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Abstract— Machine Learning (ML) software has been widely
adopted in modern society, with reported fairness implications for
minority groups based on race, sex, age, etc. Many recent works
have proposed methods to measure and mitigate algorithmic bias
in ML models. The existing approaches focus on single classifier-
based ML models. However, real-world ML models are often
composed of multiple independent or dependent learners in an
ensemble (e.g., Random Forest), where the fairness composes in
a non-trivial way. How does fairness compose in ensembles? What
are the fairness impacts of the learners on the ultimate fairness
of the ensemble? Can fair learners result in an unfair ensemble?
Furthermore, studies have shown that hyperparameters influence
the fairness of ML models. Ensemble hyperparameters are more
complex since they affect how learners are combined in different
categories of ensembles. Understanding the impact of ensemble
hyperparameters on fairness will help programmers design fair
ensembles. Today, we do not understand these fully for different
ensemble algorithms. In this paper, we comprehensively study
popular real-world ensembles: bagging, boosting, stacking and
voting. We have developed a benchmark of 168 ensemble models
collected from Kaggle on four popular fairness datasets. We
use existing fairness metrics to understand the composition of
fairness. Our results show that ensembles can be designed to be
fairer without using mitigation techniques. We also identify the
interplay between fairness composition and data characteristics
to guide fair ensemble design. Finally, our benchmark can be
leveraged for further research on fair ensembles. To the best of
our knowledge, this is one of the first and largest studies on
fairness composition in ensembles yet presented in the literature.

Index Terms—fairness, ensemble, machine learning, models

I. INTRODUCTION

Machine learning (ML) is ubiquitous in modern software
today. Due to the black-box [1] nature of ML algorithms and
its applications in critical decision-making [2], [3], fairness
in ML software has become a huge concern. Measuring ML
fairness [4]–[7] and mitigating the discrimination [5], [8],
[9] has been studied extensively. Recent work in software
engineering has shown the need to produce fair software and
detect bias in complex ML software environments [10]–[13].

Prior research has mostly focused on fairness in standalone
classifiers (e.g., Logistic Regression, SVM) [1], [14], [15].
However, a class of ML models called ensemble models are
becoming increasingly important in practice today due to their
superior performance across a multitude of ML & real-life
challenges [16]–[20], and better generalization on unseen data,

especially in smaller datasets [18], [21], [22]. Ensemble mod-
els combine the predictions of multiple base learners to make
the final prediction, e.g., Random Forest uses a large number
of decision trees, with the majority class the final output.
Ensemble models are the most mentioned ML algorithms on
Kaggle [23] and in previous SE works on fairness, ensemble
models comprise more than 80% of the total models [12], [13].
Like traditional ML models, ensemble models can also suffer
from unfairness problem that discriminates against population
subgroups based on race, gender, etc. Although many fairness
mitigation techniques [24], [25] exist, they do not always
generalize well [26]–[28]. Therefore, if we better understand
the fairness composition in ensembles, we can design fair
ensemble models without applying mitigation techniques. In
this paper, we have conducted an empirical study to understand
the composition of fairness in ensembles and the interplay of
their properties with fairness.

Recently, multiple works have shown that ensembles can
be leveraged to enhance fairness and mitigate bias in ML
models [28]–[30]. Grgic-Hlaca et al. first explored fairness
properties of random selection ensemble, only theoretically
[31]. Bower et al. explored how fairness propagates through a
multi-stage decision process like hiring [15]. Similarly, Dwork
et al. introduced a framework to understand the composition of
fairness in ensembles that only utilize AND, OR operators to
make a decision, e.g., two credit bureaus’ (AND) report a score
to determine loan eligibility [4]. Feffer et al. studied how en-
sembles and bias mitigators can be combined using modularity
to improve stability in bias mitigation [28]. Therefore, it is ev-
ident that fairness in ensembles and their composition is non-
trivial. Moreover, prior works in SE have shown the impact of
training processes such as hyperparameter optimization, data
transformation, etc., on the fairness of ML software [12], [25],
[32]. We postulate that ensemble hyperparameters also impact
unfairness in ensembles, and failure to study them can amplify
bias. However, ensemble hyperparameters are different than
typical ML model hyperparameters as they dictate the design
of the ensemble, e.g., number of learners, learning method,
etc. However, no empirical study has been conducted to
understand fairness composition in ensembles and the effect of
their hyperparameter space on fairness. To this end, we have
created a benchmark of 168 real-world ensemble models from
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Kaggle and designed experiments to measure their fairness.
We analyze fairness composition in ensemble criteria such
as parallel and sequential ensembles, homogeneity of models,
and different ensemble methods such as bagging, boosting,
voting, stacking, etc., and all the ensemble classifiers available
in the popular Scikit-learn [33]. Specifically, we answer the
following overarching research questions:

RQ1: What are the fairness measures of various ensemble
techniques? RQ2: How does fairness compose in ensemble
models? RQ3: Can ensemble-related hyperparameters be cho-
sen to design fair ensemble models?

To the best of our knowledge, this is the first work to
experimentally evaluate the fairness composition in popular
ensembles and elicit fair ensemble design considerations. Our
results show that fairness in ensembles composes in the base
learners and fair ensemble models can be built by care-
fully considering the composition. The analyses show which
learners cause fairness problems which software developers
can leverage to develop frameworks to measure fairness in
base learners to encourage transparency. We also identify
and explore ensemble-related hyperparameters to design fair
ML models for each ensemble type. Lastly, we provide a
comprehensive review of fairness composition in ensembles
that will help direct future research in the area. Overall, the
following are the key contributions of this paper:
• Explored fairness composition and its interplay with data

characteristics and individual learners to mitigate bias.
• Empirically evaluates fairness patterns of popular ML en-

semble models.
• We identified ensemble design considerations and hyper-

parameters that would guide developers in fair ensemble
design and mitigate inherent unfairness effectively.

