavioral
modification in a given language semantics. For example, it-
eration, conditional, and most expressions are not available
in AspectJ.

The limitation of this view of join point classification,
where it is fixed by the language semantics, partially leads to
the quantification failure. The quantification failure arises
mainly because in the existing language models one may not
specify a user-defined decomposition of the base program.
As long as the developer utilizes the dominant decomposi-
tion based on classes and methods, current quantification
mechanisms work remarkably well and a large set of join
points can be selected using succinct pointcut expressions.
However, as soon as a different decomposition is needed to
modularize a concern, language models need explicit enu-
merations, pointcut expressions become verbose and more
fragile. Here by different decomposition, we mean a decom-
position of the base concerns that is not the same as the
dominant decomposition. Tarr and Ossher have called it
the tyranny of the dominant decomposition [45]. The irony
is that modularization of precisely these type of concerns is
driving the invention and the refinement of aspect-oriented
techniques.

Existing techniques for quantification first determine the
kind of join point selected and then further filters the results
based on other constraints such as matching on names. We
may think of evaluation of a pointcut expression P as a func-
tion matchKind : P → KIND composed with the function
matchJP : Jkind → {true, false}, where this function eval-
uates to true for all filtered join points. This is similar to
the function matchpcd defined by Wand et al [48, pp. 896].
The second part of this quantification technique is largely
syntactic. As discussed previously, the problem with syn-
tactic techniques is that they are likely to change in the face
of base code modifications.

3.4 Context Exposure Issues
The third problem is with being able to retrieve the right

context information from a join point and the fourth prob-
lem is with being able to retrieve a different set of contextual
information from different join points selected by the same
pointcut.

Current aspect languages provide an interface for access-
ing contextual (or reflective) information about a join point.
A fundamental problem is that this interface between the
join point and the aspects is fixed in current AspectJ-like
languages. An aspect can access the contextual information
at the join point using pointcuts such as this to access the
executing object (this), target to access the target object
(such as the target of a call), args to access the arguments
at a join point, etc. Alternatively, one can explicitly mar-
shal this information from an implicit argument, often called
thisJoinPoint, available to the advice, where other miscella-
neous information such as source code location, name, etc, is
also available. This rather limited interface does not satisfy
all usage scenarios.

Even the canonical concerns such as logging exhibit these
problems. For modularizing the logging functionality in a
program, the aspect developers need access to the context
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of the join points that are to be logged. This information
is often stored in local variables at the location of the join
point. However, local variables are not available to the ad-
vice as contextual information.

There are rational reasons for limiting the interface be-
tween the code being advised and the advising code. The
use of this interface introduces coupling between the design
of the advised and advising code. The thinner this interface
is the lower the coupling will be, resulting in perhaps easier
and independent evolution of these two designs. Extend-
ing the set of language constructs to include access to more
primitives also takes away regularity from the language de-
sign [32]. Not all such primitives will be valid for all kinds
of join points. As it is, current language constructs for re-
trieving contextual information are not completely regular,
e.g. this, target, and arguments are not available at all join
points [4]. However, in this work we show that without in-
troducing irregularity and additional arbitrary coupling be-
tween the join points and the aspects, it is possible to access
contextual information at the join point in a more flexible
way.

4. TYPE-BASED QUANTIFICATION
We argue that while talking about a join point, one should

not be concerned about its kind. Instead, one should ask
about its type, which leads to the question. What is the
type of a join point? Types have traditionally been used in
programming languages to constrain the interaction of the
rest of the world with an entity so that illegal operations on
the entity are eliminated through static or dynamic check.
Cardelli and Wegner aptly view it as a suit of armor [7]. We
observe that in the case of a join point, the rest of the world
(of aspect-like constructs and such) interacts with it through
the reflective information that is exposed by the join point.
The special aspect methods, advice, depend on this infor-
mation at the join point to perform additional behavioral
modifications.

