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ABSTRACT
Today’s aspect-oriented programming (AOP) languages pro-
vide software engineers with new possibilities for keeping
conceptual concerns separate at the source code level. For a
number of reasons, aspect weavers sacrifice this separation in
transforming source to object code (and thus the very term
weaving). In this paper, we argue that sacrificing modularity
has significant costs, especially in terms of the speed of in-
cremental compilation and in testing. We argue that design
modularity can be preserved through the mapping to object
code, and that preserving it can have significant benefits in
these dimensions. We present and evaluate a mechanism for
preserving design modularity in object code, showing that
doing so has potentially significant benefits.

1. INTRODUCTION
Aspect-oriented programming (AOP) techniques [9] sepa-

rate traditionally non-modular (crosscutting) concerns dur-
ing the analysis, design and implementation phases. In the
compilation phase, however, to conform to existing execu-
tion models 1, implementations of the crosscutting concerns
are scattered and tangled again with the base code2 (See
Figure 1). This loss of separation of concerns is a fundamen-
tal problem that leads to complications in post compilation
phases.

At the minimum, this problem makes efficient incremental
compilation and unit testing of AO programs challenging.
The best AO compilers available today take significantly
more time compared to their object-oriented counterparts
for incremental compilation. A recent report on the appli-
cation of AspectJ [8] to the development of a J2EE web ap-
plication for Video Monitoring Services of America showed
that incremental compilation using the AspectJ compiler
usually takes at least 2-3 seconds longer than near instant
compilation using a pure Java compiler [12]. It also showed
that if an aspect is changed the incremental compilation re-
sorts to full compilation.

The report observed that due to the increase in incremen-
tal compilation time, human attention can wander and it

1By execution model, we mean infrastructure for which a
high-level language compiler generates executable code e.g.
in the context of AspectJ [8] it would mean the Java Virtual
Machine (JVM) [14] and for Eos [20] it would mean the
.NET Framework [15].
2This scattering and tangling at the object code level varies.
Static weavers transform the code to insert calls to advice,
whereas dynamic approaches transform the code to insert
hooks.

can take time to re-contextualize after the compilation. This
problem is particularly pronounced for the full builds, which
tempt the programmer to switch to another task entirely (e.g.
email, Slashdot headlines).

The significant increase in incremental compilation time
is because when there is a change in a crosscutting concern,
the effect ripples to the fragmented locations in the com-
piled program forcing their re-compilation. Note that the
system studied by Lesiecki [12] can be classified as a small
to medium scale system with just 700 classes and around
70 aspects. In a large-scale system, slowdown in the de-
velopment process can potentially outweigh the benefits of
separation of concerns.

Besides incremental compilation, loss of separation of con-
cerns also makes unit testing of AO programs difficult. The
dependence of aspects on other classes and vice versa makes
it harder to test them separately. AOSD has shown real ben-
efits in its ability to achieve a separation of some tradition-
ally non-modular concerns. In order to continue receiving
these benefits in large-scale systems without impeding the
design-build-test cycle common in agile development pro-
cesses, it is essential to address these issues effectively.

The tyranny of the dominant decomposition [23], based
on files, modules, classes, in the execution models, and the
conformance requirement imposed on AO compilers, affects
the efficiency and the complexity of post-compilation phases.
The design decision to produce an output that conforms to
the existing execution models was perhaps a genuine effort
to attract early adopters by lowering the barrier to entry.
Now, the potential shown by the technology as well as trends
towards industrial adoption [21] warrants investigating the
validity of this design decision and its impacts.

This problem is not unique to AOSD; rather it pertains in
general to the mechanisms for separation of concerns (SoC)
(See Figure 2). Consider an analogy in the procedural ab-
straction world. In an instruction set architecture (ISA) that
does not support method calls, one could still decompose a
program into a set of procedures in the analysis, design and
implementation phases. The compiler would then translate
these programs into a monolithic set of instructions by in-
lining the procedure bodies.