• A comprehensive fairness benchmark of popular ensembles
that leveraged for further research on building fairness-aware
ensembles. The benchmark, code and experimental results
are available: https://github.com/UsmanGohar/FairEnsemble
The rest of the paper is organized as follows: §II describes

the motivation of our work and the background on ensembles.
In §III, we discuss the methodology for our study, includ-
ing benchmark collection, datasets and fairness and accuracy
measures used, and finally, the experiment setup & design. In
§IV, we discuss the state of fairness in ensembles (RQ1) and
how it composes (RQ2), §V discusses the design criteria to
improve fairness in ensembles (RQ3). Finally, we discuss the
implications of our work in §VI, threats to validity in §VII,
related works in §VIII and then present the conclusion in §IX.

II. MOTIVATION AND BACKGROUND

In this section, we use a motivating example to illustrate
the complexity of fairness composition in ensembles and the
need to study bias induced by certain ensemble parameters.

A. Motivating example

Ensemble models are widely deployed to win competitions
in online communities like Kaggle due to their superior
performances [16]–[20], [23]. In prior SE works [12], [13] on

fairness, more than 80% of the models were ensemble based.
However, those works did not consider fairness composition
of individual learners, its effect on fairness of ensembles and
the inherent bias in ensemble methods, which is non-trivial.
Hence, not studying fairness composition in ensembles fails
to capture the complete fairness of an ML pipeline. Consider
the code snippet below of a top-performing model (Voting
ensemble) from Kaggle, which is used to predict the income
of an individual (German Credit dataset).

1 models = [ ]
2 models . append ( ( ’LGR ’ , L o g i s t i c R e g r e s s i o n ( ) ) )
3 models . append ( ( ’LDA’ , L i n e a r D i s c r i m i n a n t A n a l y s i s ( ) ) )
4 models . append ( ( ’KNN’ , K N e i g h b o r s C l a s s i f i e r ( ) ) )
5 models . append ( ( ’CART’ , D e c i s i o n T r e e C l a s s i f i e r ( ) ) )
6 models . append ( ( ’NB’ , GaussianNB ( ) ) )
7 models . append ( ( ’RF ’ , R a n d o m F o r e s t C l a s s i f i e r ( ) ) )
8 models . append ( ( ’SVM’ , SVC( gamma= ’ a u t o ’ ) )
9 models . append ( ( ’XGBM’ , X G B C l a s s i f i e r ( ) ) )

10 models . append ( ( ’LGBM’ , LGBMClass i f ie r ( ) ) )
11 model = V o t i n g C l a s s i f i e r ( e s t i m a t o r s =models , v o t i n g = ’ s o f t ’ )
12 model . f i t ( X t r a i n , y t r a i n )
13 y pred = model . p r e d i c t ( X t e s t )

Voting ensemble is a type of heterogeneous ensemble that
combines the predictions of dissimilar learners. This ensemble
comprises multiple learners (lines 2-10) and uses a voting
mechanism (line 11) to make the prediction. In soft voting,
class label (1 or 0) with the higher average probability from
the learners is chosen as the final prediction. We found that
this ensemble is biased towards female applicants (Protected
attribute: Sex) in terms of statistical parity difference (SPD:-
0.203). In this example, before training the ensemble, a devel-
oper must decide the number of learners, select which learners
to use, and the voting type (soft/hard). However, we found that
ML libraries do not provide any fairness recommendations
to build ensembles. Do these learners introduce unfairness in
the predictions? How does the number of learners impact the
fairness of the ensemble? More importantly, we observed that
individual learners have their own fairness measures when
analyzed in isolation but might result in an unfair model
when used in an ensemble. For instance, our analysis shows
that dropping XGBClassifier and LGBMClassifier (lines 9-
10) can improve fairness by 27% (SPD:-0.148). Interestingly,
we discuss later how these two learners are inherently fair
themselves and not responsible for the unfairness.

Furthermore, prior research has shown the impact of hy-
perparameters on fairness [12], [25], [32]. Ensemble hyper-
parameters dictate how ensembles combine learners for final
prediction. In this example, if developers used ”hard” voting
(line 11), the fairness of the ensemble would improve (SPD:
-0.195). Similarly, some of these hyperparameters also affect
the design properties of the learners which impacts fairness.
XGBoost (line 9) is another example of ensemble (boosting).
Boosting builds an ensemble of trees (learners) using various
methods. What properties of these trees (e.g. tree depth, num-
ber of features etc.) and the learning method impact the overall
fairness of a boosting ensemble? Exploring these parameters
will help developers understand how to design fair ensembles.
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Therefore, in addition to understanding fairness composition
in the learners, it is equally important to understand how the
design of ensembles using these parameters impacts fairness.

B. Ensemble learning in ML software

Ensemble models are a class of ML classifiers where the
predictions from different learners (models) are pooled using
a combination method (voting, average, random, etc.) to make
the final predictions. In the motivational example above, we
only discussed a single type of ensemble. Categories of
ensembles are based on homogeneity, learning technique, and
ensemble types. All the ensemble types covered in our study
and the corresponding classifiers are given in Table I. There are
mainly two categories of ensembles: Sequential and Parallel.

Sequential Ensembles. These ensembles sequentially gen-
erate base learners. Each learner in the ensemble depends on
the previous learners in the sequence because the next learner
attempts to correct the wrong predictions from the previous
learner and so on [34]. AdaBoost is an example of a sequential
model where it reweighs (higher) misclassified examples.

Parallel Ensembles. Parallel ensembles train individual
base learners in parallel and independent of each other.
These learner are combined using techniques such as bagging
(random sample of data with replacement) or voting, which
encourages improved variance [34] e.g., Random Forest.

Homogeneity of ensembles. Ensemble methods that use
single-type base learners are called homogeneous models [35].
These individual learners are combined to generate the final
result, e.g., XGBoost and AdaBoost use decision trees. By
contrast, heterogeneous ensembles combine the predictions of
disimilar individual learners [35]. A popular heterogeneous
ensemble method is Voting. Finally, ensemble method types
are divided into Boosting, Bagging, Voting, & Stacking [33].

III. METHODOLOGY

In this section, we discuss the benchmark collection process,
the datasets, and fairness and accuracy measures. Finally, we
describe the experimental design and setup.