Based on this observation, we define the type of a join
point as an explicitly defined record of the types of reflective
information exposed at the join point. A record is defined as
finite association of values to labels [6]. The view is similar
to that taken by Ligatti et al [31] and Clifton and Leavens [9]
in their semantics but has not appeared in aspect language
designs. The main argument is that advice and join point ex-
change data through the reflective information. Therefore,
they mush agree upon the cardinality and the type of data
that is to be exchanged. This view of join points hides the
underlying representation of the join points from its client,
limiting the interface to the explicitly exposed type.

To make these points concrete consider a classic exam-
ple [25], where the aim is to build a simple tool for editing
drawings comprising points, lines and other such figure ele-
ments (See Figure 4). The display always reflects the current
state of a figure element. In a typical implementation of this
simple tool, the concrete classes Point and Line implement
the interface FigureElement. The class Display manages
the display and provides a method update() for keeping the
state of figure elements consistent. The aim now is to mod-
ularize the policy that states that display must be updated
when the abstract state of a FigureElement changes.

In an aspect-oriented implementation of this example, an
aspect will select all points that change the abstract state
of all figure elements by writing pointcut expressions such

Figure 4: A Simple Drawing Application

as execution (FigureElement.set*(..)) || execution

(FigureElement.moveBy(..)), where the intention is to se-
lect the execution of mutator methods that start with set

and another mutator moveBy. This pointcut expressions will
select appropriate join points, if and only if all such points in
the program are systematically exposed, possibly by enforc-
ing a design rule to do so [20]. This implementation is prone
to fragility, quantification failure, and context exposure is-
sues. Even when a design rule is enforced, the developer of
a module has no local textual hint that she should expose
the join points by following the naming convention.

Consider an alternative, based on our ideas of typed join
points. This implementation contains a new existential type
[34] or type abstraction called FigureElementChange. The
declaration of the FigureElementChange type exposes a join
point of type Change. The join point type Change in turn
is defined as a record type {jpThis : FigureElement}. The
record type defines only one label jpThis that can be as-
sociated to values of type FigureElement. All conform-
ing implementations of the FigureElement type such as
the implementation of the Point and the Line class, are
also evolved to become the conforming implementations
of the FigureElementChange type. These implementa-
tions provide a concrete implementation of the join point
Change. In Java this would be equivalent to implementing
the FigureElementChange interface as well.

4.1 Selecting Join Points
Given the alternative described above, one would be

able to select all join points that contribute to a change
in a FigureElement by selecting all the classes that have
the type FigureElementChange. An expression such as
FigureElementChange+ can be used. This quantification
strategy based strictly on types would be far more robust to
base code changes, thus solving the fragile pointcut problem.

A module developers will have a principled way to provide
a concrete implementation of the join point, similar to open
modules [2]. As a result, the developer can now explicitly
expose even those program points that were not amenable
to syntactic quantification. This solves the problem of quan-
tification failure. The implementations of these join points
may point to different kinds of program points, eliminating
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interfaceMembers
: interfaceMethods

...
| jpDec;

jpDec
: joinpoint type identifier([formal_parameters]);

jpImpl
: [attributes] joinpoint type

identifier([argument_list])block

block
: {[statement list]}
| expression
| ; // For abstract join point implementations

Figure 5: Syntax of Join Point Declaration and Im-
plementation

the need for explicit enumeration.
Finally, letting the developer provide the implementation

of the join point, gives them the flexibility to expose the
right context information at these join points. In the draw-
ing editor example, the developer of Point, and Line class
is perhaps the right person to identify what constitutes a
FigureElement change, not the aspect developer. The same
is true for the example presented in Figure 2 and 3. The
responsibility to expose the desired join points and corre-
sponding context should rest with the developer of the class
List. If we are trying to modularize a concern such as log-
ging, a module perhaps encapsulates the knowledge about
the kind of events in that should be logged, and the kind of
messages that should be logged about these events. Provid-
ing a flexible typed means to expose join points solves these
problems.