For these programs, benefits of procedural abstraction
such as modular reasoning, parallel development, etc., are
observed in analysis, design and implementation phases. In
later phases, however, it is difficult to utilize the benefits
because there is no clear separation anymore. For exam-
ple, changes in the source code of a procedure affect all call
sites of the procedure, because it is in-lined. Incrementally
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Figure 1: Tracing Concerns through the Life Cycle
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Figure 2: Support at the Interface Improved the Benefits of SoC Techniques

compiling these procedures is thus harder and more time
consuming. Unit testing such procedures is also a challenge.
The support for method call in ISAs, along with the inven-
tion and refinement of linking technology has more or less
solved these problems for procedural decomposition.

Consider another analogy in the object-oriented world.
Like procedural abstraction, object-orientation can be em-
ulated in the analysis, design and implementation phases
without the support for objects and dynamic dispatch by
translating the OO program into a procedural program that
uses methods and structures; however, loosing the trace-
ability of concerns during compilation does affect post-
compilation phases. The problem is solved by providing
support for class and virtual method calls abstractions at
the interface.

For both SoC techniques, emergence of an abstraction
mechanism at the interface between the language compilers
and execution models extended the benefits of SoC tech-
niques to post compilation phases (See Figure 2). These
mechanisms pushed the decoupling between concerns fur-
ther down the execution model, abstracting it behind the
interface. Encouraged by the history of the past two major
SoC techniques in this work we present a new interface be-
tween aspect-oriented compilers and execution models. Our
interface provides new primitives to represent crosscutting
concerns. This interface governs the code that a high-level
language compiler generates and the semantics of the prim-
itives that the execution model provides. It abstracts the
details of realization of crosscutting mechanisms in the exe-
cution model from the language compiler implementation.

In the next section, we provide motivation for our ap-
proach. The Section 3 discusses some related work. Section
4 describes our approach in detail. We also present a pre-
liminary evaluation of our approach. Some limitations of
our approach and future research directions are discussed in
Section 5. Section 6 concludes.

2. MOTIVATION
To motivate our approach, we first demonstrate common

static weaving techniques through a simple example applica-
tion (See Figure 3). We have implemented this application
using Eos [7, 18]. Eos is an aspect-oriented extension of
C# for Microsoft .NET Framework [15] that implements the
unified-aspect model proposed by Rajan and Sullivan [20].
Rajan and Sullivan showed that the AspectJ notions of as-
pect and class can be unified in a new module construct that
they called the classpect, and that this new model is signif-
icantly simpler and able to accommodate a broader set of
requirements for modular solutions to complex integration
problems [22].

The binding construct in this model allows modularization
of crosscutting concerns. A binding is a mechanism to select
a subset of join points in the execution of the program and
associate a method to execute at those points. The subset of
join points selected by the binding are called subjects of the
join point. The method that is associated by the binding
to execute at these join points is called the handler of the
binding.

Our application has two classpects: HelloWorld (shown
inside the white box) and Trace (shown inside the grey box).
The classpect Hello declares a method Main that prints the
string Hello on the screen and exits. The classpect Trace
declares a pointcut traceMethods to select all method exe-
cution join points in the program and a static binding. The
effect of declaring the binding is that the handler method
trace is invoked at all the subject join points selected by the
pointcut traceMethods and prints the string trace() called.
As a result, after the execution of the method Main the
string trace() called is printed.

We compiled this simple application using the Eos com-
piler [19]. We disassembled the assembly 3 using ildasm, the
disassembler for .NET Framework. Figure 4 shows the dis-

3Assembly is a .NET Framework term for an executable.
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Figure 3: A Simple Aspect-Oriented Application

assembly. We have used the common intermediate language
(CIL) notations to represent the disassembly. Please note
that the weaving techniques for static bindings is similar to
that of AspectJ-like languages [8], so the intermediate code
shown in Figure 4 is a representative of the current weaving
techniques.

The Figure shows the disassembly of Hello in the white
box and the disassembly of the Trace in the grey box. As
can be observed, the intermediate code to invoke Trace at
join points is inserted into the class Hello in the method
Main. As a result, the concern modularized by the classpect
Trace ends up being scattered and tangled with the Hello
concern. This scattering and tangling directly affects incre-
mental compilation. For example, let us assume that the
source code for the classpect Trace changes, so that it now
selects all execution join points where the method name be-
gins with a Set for example SetX, SetY, etc. The method
Main in the Hello class is no longer selected by this pointcut
for advising.