A. Benchmark Collection

For our experiments, we collected ensemble models from
Kaggle [36] for datasets that have been used in prior fairness
literature [12], [28], [37]. Unlike these works, we only collect
ensemble-based models for evaluation. Specifically, we collect
all ensemble classifiers available via the popular sci-kit learn
library [33]. We follow a similar benchmark collection process
as in [13]. Table II summarizes the datasets and the classifiers
in the benchmark.

For each dataset, we collected Kaggle kernels for each en-
semble type in Table I and classifiers available in scikit-learn.
We filter these kernels based on four-step filtering criteria: 1)
it should contain the predictive model (some kernels focus on
data exploration only), 2) protected attribute is included in the
training data, 3) at least five up-votes, and 4) ranked by up-
votes. We used Kaggle API to collect these models and pass
them through the filtering criteria. Finally, we select the top 6

models for each ensemble classifier from each dataset. In total,
we created a benchmark of 168 ensembles across four datasets.
We could not find certain classifiers on Kaggle for datasets like
German Credit. To handle those, we use default models from
scikit-learn to ensure we can evaluate across different datasets.
The number of models mined is shown in Table II. Next, we
present an overview of the datasets used in our benchmark.

Adult Census. The dataset contains income and personal in-
formation about individuals [38]. We used sex as the protected
attribute and male as the privileged class. The classification
task predicts if a person makes over $50,000 in annual income.

Titanic. The dataset contains passenger data, such as gender,
cabin class, etc., and is pre-split into train & test sets; however,
the test set does not contain any instance of a male passenger
surviving [39]. Hence, we only use the training set, with
gender as the protected attribute and Female as the privileged
class. The prediction task is whether a passenger survives.

Bank Marketing. The dataset contains bank customers’
personal information such as age, job type, etc. [40]. The
protected attribute is age, where age > 25 is considered
privileged class and age < 25 as unprivileged [13]. The
prediction task determines whether a client will subscribe to
a term deposit.

German Credit. This dataset contains personal and financial
information about individuals who apply for loans at a bank
[41]. We used the processed dataset [42] since most models in
our benchmark used it. This version has nine attributes, such
as sex, credit amount, etc. We choose sex as the protected
attribute and male as the privileged class. The prediction task
is whether an individual is a credit risk.

B. Measures

Multiple quantitative fairness and accuracy measures are
available to evaluate a model. We use measures that have been
previously used in literature [11], [13]. Let D = (T, S, Y ) be a
dataset where T is the training set, S is the protected attribute
(S = 1, if privileged group (p), else S = 0 (up)) and Y is the
classification label (Y = 1 if favorable label, else Y = 0). Let
Ŷ denote the prediction of an ML model. Next, we define our
measures in terms of these notations.

1) Accuracy Metrics: We evaluate the performance of the
models using accuracy and F1 metrics as defined below:

Accuracy = (true positive+ true negative)/total

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall)

where recall: TP/(TP +FN), precision: TP/(TP +FP )

2) Fairness Measures: Broadly, fairness metrics are divided
into three categories [43]. We have selected a subset of these
metrics representing the three categories without being exhaus-
tive. Furthermore, we have followed the recommendations of
Friedler et al. [13] in terms of metrics selection.
Group fairness metrics: Group fairness means similar predic-
tive outcomes for protected attributes, e.g., race (Asian/White)
on a group level.
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TABLE I: Ensemble types used in our experiments

Categories Ensemble Types Algorithms Composition Classifiers

Sequential Boosting
Construct n homogeneous estimators sequentially that improve

predictions based on the previous estimator’s incorrect predictions

Homogeneous XGBoost
Homogeneous AdaBoost
Homogeneous Gradient Boosting

Parallel
Bagging

Construct n parallel homogeneous models that are aggregated using
averaging

Homogeneous Random Forest
Homogeneous ExtraTrees
Homogeneous Bagging Classifier

Voting Construct a list of n hetereogeneous user-specified weighted classifiers that
are aggregated using majority voting or argmax

Heterogeneous Voting Classifier

Stacking Construct a list of n hetereogeneous classifiers as base learners and a meta-
classifier to decide weights for each learner

Heterogeneous Stacking Classifier

TABLE II: Summary of the datasets and the number of models
collected for each in the benchmark

Datasets PA Size # XGB # ADB # GBC # RF # ET # STK # VT Total
Adult Census sex 32561 6 6 6 6 6 1 2 33
Titanic ML sex 891 6 6 6 6 6 6 6 42

Bank Marketing age 41118 6 6 6 6 2 1 2 29
German Credit sex 1000 6 1 1 6 1 1 1 17

XGB: XGBoost, ADB: AdaBoost, GBC: Gradient Boosting , RF: Random Forest,
ET: Extra Trees, STK: Stacking, VT: Voting

Equal Opportunity Difference (EOD): This is defined as the
difference of true-positive rates (TPR) between privileged and
unprivileged groups [44].

EOD = TPRup − TPRp

where TPR: TP/(TP + FN), FPR: FP/(FP + TN)

Average Odds Difference (AOD): This is defined as the mean
of false-positive rate (FPR) difference and true-positive rate
difference between unprivileged and privileged groups [27].

AOD = [(FPRup − FPRp) + (TPRup − TPRp)]/2

Disparate Impact (DI): This is defined as the ratio of the
probability of unprivileged group vs. privileged group getting
a favorable prediction [7]

DI = P [Ŝ = 1|Y = 0]/P [Ŝ = 1|Y = 1]

We convert Disparate Impact (DI) to log scale to improve
readability compared with other metrics.

Statistical Parity Difference (SPD): This is defined similar to
DI but uses the difference between the probabilities. [45].

SPD = P [Ŝ = 1|Y = 0]− P [Ŝ = 1|Y = 1]

Individual fairness metrics:
Theil Index (TI): It measures both the group and individual
fairness [6]. It is defined using the following equation:

TI =
∑n

i=1
bi
ā ln

bi
ā , where bi = ŝi − si + 1.