Our proposal thus appears to solve the four problems with
aspect-oriented language design and usage that we docu-
mented in Section 3. In the next two sections, we will con-
firm these initial observations using the Eos-I language de-
sign and some representative examples.

5. LANGUAGE DESIGN
Eos-I is a version of Eos [39, 37], an aspect-oriented ex-

tension of C# [13], a .NET [33] language. Eos was the first
AspectJ-like language with first-class aspect instances and
instance-level advising. Later versions of Eos also unified
classes and aspects as classpects. Eos-I extends Eos with
constructs for type-based quantification. The rest of this
section presents the Eos-I language design model in detail.

5.1 Join Point Declaration
Eos-I adds a new construct join point declaration to Eos.

The grammar production, jpDec, in Figure 5 presents our
join point declaration construct. A jpDec has four parts.
The first, joinpoint is a new keyword added to the language
to disambiguate join point declarations from method and
event declarations. The second, type specifies the return
type at the join point. The third, identifier, specifies the
name of the join point declaration. The fourth optional part,
formalParameters, specifies the set and types of reflective
information exposed by the join point. The second and the
fourth part together define the type of the join point.

A type member declaration such as a class declaration,
an interface declaration, etc. may contain one or more join

1 interface FigureElementChange{
2 // All join points that contribute to an abstract
3 // state change in a FigureElement.
4 joinpoint void Changed(FigureElement jp_This);
5 }

Figure 6: The FigureElementChange interface

point declaration. If a join point declaration is contained in
an interface declaration, it may not provide a corresponding
join point implementation. If a join point declaration is
contained in an abstract class, it may optionally provide a
corresponding join point implementation.

Figure 6 shows an example join point declara-
tion Changed (line 4) inside an interface declaration
FigureElementChange (lines 5). In principle, this join
point declaration can also be included in the interface
FigureElement, but here we choose to use a separate in-
terface for clarity of presentation. The intention of this
join point declaration is to provide an abstraction for all
join points in the program that contribute to an abstract
state change in a figure element, such as a moving point,
line, etc. The type of this join point declaration is a record
{void, jpThis : FigureElement}. A join point is of this
type iff the return type at this join point is void and it ex-
poses a contextual element of type FigureElementChange.
Please note that at this time the semantics of the language
does not support subtyping. We will explore these directions
in future.

5.2 Join Point Implementation
A join point implementation serves to label contiguous re-

gion in a single lexical scope of the program as a join point.
It does not expand the interface of a module. Rather, it only
provides a concrete implementation for the join point decla-
rations that are explicitly exposed at the modules’ interface.
A join point implementation can label a list of statements,
or an expression. As we will discuss later, the capability to
address statements and expressions solves the quantification
failure problem.

Our approach has two benefits compared to earlier propos-
als on providing statement and expression-level join points
[21, 38] that allow pointcut expressions in external modules
to select statement and expression level join points for be-
havioral modification by advice. First, the implementation
of these join points is hidden from the design of the advis-
ing code by the typed interface. The advising code is never
coupled with the encapsulated details of the base code, only
with its interface. Second, a join point implementation pro-
vides explicit textual hint to the module developer, in the
module code itself that may reduce unintentional impact of
the base code changes on the aspect code.

The grammar production, jpImpl, in Figure 5 presents
our join point implementation construct. A jpImpl has
five parts. The first optional part, attributes, specifies at-
tributes or annotations for the join point implementations.
These annotations can also serve to quantify join points
similar to annotation-based pointcuts in AspectJ. Similar
to join point declaration the second, joinpoint, is a new
keyword added to the language to disambiguate join point
implementations from method and event declarations. The
third, type specifies the return type at the join point. The
fourth, IDENTIFIER, specifies the name of the join point dec-
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laration. The fifth, opt argument list, specifies the context
information that will be exposed by that join point. Finally,
the sixth part, joinpoint implementation is either a semi-
colon or an expression or a list of statements in the code
that constitute the join point shadow [23].