This change will trigger the incremental compilation of
Trace. In addition, it will also trigger the compilation of
Hello to reflect the changes in the pointcut. The full re-
compilation of this simple system is not a huge burden on
the program; however, in nontrivial systems the overhead of
compilation can be significant enough to disrupt the build-
test-debug cycle common in current agile software develop-
ment processes. The re-compilation time is affected by two
factors. First, increase in the number of crosscutting con-
cerns in a large-scale system. Second, increase in the num-
ber of modular concerns that these crosscutting concerns
are scattered and tangled with. For a change in a crosscut-
ting concern such as tracing or logging, recompilation of the
entire system will be necessary.

We attribute this increase in incremental compilation time
to the scattering and tangling of the concerns in the inter-
mediate code. If the separation of concerns would have been
preserved in the intermediate code, it would have been suffi-
cient to just recompile the changed concerns in the system.
The nature of the concerns modularized by aspect-oriented
techniques dictates that they execute at scattered and tan-
gled points in the execution of the program. The loss of
separation at runtime thus seems unavoidable; however, we
argue and show through preliminary results that we can do
better.

Figure 4: Disassembled HelloWorld

3. RELATED WORK
Three closely related and complimentary research ideas

are run-time weaving, load-time weaving and virtual ma-
chine support for aspect-oriented programming. We will
discuss these ideas in detail below.

There are several approaches for run-time weaving such
as PROSE [17], Handi-Wrap [4], Eos [19], etc. A typical
approach to runtime weaving is to attach hooks at all join
points in the program at compile-time. The aspects can
then use these hooks to attach and detach at run-time. An
alternative approach is to attach hooks only at potentially
interesting join points. In the former case, aspects can use
all possible join points, excluding those that are created dy-
namically so the system will be more flexible. The disad-
vantage is the high overhead of unnecessary hooks. In the
later case, only those aspects that utilize existing hooks can
be deployed at run-time, but the overhead will be minimal
for a runtime approach.

Eos uses the first model, i.e. only instrument the join
points that may potentially be needed. Handi-Wrap uses
the second model, making all join points available through
wrappers. PROSE indirectly uses the second model, expos-
ing all join points through the debugger interface. PROSE
allows aspects to be loaded dynamically without restarting
the system. An additional advantage of indirectly expos-
ing join points through debugger interface is that new join
points (created by reflection) are registered automatically.As
observed by Popovici et al. [17] and Ortin et al. [16], how-
ever, performance in both cases is a problem.

A load-time weaving approach delays weaving of crosscut-
ting concerns until the class loader loads the class file and
defines it to the virtual machine [13]. Load-time weaving ap-
proaches typically provide weaving information in the form
of XML directives or annotations. The aspect weaver then
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revises the assemblies or classes according to weaving direc-
tives at load-time. Often a custom class loader is needed.

There are load-time weaving approaches for both Java and
.NET framework. For example, AspectJ [8] recently added
load-time weaving support. Weave.NET [11] uses a similar
approach for .NET framework. The JMangler framework
can also be used for load-time weaving [10]. It provides
mechanisms to plug-in class-loaders into the JVM.

A benefit of the load- and run-time weaving approaches is
that they delay weaving of aspect-oriented programs. It may
be possible to improve incremental compilation using these
approaches, although we do not currently have any evidence
to confirm or to deny. A contribution of our approach might
also be perceived as delaying weaving, however, we view the
interface and corresponding contracts between the language
designs and execution model designs as the main contribu-
tion of our work. The load-time weaving approaches do not
provide these benefits.

Steamloom [5] extends the Jikes Research Virtual Machine
(RVM), an open source Java virtual machine [1]. Tradi-
tional approaches for supporting dynamic crosscutting in-
volve weaving aspects into the program at compilation.
Steamloom moves weaving into the Virtual Machine (VM),
which allows preserving the original structure of the code af-
ter compilation and shows performance improvements of 2.4
to 4 times when compared to AspectJ. It accomplishes this
by modifying the Type Information Block to point methods
to a stub that modifies the existing bytecode to weave in the
advice.