C. Experiment Design & Setup

Each ensemble model has specific requirements for training
(e.g., XGBoost can handle Null values, but Random Forest
cannot etc.) that we need to handle before we can evaluate
them. We used the same preprocessing steps across all the
kernels and datasets to ensure consistent comparison. Next,

we evaluated the accuracy and fairness of base learners and
the final ensemble level and analyzed the results.

For our data preprocessing, we start off by converting
all non-numerical features to categorical data i.e. Binary or
Ordinal (e.g., male: 1, female: 0 or non-binary levels, like
Marital-Status to Divorced: 0, Married: 1, Single: 2 etc.).
Next, we remove missing values from our datasets and con-
vert continuous sensitive attributes to categorical (e.g., age
> 25: 1, age< 25 :0 corresponding to old and young,
respectively). These preprocessing steps are necessary for most
ensembles and the AIF360 toolkit. We denote the privileged
and unprivileged groups and the favorable label for each
dataset separately. For example, in Titanic dataset, male is
the unprivileged group and the favorable label is Survivied: 1
i.e. the individual survived the titanic crash. The groups and
the labels have been chosen as seen before in literature [13],
[46]. Finally, the dataset is shuffled and split into train and
test sets using a 70%− 30% split. For each dataset, we have
selected the top 6 kernels by upvotes. We run the preprocessing
steps discussed before training the model to evaluate based on
accuracy and fairness metrics. We use five fairness metrics and
two accuracy measures to generate results for each model.
These experiments are repeated ten times, and the mean is
reported [11]. We used the IBM AIF 360 Fairness Toolkit to
calculate the fairness metrics. Finally, a non-zero value for
fairness metrics suggests a bias in the model. A positive value
of a fairness metric suggests the model is biased against the
privileged group and vice-versa.

IV. FAIRNESS IN ENSEMBLES AND ITS COMPOSITION

In this section, we explore the state of fairness in ensembles
and its composition in all popular ensemble methods.

A. State of fairness in ensemble models

Before understanding the composition of fairness in ensem-
bles, we first investigate how different ensemble techniques
impact fairness (RQ1). Are certain ensemble classifiers more
unfair? Does the architecture of an ensemble method (stacking,
boosting, etc.) contribute to fairness? Does any particular
ensemble classifier exhibit a better fairness-accuracy trade-
off? To answer these questions, we experiment to evaluate the
fairness of ensemble models using a diverse set of metrics.
Table III shows the mean fairness for all ensembles. Figure 1
illustrates the cumulative fairness for all the 168 models.
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TABLE III: Fairness and accuracy comparison of all ensemble ML classifiers across the datasets in our benchmark. The ranks
were calculated using the Scott-Knott test. Each cell depicts the median score; Darker , lighter , light , lightest and white
colored cell denotes the first, the second, the third, fourth, and lowest rank, respectively. The rank ranges from 1 to 5.

Dataset Protected
Attribute

Ensemble
Classifiers

Ensemble
Type

Accuracy (+) F1 (+) SPD (-) EOD (-) AOD (-) DI (-) TI (-) Mean Accuracy
Rank (-)

Mean Fairness
Rank (-)

TM-XGB 0.82 0.75 -0.65 -0.50 0.43 -1.83 0.14 2 1.4
TM-ADB 0.81 0.75 -0.81 -0.77 0.70 -2.56 0.15 3.5 4.4
TM-GBC

Boosting
0.82 0.74 -0.71 -0.57 0.54 -2.09 0.14 3.5 2.2

TM-RF 0.81 0.73 -0.68 -0.58 0.52 -2.30 0.16 5 3
TM-ET

Bagging
0.82 0.75 -0.80 -0.75 0.68 -2.76 0.15 2 4

TM-VT Voting 0.83 0.77 -0.74 -0.51 0.54 -2.10 0.12 1 2.8

Titanic Sex

TM-STK Stacking 0.82 0.76 -0.76 -0.63 0.58 -2.40 0.13 3 2.6
AC-XGB 0.87 0.71 -0.18 -0.08 0.08 -1.14 0.11 1 1.6
AC-ADB 0.86 0.66 -0.20 -0.15 0.14 -1.32 0.12 2.5 4.4
AC-GBC

Boosting
0.86 0.68 -0.19 -0.14 0.11 -1.25 0.12 2 3

AC-RF 0.85 0.67 -0.18 -0.13 0.11 -1.26 0.12 5 3.4
AC-ET

Bagging
0.84 0.65 -0.19 -0.10 0.10 -1.11 0.13 4 2.8

AC-VT Voting 0.85 0.66 -0.17 -0.13 0.09 -1.29 0.12 4.5 3.4

Adult Sex

AC-STK Stacking 0.86 0.68 -0.18 -0.11 0.09 -1.28 0.11 2.5 3.6
BM-XGB 0.93 0.70 0.15 0.08 0.08 0.77 0.05 1.5 2.2
BM-ADB 0.88 0.49 0.15 0.18 0.12 1.04 0.11 4.5 4.4
BM-GBC

Boosting
0.89 0.48 0.14 0.12 0.09 1.09 0.10 4.5 3.8

BM-RF 0.89 0.55 0.18 0.09 0.09 0.80 0.07 2.5 3
BM-ET

Bagging
0.91 0.54 0.14 0.06 0.06 0.82 0.07 2.5 2.2

BM-VT Voting 0.94 0.69 0.12 0.06 0.05 0.71 0.05 1 1.2

Bank Marketing Age

BM-STK Stacking 0.93 0.72 0.15 0.04 0.06 0.71 0.05 1.5 1.2
GC-XGB 0.72 0.65 -0.07 -0.02 0.08 -0.12 0.17 1.5 1.8
GC-ADB 0.72 0.55 -0.11 -0.07 0.13 -0.19 0.16 3 4.4
GC-GBC

Boosting
0.72 0.56 -0.08 -0.06 0.10 -0.15 0.15 3 2.6

GC-RF 0.72 0.64 -0.09 -0.04 0.09 -0.13 0.15 2 2
GC-ET

Bagging
0.70 0.60 -0.11 -0.07 0.11 -0.14 0.16 3 3.4

GC-VT Voting 0.73 0.54 -0.08 -0.05 0.08 -0.16 0.16 2 2.6

German Credit Sex

GC-STK Stacking 0.73 0.55 -0.09 -0.06 0.10 -0.17 0.14 2 2.8

We found that ensemble models show similar fairness
patterns specific to each dataset and that some ensemble
classifiers exhibit more unfairness than others. To investigate
whether these differences are significant and directly impacted
by ensemble type, we compare their fairness and accuracy
using Scott-Knott [47] ranking test. The Scott-Knott test
compares two distributions using a recursive bi-clustering
algorithm and provides a rank; if the difference between them
is insignificant, they get the same rank. Otherwise, a higher
rank denotes better performance. In our experiment, the Scott-
Knott test ranks the classifiers from 1st to 5th (some classifiers
are assigned the same rank) for each metric. Even though each
ensemble classifier’s unfairness pattern is similar to the dataset,
certain ensembles are fairer than others.