A type declaration explicitly specifies that it is part of a
crosscutting type hierarchy. For example, in Figure 7 the
class Point and Line declare to be part of the crosscut-
ting type hierarchy FigureElementChange by specifying that
they implement this interface (lines 1-2 and 18-19). When a
type declaration implements an interface I, in other words,
it claims to be of type I, it must provide implementations
for interface member declarations such as methods, events,
etc. If an interface declaration contains a join point declara-
tion, corresponding join point implementation must also be
provided. A key difference in semantics is that while a type
declaration may provide exactly one member implementa-
tion corresponding to each interface member declaration for
methods, events, etc; it may provide one or more join point
implementations for an interface join point declaration. It
must provide at least one, and may provide several imple-
mentations.

To make the ideas concrete, let us consider the class Point
and the class Line in Figure 7. These classes implements
the interface FigureElementChange and provides more then
one join point implementations for the interface join point
declaration FigureElementChange.Changed. Two join point
implementations for the class Point (lines 6-8 and 12-15)
and one join point implementation for the class Line (lines
22-25) are presented here. The rest are elided for presenta-
tion purposes. The first join point implementation encloses
the body of the method Point.SetX, declaring this region
in the program to be the join point shadow. The join point
implementation also specifies that the current object will be
exposed as the join point context jp This. Note that the
result of a more complex expression can also be exposed as
a context. All sub-expressions of this complex expression
must also be defined within the lexical scope of the join
point implementation.

6. ANALYSIS
In this section, we analyze our approach with respect to

two criteria: robustness against base code changes and the
ability to provide uniform access to reflective information
about the advised code to the advising code.

6.1 Robustness
For analyzing robustness against base code changes, let

us consider two simple pointcuts in our drawing application
in Figure 9. The purpose of these pointcuts is to expose
the abstract state transitions in the FigureElement so that
aspects can add behaviors at these state transitions [?]. The
first pointcut, taken from [20, pp. 56], is a syntactic point-
cut that uses regular expression such as set*(..) to select
all join points, whereas the second pointcut uses the type-
hierarchy FigureElementChange to aggregate all join points
implementations by the modules that are crosscut by this
type-hierarchy.

The syntactic approach wins hands down with respect to
the ease of the first time implementation. It is definitely
much easier for the programmer. By just writing a simple
regular expression, they can select join points throughout
the code base. On the other hand, using our approach a

1 class Point : FigureElement,
2 FigureElementChange{
3 int x, y;
4 // ...
5 void SetX(int x){
6 joinpoint Changed(this) {
7 this.x = x;
8 }
9 }

10 // Similarly SetY ...
11 void moveBy(int dx, int dy){
12 joinpoint Changed(this) {
13 this.x += dx;
14 this.y += dy;
15 }
16 }
17 }
18 class Line : FigureElement,
19 FigureElementChange{
20 protected Point P1, P2;
21 // ...
22 void SetP1(Point p1){
23 joinpoint Changed(this) {
24 this.P1 = p1;
25 }
26 }
27 // Similarly SetP2, moveBy, ...
28 }

Figure 7: The Point and the Line class implement
the interface FigureElement as well as the inter-
face FigureElementChange, and provide implemen-
tations for the join point declaration FigureEle-
mentChange.Changed.

Figure 8: The Crosscutting Type Hierarchy Fig-
ureElementChange is superimposed on the existing
hierarchy for improved quantification

1 /* A Syntactic Pointcut */
2 public pointcut joinpoint(FigureElement fe):
3 target(fe)
4 && (call(void FigureElement+.set*(..))
5 || call(void FigureElement+.moveBy(..))
6 || call(FigureElement+.new(..)));
7 /* Equivalent Pointcut that Utilizes the FigureElementChange
8 Type Hierarchy */
9 pointcut FigureElementChange(FigureElement fe):

10 FigureElementChange+.Changed(FigureElement fe);

Figure 9: Syntactic Quantification vs. Type-Based
Quantification
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programmer will have to systematically modify modules to
implement the FigureElementChange interface, as described
in the previous section.