Our approach and Steamloom are in some sense com-
plimentary. Similar to Steamloom, our approach also ad-
vocates support for crosscutting in the execution models.
Steamloom investigates techniques to improve the perfor-
mance of these crosscutting mechanisms provided by the
execution model, whereas, our approach focuses on sepa-
rating the compiler implementations and execution model
implementations by defining an interface between the two.
Our focus is on providing the basic mechanisms at the in-
terface that can be used as primitives by compiler imple-
mentations. Our approach thus potentially allows multiple
language models to use the same VM and/or multiple VMs.
Each of these VMs may have their own method of weaving.

Steamloom, however, restricts the type hierarchy of as-
pects. An aspect must inherit from a special class. In
languages like Java, this restriction burns the only avail-
able inheritance link. Our approach does not impose any
restrictions on programming language constructs, leaving
those design decisions to programming language designers
and compiler implementers.

In the next section, we will discuss our approach to pre-
serve separation of concerns through the compilation pro-
cess. We will then discuss the implementation of the Hel-
loWorld application using our approach.

4. OUR APPROACH AND PRELIMINARY
EVALUATION

We have developed an improved approach to aspect-
oriented compilation. The basis of our approach is a new
interface to represent crosscutting abstractions between the
HLL compiler implementation and the runtime environ-
ment. This interface abstracts the realization of the cross-
cutting behavior at run-time from the HLL compiler im-

bind
1. Pops top two values from the stack: pat-
tern and delegate
2. Semantics: After this atomic instruction
is complete, for every join point matching the
pattern, the delegate is invoked.

remove
1. Pops top two values from the stack: pat-
tern and delegate
2. Semantics: After this atomic instruction
is complete, if there was a binding between
the delegate and the pattern, it is removed.

Figure 5: Extensions to the combined intermediate
language (ECIL)

plementations. The interface governs the intermediate code
that the HLL compiler can generate and the semantics of
the crosscutting primitives that it can expect.

Our interface provides two primitives, bind and remove,
in the form of extended CIL instructions (See Figure 5). We
call this new intermediate language ECIL for extended CIL.
The bind and remove instructions abstract association and
disassociation of advice with join points respectively. The
bind instruction expects the delegate to a method and the
pattern to select join points as the top two items on the
stack. The pattern is equivalent to a pointcut expression.
The effect then is to associate the delegate to execute at all
join points selected by the pattern. Similarly, the remove
instruction takes the delegate and the pattern and puts an
end to the association between the join points selected by
the pattern and the delegate.

To illustrate, let us revisit our HelloWorld example. The
intermediate code for the application in ECIL is shown in
Figure 6. Like before, the disassembly of classpect Hello
is shown in the white box and the disassembly of classpect
Trace is shown in the grey box.

Instead of explicit callbacks in the intermediate code for
Hello, a set of association instructions are generated in the
intermediate code for Trace. Note that we are translating a
static binding that affects all instances of Hello. To model
the semantics of static binding, a set of association instruc-
tions are inserted in the static constructor of Trace. The
constructor pushes a delegate to the method trace on to the
stack followed by the string after execution (any.any(..)).
The bind instruction follows these two push instructions. As
a result, when the type Trace is initialized, the handler trace
is associated to execute at the selected subject join points.

Our example demonstrates that the separation of concerns
is preserved for modules represented in ECIL. The code for
Hello is free of the callbacks to the trace method in the
Trace classpect. As a result a change in Hello, which is not
a crosscutting concern, will only affect the intermediate code
representation of the Hello module. Similarly, a change in
Trace, which is a crosscutting concern, will only affect the
intermediate code representation of the trace module. The
changes are thus traceable to a limited number of modules at
the intermediate code level, resulting in an improved incre-
mental compilation time compared to existing approaches.

The example we presented above demonstrates static
weaving. The bind/remove primitives can also be used for
runtime weaving (See Figure 7). The figure shows a varia-
tion of our HelloWorld application. Now we want to enable
and disable tracing at runtime. To do that, the modified
classpect Trace provides two methods, On and Off. The
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Figure 6: ECIL version of HelloWorld

ECIL representation of method On consists of instructions
to push the delegate to the handler and the pattern on the
stack followed by the bind instruction (similar to the static
constructor implementation in the static tracing example).
The method Off also consists of instructions to push the
delegate and the pattern followed by the remove instruc-
tion. The semantics of bind and remove ensures that calling
On activates the tracing and calling Off deactivates it.