Finding 1: Among all the ensemble models, XGBoost
exhibits the best accuracy-fairness trade-off.

From Table III, we can see that the fairness of the ensemble
classifiers varies across the datasets. Moreover, we see that
the fairness of the classifiers within an ensemble type also
varies. For instance, AdaBoost is the most unfair model in the
Adult dataset, while XGBoost is the fairest, both belonging
to boosting. However, we observe that for the more biased
Titanic and Adult datasets, XGBoost has the top rank in 8
out of 10 fairness metrics with a mean fairness rank of 1.4

and 1.6, respectively. Yet, XGBoost is ranked 2nd and 1st

in terms of accuracy, respectively. The average performance
change in accuracy and f1 score is less than 0.01. On the
contrary, the cumulative mean fairness for XGBoost models is
14% more than the next most fair model (GBC) in Titanic. For
the other datasets, we observe a similar pattern; however, the
difference is lesser. Upon further investigation, we found that
boosting method and base learner design are responsible for
the fairer performance of XGBoost. Homogeneous ensembles
use decision trees as the base learner, and the construction
of these trees differs among them. For example, the depth
of the decision tree in AdaBoost, GradientBoosting, XGBoost
is one, three and six respectively. Lower tree depth means
fewer features are selected, which has been shown to often
increase unfairness [13], [48]. This is also one of the reasons
behind AdaBoost being the most unfair model (the lowest
rank in 13 out of 16 metrics). Importantly, we found that the
fairness of an ensemble is determined by the composition of
fairness within these base learners and the learning method
(boosting, bagging, etc.). In the next section, we investigate the
properties of the base learners to understand how to compose
fair ensembles in more detail.

Finding 2: Fairness measures show more instability
compared to accuracy metrics.
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Fig. 1: Cumulative bias and performance of all ensembles. The bars represent mean values, and the dots the models

0.00

0.04

0.08

0.12

ADB GBC XGB RF ET VT STK ADB GBC XGB RF ET VT STK

Titanic German Credit

SPD EOD AOD DI TI

Fig. 2: Standard deviation of fairness metrics over multiple
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Prior works have shown that ensembles improve the stability
of accuracy metrics by aggregating multiple learners trained
on subsets of data (bootstrap sampling) [44], [49]. Intuitively,
we explore the variance exhibited by fairness metrics in
ensembles. Interestingly, despite aggregating multiple learners,
the stability of fairness measures in ensembles still suffers,
especially in smaller datasets. This is attributed to the change
in data distribution after random train/test splits in smaller
datasets [11], [13]. For larger datasets (Adult, Bank Market-
ing), the standard deviation for all fairness measures is less
than 0.02. For smaller datasets, the average standard deviation
of the metrics is shown in Figure 2. Firstly, we observe that the
stability of fairness metrics remains consistent between all the
ensembles for a specific dataset. Furthermore, we observed
that group fairness measures exhibit higher variability than
individual measures (TI). Surprisingly, heterogeneous models
also exhibit instability despite using dissimilar learners to
reduce variance. From Figure 3, we also see that the volatil-
ity in fairness metrics is greater than in accuracy metrics
for homogeneous models. Given a random train/test split, it
might cause the model to seem fairer than it is. Hence, even
with improved stability in fairness compared to non-ensemble
methods, developers should evaluate the training set and repeat
training over multiple runs in ensembles.

Finding 3: Libraries do not provide API support to
measure fairness of base learners in ensembles

Biswas and Rajan [13] discussed that hyperparameter opti-
mization goals induce unfairness. Whereas ensemble models
also have parameters that can be tuned, heterogeneous models
have a special case where the developer needs to select
the individual base learners. Libraries do not provide any
recommendations to developers, who try to select a diverse
set of learners to improve accuracy. However, this might not
always result in a fair ensemble. For example, BM-STK3
has Statistical Parity Difference (SPD) of 0.13 but if we
drop GuassianNB learner, the SPD improves to 0.11 with
better accuracy. Heterogeneous Voting models uses weighted
voting, while Stacking uses a meta-learner to select the best
configuration of learners for each prediction. Since libraries
do not provide API support to measure the fairness of base
learners, especially in combinations with other learners at
the prediction level, it provides developers with little infor-
mation on how to weigh and select individual learners to
generate the final predictions. Similarly, understanding fairness
composition in base learners of homogeneous models can
help the developer identify fairness issues such as bias in
specific features (e.g., decision trees learners in random forest
randomly select features). Therefore, API support to measure
fairness in base learners can help developers better understand
& detect unfairness in ensembles.

B. How does fairness compose in ensembles?

In this section, we investigate the composition of fairness
in ensembles. We postulate that the underlying unfairness of
ensembles is a product of the composition of fairness in base
learners and the learning method. All homogeneous models
use a decision tree as the base learner, whereas heterogeneous
models can take any ML model. We investigate how fairness
composes in these base learners and how it is propagated by
the learning techniques (RQ2). In general, our findings show
that the complexity of base learners significantly impacts the
fairness of ensembles and that more research is needed to
develop fair learning techniques in ensembles.