However, the ease of selecting join points provided by syn-
tactic approaches may turn out to be a double-edge sword.
For example, consider the following evolutionary scenario.
Each composite FigureElement has to be extended to in-
clude a reference to the parent FigureElement for ease of
traversing the composite structure, e.g. Point is to be ex-
tended to include a reference to Line. A mutator setParent
and an accessor getParent for this reference are also added.
The syntactic pointcut in Figure 9 will also select the join
points call to mutator setParent for advising, which is in-
correct. Setting the reference to the parent, just for ease
of implementation, is not an abstract state transition for a
FigureElement. An aspect-oriented tool such as AJDT [1]
may warn the developer against such inadvertent selection
of join point by showing visual cues at the shadow of the
join point.

A solution is to explicitly exclude the calls to
setParent by adding a simple expression && !call(void

FigureElement+.setParent(..); however, this solution is
not desirable due to two reasons. First, this enumerated
list of exceptions can get large in realistic systems. Second,
each item in this list of exception introduces a dependency
between the base code and the aspect code, thereby increas-
ing the coupling between the two.

In our approach, this change will not affect the selected
join points. The calls to method setParent are not au-
tomatically selected by the pointcut. However, in cases
where the join points exposed by a module are affected
by a change, the developer may choose to restrict or ex-
tend the join point implementations in the module. For ex-
ample, while changing a FigureElement subclass to include
the methods setParent and getParent, the developer may
choose to extend the implementation of the join point decla-
ration FigureElementChange.Changed for that subclass to
include the calls to setParent.

In summary, it is easier to separate a crosscutting concern
using syntactic quantification; however, changes that affect
the advised code have a direct impact on the advising code
implementation. Some of these impacts may potentially
break the advising code. On the other hand, type-based
quantification requires preparation of the code to be advised
to systematically superimpose a crosscutting type-hierarchy.
However, advising code is shielded from the changes in ad-
vised code by the type-hierarchy. Our approach is thus
more robust compared to syntactic quantification against
base code changes.

6.2 Uniform Reflective Access
For the purpose of this analysis, let us consider a canonical

concern logging. Method call tracing is easily implemented
using a combination of quantification expression such as
call(* *.*(..)), which selects all desired join points, and
the standard reflective interface thisJoinpoint that is avail-
able to the advising code in AspectJ-like languages. The
implementation of the logging concern is, however, signifi-
cantly difficult using syntactic quantification because a cor-
rect logging implementation requires access to the join point
specific messages. The join point specific messages are of-
ten constructed from the local information available in the
lexical scope of the join point. This information is not avail-

1 interface IRecordable{
2 // All join points that contribute to an event
3 // that developer deems worthy of logging.
4 // Reflective Information: message represents
5 // the string to be logged for that join point.
6 joinpoint void Log(string message);
7 }

Figure 10: The IRecordable interface

1 class Point : FigureElement,
2 FigureElementChange, IRecordable{
3 public int X, Y;
4 public Point(int X, int Y){
5 joinpoint Log(‘‘Creating a Point ’’ + X.ToString()
6 +‘‘,’’ + Y.ToString) {
7 this.X = X;
8 this.Y = Y;
9 }

10 }
11 // ...
12 }
13 class Line : FigureElement,
14 FigureElementChange, IRecordable{
15 protected Point P1, P2;
16 public Line(Point P1, Point P2){
17 joinpoint Log(‘‘Creating a Line between ’’ + P1.ToString()
18 +‘‘ and ’’ + P2.ToString) {
19 this.P1 = P1;
20 this.P2 = P2;
21 }
22 }
23 // ...
24 }

Figure 11: The Point class implements the IRecord-
able interface exposing the events to be logged as
well as corresponding messages. The Line class also
implements this interface exposing context specific
messages.

able to the advice. Please see Sections 3.3 and 3.4 for more
discussion.