We argue that providing abstractions to represent cross-
cutting concerns at this level has two potential benefits.
First, it preserves the separation of concerns at the interme-
diate code level. Second, it allows for separate development
of aspect-oriented compilers and runtime environments us-
ing and supporting the new interface. We also showed that
both static and runtime advising are supported.

Please note that at this time we have explicitly decided
not to support static crosscutting mechanisms such as inter-
type declarations. There are two reasons behind this design
decision. First, in most inter-type declarations there is a
one-to-one explicit mapping between the classes and the as-
pects. Therefore, the impact of changes in the aspect can
be statically traced to a very small number of classes. As
a result, the increase in compilation time is not significant.
Second, inter-type declarations can be emulated using par-
tial classes in C# version 2.0 [6].

5. LIMITATIONS AND FUTURE WORK
The current version of our interface has at least two known

limitations. First, we have not yet developed a statically ver-
ifiable and type-safe mechanism to support various different
types of join points and pointcut expressions. Currently, the
pattern is specified as a string. For example, a string execu-
tion(any any.Set(..)) will select all method execution join
points for which the method name is Set. The correctness of
this string cannot be checked statically at the intermediate
code level. However, it doesn’t prevent the HLL compilers
from providing an AspectJ-like pointcut sublanguage, stat-
ically verifying the pointcut expression supplied by the user
and then generating the verified pointcut as a string in the

Figure 7: Implementing Runtime Advising in ECIL

intermediate code. Second, current version of our interface
does not support instance-level weaving [19]. Future exten-
sions will address these limitation.

In the future, we plan to complete three tasks. First,
we will address the limitations, mentioned above and those
pointed out by the workshop participants, in the design of
our interface. Second, we plan to design and implement an
extension to the Shared Source Common Language Infras-
tructure (SSCLI) [3] to support ECIL (for Extended CIL) to
provide an example interface in Microsoft .NET context. In
particular, the just in time (JIT) compiler will be extended
to interpret ECIL. We plan to use the Phoenix infrastruc-
ture [2] to ease development of this extended JIT compiler.
The Eos compiler [7] will also be extended to generate ECIL.

6. CONCLUSION
In this work, we argued that the loss of separation of

concerns during compilation makes post-compilation phases
challenging. We proposed a solution in the form of an inter-
face between the high-level language compiler implementa-
tions and the execution models. Our interface specifies the
intermediate code that the compiler can generate and the se-
mantics of crosscutting primitives it can expect. We further
demonstrated through a simple example that both static
and runtime weaving can be expressed in terms of these
primitives. We also observed that separation of crosscutting
concerns is preserved in the intermediate modules that use
these primitives. We speculate, but have not systematically
tested yet, that preserving the separation of concerns will
significantly improve the incremental compilation time.

Contingent upon successfully addressing the remaining
challenges, we hypothesize that this research might make
two fundamental advances in the theory of AOSD. First, it
may demonstrate that preserving separation of concerns, as
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far out in the software development process as possible, has
tangible benefits, and second, it may provide an improved
compilation and execution model for AOP. We claim that it
might have at least three tangible benefits. First, the im-
proved aspect compilation and execution model will consid-
erably decrease the incremental compilation time. Second,
it will ease unit testing of aspect programs. Third, it will
significantly reduce the complexity of aspect-oriented com-
pilers making new language implementations easier. The
approach promises to solve many other problems in AO ap-
proaches today such as static weaving performance, compat-
ibility with the existing tool chain, better run-time perfor-
mance, cross AO-language compatibility, improved pointcut
expressivity, efficient run-time weaving support, etc, but we
have not thoroughly investigated these impacts.

The decoupling between language compilers and the exe-
cution model achieved by our interface also has the potential
to enable independent research in these areas. Simpler as-
pect language designs and compiler implementations might
be realized without spending significant time on the opti-
mization of the underlying AO execution models. Novel op-
timization mechanisms for the underlying execution models
can be developed independent of the language design as long
as it conforms to the interface.
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