Finding 4: The unfairness of homogeneous ensembles is
caused by the complexity of the base learner and dataset
characteristics.
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Fig. 3: Composition of fairness in homogeneous ensembles with respect to base learners. Default no. of trees: T100

In Figure 3, we plotted the most biased and the least biased
homogeneous ensembles in our benchmark. We see how the
fairness of the base learners directly contributes to the fairness
of ensembles during training. However, we observe different
fairness composition patterns in terms of the datasets. For
example, in Titanic, the fairness of the boosting ensembles
improves while the opposite is observed for some fairness
metrics in German Credit. The variation in fairness patterns
is also seen in specific classifiers. From Figure 1, we observe
that all TM-XGB models show similar bias except, TM-XGB4.
We investigate the difference in unfairness by comparing all
the parameters of the base learner decision tree with the other
XGB models and found that TM-XGB4 uses a shallow decision
tree with max depth : 2, which is causing the unfairness to
amplify. The model construct is shown below:

1 model = X G B C l a s s i f i e r ( n e s t i m a t o r s = 500 , max depth =2 , subsample
= 0 . 5 , l e a r n i n g r a t e = 0 . 1 )

MaxDepth sets the maximum depth of the decision tree. The
depth of the tree is defined as the number of splits (nodes),
where the feature to be split is chosen based on the highest
information gain among the features. Deeper trees are more
complex and reduce errors [50]. For XGBoost models, the
default depth is 6. Our analysis showed that the protected
attribute (Sex) has the highest information gain among all
the features in the Titanic dataset. Therefore, the protected
attribute is the most important feature to split on at the
tree’s root, resulting in a high degree of unfairness in TM-
XGB4. Base learners in all boosting models use the best
feature to split, which improves accuracy. However, it has
been shown that unfairness is encoded in specific features
[51]. If these features are also among the best features of
a dataset, a shallower ensemble will be more unfair due
to a reduced number of features. This corroborates similar
observations in the literature [12], [48]. We observe the same
pattern for all boosting models. For example, AdaBoost and
GradientBoosting exhibit more bias than XGBoost because of
shallower base learners (1 and 3, respectively). In Figure 1,
TM-GBC1 is fairer because the learner is deeper (depth:5).

Finally, further analysis of the properties of a decision tree
suggests that regularization parameters like min samples leaf
and max-leaf nodes also impact tree depth, hence affecting the
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Fig. 4: Cumulative fairness in adaptive vs gradient learning

fairness of the ensemble. Therefore, it is important to carefully
balance the complexity of the tree-based base learners for
homogeneous models with the fairness outcomes, especially
with the underlying properties of the data.

Finding 5: Gradient-based composition propagates more
unfairness compared to Adaptive boosting models.

We have established that base learners and the underlying data
properties influence the unfairness of homogeneous models.
However, boosting models additionally use a learning tech-
nique to sequentially improve the predictions of the model.
XGBoost and GradientBoosting models uses Gradient-based
optimization and AdaBoost uses an adaptive weighting tech-
nique. We compare these techniques by training the boosting
models on the same base learner decision tree (depth:6). We
only use XGBoost and choose this depth in our experiment
since our analysis (Table III) showed that it is the most fair
boosting model. The results are shown in Figure 4. For all the
models, except GC1, we see that Adaptive learning is fairer
than Gradient optimization. We use the Scott-Knott rank test
to test statistical significance. Accordingly, we observed that
adaptive learning outperformed gradient optimization in all
datasets, except German Credit where the difference was not
statistically significant. Consequently, we can see that adaptive
learning propagates less bias in highly biased datasets. Our
analysis should help guide further research into designing fair
learning techniques for boosting ensembles.
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V. FAIR ENSEMBLES DESIGN

In §IV, we found that base learners of ensembles propagate
bias. Many bias mitigation techniques applied during model
training (inprocess) have been successful [24], [25], [32].
Techniques applied during the model training phase can assist
developers in improving the fairness of ML software. These
works have also established the role of hyperparameters in
mitigating and amplifying fairness bugs (unfairness) in ML
software. If we understand and identify what ensemble param-
eters and design choices affect the fairness, we can mitigate
inherent bias in ensembles. Moreover, it will help developers,
and libraries better explain fairness bugs in the ensemble hy-
perparameter space. This section explores the hyperparameter
design space for ensembles to boost fairness performance.
We have found that some hyperparameters directly affect the
fairness of ensembles. Specifically, we evaluate how ensembles
can be designed to be fair using ensemble hyperparameters
summarized in Table IV. We use the Scott-Knott test to
determine the significance of our results. Our findings provide
a comprehensive review of all ensemble hyperparameters.

Finding 6: Developers should carefully choose dropout
regularization to balance fairness and overfitting.

Our analysis shows that dropout impacts fairness in relation
to the underlying data properties. Vinayak and Gilad-Bachrach
[52] proposed DART, a dropout technique derived from deep
neural networks, for boosted trees. An ensemble of boosted
regression trees suffers from over-specification, i.e., the trees
added at the end have little contribution to the final result
[52]. DART alleviates this by constructing the next tree from
the residuals of a random sample of the previous trees. In XG-
Boost, the rate-drop ([0-1]) parameter controls this sampling
rate. No trees are dropped on the lower end of this rate, while
on the higher extreme, all trees are dropped. We investigate the
efficacy of DART with ratedrop = 0.5, in reducing unfairness
in boosting models by comparing it with the default XGBoost
booster gbtree. We analyze the change in performance and
fairness of dropout in Figure 5.

From figure 5, we can see that dropout can impact fairness
of boosting models. For example, in Adult dataset, initial
trees exhibit less unfairness than latter. Using dropout, the
subsequent trees only learn on a random sample of initial trees,
which in this case are fairer. This improves the fairness of the
models. The opposite is observed in Titanic dataset. In both
scenarios, the change in accuracy is less than 0.1, but a signif-
icant impact is seen on fairness. Therefore, developers should
be cautious about the effect of regularization on fairness. More
research is needed to understand fairness-overfitting trade-off,
and develop fair regularization methods.

Finding 7: Randomness in feature splitting does not
improve fairness in bagging models.