Figure 10 and 11 show an implementation of the log-
ging concern using type-based quantification. To enable
logging in the drawing application, a new type-hierarchy
IRecordable is defined. This type-hierarchy provides a join
point declaration Log of type {void, string : message}. The
join point declaration means that the conforming join point
implementations will expose one reflective variable of type
string, which will contain the message to be logged. The
class Point and Line also declare to be of type IRecord-
able by implementing this interface (lines 2 and 14). These
classes may provide several implementations of the join
point declaration Log.

Two such join point implementations are shown in the
figure. Both these join point implementations are contained
in the class constructors for the Point and the Line class.
In each case, a class specific message is created using the
variables available in the lexical scope of the join point im-
plementation. Note that both messages are unique to the
advised code, however, the advising code uses the public re-
flective variable message made available by the crosscutting
type hierarchy to uniformly access these messages.

7. DISCUSSION
Our proposal would not be complete without the discus-

sion of obliviousness [16, 17]. Obliviousness is a widely
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accepted tenet for aspect-oriented software development. In
an oblivious AOSD process, the designers and developers of
base need not be aware of, anticipate or design code to be
advised by aspects. This criterion, although attractive, has
been questioned by others for various reasons. Clifton and
Leavens [10] were the first to point out that a category of
aspects that they call assistants should not be used oblivi-
ously. There is at least some consensus among researchers
that complete obliviousness between base and aspect de-
signers and developers may not be possible [2, 8, 11, 12,
20, 27, 43]. To understand the behavior of a module in the
presence of aspects and for independent evolution of base
and aspect code, one need to first find and understand all
aspects that apply to that module. Tools such as AspectJ
Development Tools (AJDT) alleviate the problem [1] but do
not completely solve it.

According to Sullivan et al [43], there are many variants
of the notion of obliviousness, language-level obliviousness,
feature obliviousness, designer obliviousness, and pure obliv-
iousness. Language-level obliviousness comes from intro-
ducing quantification mechanisms in the language. Feature
obliviousness is when designer of the base code is aware of
the presence of aspects but unaware of the features that the
aspect implements. Designer obliviousness comes when the
base code designer can be unaware of the presence of an as-
pect. Pure obliviousness is when both base and aspect code
designers are symmetrically unaware of each other. Our pro-
posal on type-based quantification discards designer oblivi-
ousness. The base code designers have to prepare their code
for advising by aspects. However, similar to XPI’s [43, 20] it
preserves feature obliviousness. The base code designers can
be completely unaware of spectators [8] or harmless aspects
[12] that quantify on the interfaces that they implement.

In our drawing example, the FigureElement expose the
abstract event “A change in the FigureElement” without
being aware of the type of aspects that may be interested
in advising such abstract events. The example that we dis-
cussed was the modularization of the display update policy,
but the base code designers need not make separate prepa-
ration for a persistence policy that updates the persistent
representation of the FigureElement, whenever there is a
change. Neither does she need to be aware of an integration
relationship[44] between a visual and a textual relationship
of the FigureElement, similar to that between Word and
Visio in the fault-tree analysis tool Galileo [42], where the
representations are to be consistent with each other. All
these policies may be implemented simultaneously as differ-
ent aspects without the base code designer being aware of
any of them and without these aspects being dependent on
the details of the advised base code.

8. RELATED WORK
Aldrich’s proposal on Open Modules[2] is closely related

to this work [2]. Both approaches have two similar advan-
tages. First, like our work, open modules also allows a class
developer to explicitly expose pointcuts for behavioral mod-
ifications by aspects. The implementations of these point-
cuts remain hidden from the aspects. As a result, the im-
pact of base code changes on the aspect is reduced. Second,
with appropriate language extensions, an explicitly exposed
pointcut may also expose the right contextual information
uniformly across the join points selected by the pointcut.
However, open modules exacerbates the problem of quan-

tification failure. Each explicitly declared pointcuts has to
be enumerated by the aspect for advising. On the other
hand, our approach significantly simplifies quantification.
Instead of manually enumerating the join points of inter-
est, one can use the crosscutting type-hierarchy for implicit
non-syntactic selection of join points.

Similar to Open Modules, a programmer using type-based
quantification need to systematically modify modules in a
system that a given concern crosscuts to expose join points
that are to be advised. These modules will be modified
to conform to the crosscutting type hierarchy. For exam-
ple, the modules Line, Point etc. will be modified to con-
form to the FigureElementChange type hierarchy. To con-
form to the type-hierarchy the modules Line and Point will
implement the interface FigureElementChange. They will
each provide an implementation of the exposed join points
Change. However, unlike Open Modules once these modules
have declared to be part of the FigureElementChange hier-
archy, no awkward enumeration of explicitly exposed join
points is necessary for quantification. An expression such
as FigureElementChange+.Change aggregates these exposed
join points.

Ongkingco et al ’s [35] work on adding Open Modules to
AspectJ [25] is similarly related to our work. Ongkingco et al
’s [35] propose language constructs such as friend, advertise,
and expose to allow unrestricted access to join points inside
or external to a module with varying degree of freedom.

Sullivan et al. [43] recently proposed a methodology for
aspect-oriented design based on design rules. The key idea
is to establish a design rule interface that serves to decouple
the base design and the aspect design. These design rules [5]
govern exposure of execution phenomena as join points, how
they are exposed through the join point model of the given
language, and constraints on behavior across join points (e.g.
provides and requires conditions [20]). These design rule
interfaces were later called crosscut programming interface
(XPI) by Griswold et al. [20].

XPIs prescribe rules for join point exposure, but do not
provide a compliance mechanism. Griswold et al. have
shown that at least some design rules can be enforced au-
tomatically. In this work, we present a principled quan-
tification technique that might help to enforce XPI design
rules. The key idea is to superimpose a crosscutting type
hierarchy over the OO type hierarchy of the base program.
The quantification then becomes equivalent to using these
crosscutting types. Enforcing design rules become equiva-
lent to type checking of programs. One can then use this
crosscutting type hierarchy for quantification instead of or
in addition to syntax-based quantification.

Another related area is implicit invocation [19] and
mediator-based design styles [44]. In this design style, in
addition to providing methods that can be called, modules
declare and announce events. Other modules can register
operations to be invoked by events. An invocation rela-
tion is thus created without introducing names dependences.
Our approach for type-based quantification (as well as Open
Modules [2] has the similar rationale that visible actions of a
modules should be part of its interface, and interfaces should
be explicit. The notion of superimposing a crosscutting
type-hierarchy that our work introduces is, however, novel.
This type hierarchy provides a method for easy quantifica-
tion for behavioral modifications. Similar to Open Modules,
in implicit invocation systems, a developer has to resort to

8



explicit and possibly error-prone enumerations to achieve
the same results.

9. CONCLUSION AND FUTURE WORK
The main contribution of this work is a mechanism for

type-based quantification in aspect-oriented programs, in-
cluding the Eos-I language, a compiler able to handle pro-
duction code, and evidence that suggests that this synthesis
has potentially significant benefits in aspect-oriented pro-
gram design. In particular, we showed that type-based
quantification improves the robustness of the advising code
against base code changes, and makes it easier for the advice
constructs to uniformly access reflective information about
the join point without breaking the encapsulation of the
advised code. Our current proposal offers new directions
to investigate contracts on potential advice constructs at
a join point similar to XPI’s provides and requires clauses.
Unlike XPI’s clauses that are enforced by compile-time As-
pectJ constructs such as declare and run-time check using
advice methods, we will investigate contracts in the style
of pre-and post-conditions [24] enforced by Java Modeling
Language (JML) [30] compiler on the join point declarations
at the interface. The pre-condition of the join point declara-
tion serves as the pre-condition to advice invocation, similar
to the provides clause of XPI’s. The post-condition of the
join point declaration serves as the post-condition to advice
invocation.
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