Random Forest improves the variance of the model by
introducing randomness to the process of model building by
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Fig. 5: Change in accuracy and total bias when using DART.
Negative value denotes lower fairness & accuracy

randomly selecting features. Extra Trees introduces additional
randomness by randomly finding the splits for each feature and
then selecting the best split from them, i.e., independent of the
target variable. In contrast, Random Forest finds the best split
for each feature which has been shown to improve accuracy
[53]. However, no work has studied its effect on fairness. Here,
we ask whether randomness at the feature splitting level causes
bagging models to be unfair.

To investigate this, we compare Random Forest and Extra
Tree models in our benchmark. We keep the rest of the
parameters and data split the same. Each model is run ten
times, and the mean is reported in Table V. For all datasets
except German Credit, the test showed that Extra Tree models
with random splits were more biased compared to optimal
splits (RF). This is a key finding because this suggests that
a split chosen independently of the target is still more unfair
than an optimal split. However, in the fairer dataset (German
Credit), we observe no difference in fairness. Regarding bias
mitigation methods, our results suggest randomness in feature
split-point might not be an effective way to tackle bias in
decision tree-based models.

Finding 8: The uncertainty in classifiers can have a large
impact on fairness in voting classifiers.

A Voting classifier is an ensemble method where the predic-
tion is based on the probabilities of each base learner within
the ensemble. Voting classifiers are of two types, Soft and
Hard Voting. In hard Voting, the label with the majority of
votes from the base learners is the final prediction, whereas,
in soft voting, it is based on the average of the probabilities of
each output class. If the average probability of a class is less
than 0.5, class 0 is predicted and vice-versa. We investigate
the effect of the voting type on fairness and found that the
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TABLE IV: Ensemble-related hyper-parameters (HP) that can affect the design of fair models

HP Values Default ADB GBC XGB RF ET Voting Stacking
n estimators Total number of trees/boosting rounds 100 ✓ ✓ ✓ ✓ ✓
booster Booster type: gbtree, gblinear, dart gbtree ✓
base estimator Base estimator to fit on random subsets of data DecisionTree ✓
bootstrap Data sampling with replacement RF: True, ET: False ✓ ✓
voting Voting Type: soft, hard hard ✓
estimators List of individual estimators none ✓ ✓
final estimator Meta-learner to combine learner predictions Logisitic Regression ✓

TABLE V: Mean total fairness in Random Forest (RF) and
ExtraTrees (ET) models. ∗ denotes the top rank based on Scott-
Knott significance rank test for each dataset.

Titanic Adult Bank Marketing German Credit

RF∗ ET RF∗ ET RF∗ ET RF ET

Model1 -2.04 -1.96 -1.33 -1.32 1.16 1.35 0.03 0.02
Model2 -4.43 -5.37 -1.29 -1.30 1.37 1.41 0.43 0.29
Model3 -3.38 -4.13 -1.32 -1.45 0.96 1.07 0.02 -0.04
Model4 -2.42 -2.46 -1.21 -1.29 1.36 1.35 -0.16 -0.09
Model5 -2.98 -3.38 -1.48 -1.51 1.61 1.51 0.00 -0.04
Model6 -2.61 -2.61 -1.47 -1.41 0.98 1.26 -0.04 -0.28

TABLE VI: Soft vs Hard Voting in AC-VT5

Soft Hard
Voting LR RF KNN DT Voting LR RF KNN DT

Acc 0.83 0.78 0.81 0.81 0.83 0.81 0.78 0.81 0.81 0.81
F1 0.56 0.41 0.44 0.43 0.56 0.44 0.41 0.41 0.45 0.44

SPD -0.14 -0.06 -0.08 -0.07 -0.14 -0.07 -0.06 -0.06 -0.08 -0.07
EOD -0.14 0 0 0 -0.14 -0.03 0 -0.03 -0.04 -0.03
AOD 0.1 0.01 0.02 0.02 0.1 0.02 0.01 0.02 0.03 0.02

DI -1.43 -0.64 -1.13 -1.02 -1.43 -1.08 -0.64 -1.11 -1.02 -1.08
TI 0.17 0.21 0.2 0.2 0.17 0.2 0.22 0.21 0.2 0.2

uncertainty in the model prediction can have a large impact on
fairness. For instance, AC-VT5 uses soft voting with Logistic
Regression (LR), Random Forest (RF), KNN, and Decision
Tree (DT) as base classifiers. As shown in Table VI, DT
introduces significant unfairness when used in soft voting
compared to hard. We found that DT has an output class
probability of either 1 or 0 while other classifiers are in the
range [0,1]. Figure 6 shows the output probabilities for AC-
VT5. We observe that DT has higher extreme probabilities
compared to others. In this case, the average is skewed by the
extreme probabilities of DT. This changes the prediction for
558 out of 9049 test samples. And since DT is less fair than
other classifiers, the overall unfairness also increases. For hard
voting, equal weight is given to each classifier. In that case,
the other three classifiers, which are fairer, won the majority
vote. For some models, soft voting was fairer than hard, e.g.,
AC-VT3, which shows that base learners’ uncertainties can
impact fairness in both voting types. This suggests the need to
develop frameworks to measure model uncertainties and their
fairness at a component level to aid developers in designing
fair voting ensembles. Our analysis should also encourage
further research in fairness-aware weighting techniques to
handle fairness issues arising from model uncertainties.
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Fig. 6: Frequency of output class probabilities for base learners
in AC-VT5

Finding 9: Two-layer stacking can significantly reduce
unfairness.

All of the Titanic ML stacking models shown in Figure
1 exhibit similar bias except TM-STK5, which is the least
biased model for all fairness metrics except Thiel Index (TI).
On closer inspection, we found out that TM-STK5 uses a
two-layered stacking approach where a second layer of base
learners act as the meta-learner, which causes the model to be
fairer. The model construct is shown below:

1 l a y e r o n e e s t i m a t o r s = [ ( ’ r f 1 ’ , R a n d o m F o r e s t C l a s s i f i e r (
n e s t i m a t o r s =40 , r a n d o m s t a t e =42) ) , ( ’ knn 1 ’ ,
K N e i g h b o r s C l a s s i f i e r ( n n e i g h b o r s =6) ) ]

2 l a y e r t w o e s t i m a t o r s = [ ( ’ r f 2 ’ , R a n d o m F o r e s t C l a s s i f i e r (
n e s t i m a t o r s =40 , r a n d o m s t a t e =42) ) , ( ’ xg 2 ’ , X G B C l a s s i f i e r (
o b j e c t i v e = ’ b i n a r y : l o g i s t i c ’ , c o l s a m p l e b y t r e e = 0 . 8 ,
l e a r n i n g r a t e = 0 . 3 , max depth = 7 , m i n c h i l d w e i g h t = 3 ,
n e s t i m a t o r s = 100 , subsample = 0 . 6 ) ) ]

3 l a y e r t w o = S t a c k i n g C l a s s i f i e r ( e s t i m a t o r s = l a y e r t w o e s t i m a t o r s ,
f i n a l e s t i m a t o r = X G B C l a s s i f i e r ( n e s t i m a t o r s = 100) )

4 model = S t a c k i n g C l a s s i f i e r ( e s t i m a t o r s = l a y e r o n e e s t i m a t o r s ,
f i n a l e s t i m a t o r = l a y e r t w o )}

We validate our finding by training all stacking models
in our benchmark using this two-layered nested stacking ap-
proach. To ensure consistency, we did not change the kernel’s
feature set or any preprocessing method. The results are shown
in Figure 7. For all stacking models in our benchmark, every
model significantly improved in all fairness measures except
Thiel Index. Achieving fairness in terms of all fairness metrics
is difficult [8], [54]. Moreover, accuracy measures did not
degrade significantly. For example, TM-STK6 improved SPD
scores by 28% while accuracy dropping only 4.68%. Overall
across all datasets, the accuracy score dropped by 6.50% while
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the SPD improved by 31.8%.
In stacking, the first layer uses a list of base learners to

generate a set of predictions and a meta-learner to learn from
them. However, instead of using a single classifier as the meta-
learner, the predictions are fed into another set of base learners
in a two-layered approach. This ensures that the outcome is
not based on a single meta-learner. Instead, the second layer
of learners creates a new set of predictions, which are then
fed into the second layer’s final meta-classifier. We compare
this approach to simply using an ensemble model (XGB) as
the meta-learner in default stacking models and found similar
patterns in fairness measures (Figure 7 bottom). Our results
did not significantly vary between using other ensembles as
the meta-learner. This supports observations that ensembles are
fairer than standalone classifiers. Therefore, developers should
use an ensemble as a meta-learner or the two-layer approach
to improve the fairness of stacking models.

VI. DISCUSSION

In this study, we undertook an important task of under-
standing the composition of fairness in ensemble learning
that has gained popularity recently [12], [13]. However, most
works focus on fairness mitigation in single classifiers, which
fail to capture inherent bias in ensembles. Our work has
shown that fair ensembles can be designed without mitigation
techniques. Our research also identifies unfairness causes in
different ensembles and their interplay with the input space,
which would guide fairness bug localization and repair in
ensemble learning. For example, we reported fairness patterns
in individual learners that can induce bias in ensembles such
as tree depth, min leaf node samples, etc. These can also be
leveraged for fairness-improving interventions such as feature
selection, data preprocessing, etc. Overall, our result would
draw attention to the fairness of ensembles which are popular
learning algorithms but mostly overlooked by the community.

Moreover, research in SE showed the impact of hyper-
parameters on fairness, and their role in helping developers

mitigate bias during model training [12], [25], [32]. We extend
that to explore the hyperparameter space for ensembles to
guide developers to design fair ensembles using currently
available composition and configuration. We discussed the
effect of regularization on fairness which should encourage
the development of fairness-aware regularization techniques
and investigation of the trade-off between fairness mitigation
and overfitting, similar to the accuracy-fairness trade-off. We
found that many ensemble models do not have library support
to monitor the fairness of individual learners. Our work
would encourage the development of tools and API support to
improve the transparency of ML software to address fairness
concerns.

VII. THREATS TO VALIDITY

Benchmark: We ensure quality of the benchmark by collect-
ing only high-quality kernels from Kaggle (atleast 5 upvotes).
Additionally, we only consider models that are runnable,
include the protected attribute in training, and have an accuracy
greater than 65%, similar to [13]. Finally, we select the top 6
(upvotes) models for each ensemble type.
Sampling Bias: To the best of our knowledge, this is the most
extensive review of popular ensembles. Moreover, conclusions
are supported by statistical tests across four datasets. However,
they may change slightly if other datasets are used.
External validity: To avoid the threat of non-generalized
findings, we conduct experiments on four different datasets
for each ensemble type and compare across multiple ensemble
algorithms for both boosting and bagging. Moreover, we use
multiple fairness metrics and verify our results by running the
experiment multiple (ten) times and using mean of the values.

VIII. RELATED WORK

a) Fairness in ML classification: The ML community
has proposed multiple methods to measure [2], [4], [5], [8],
[27], [55] and mitigate unfairness in ML models [5], [8],
[9], [24], [56]. However, most of these works have focused
on the theoretical evaluation of fairness. Recently, the SE
community has increasingly shown interest in fairness in
ML software [10]. Empirical studies have investigated the
characteristics of biased models, unfairness in ML pipelines,
compared mitigation strategies and developer concerns about
fairness [11]–[13], [57]. Some research in SE has focused
on fairness testing to generate test data inputs and uncover
fairness violations [1], [14], [58], [59]. Finally, a body of work
has identified unfairness in data and proposed appropriate
mitigation techniques [25], [37], [60], [61].

b) Ensemble Fairness: Grgic-Hlaca et al. [31] investi-
gated the impact of fairness in random-selection based en-
semble. They showed theoretically that its fairness at the
ensemble level is always fairer than its components. Wang
et al. [62] studied the composition of fairness in multi-
component recommender systems and presented conditions
under which individual components compose fairness. AdaFair
[30] proposed a fairness-aware AdaBoost model where un-
fairly classified instances were up-weighted. A recent work
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[29] analyzed and compared seven ML models to show that
ensembles were fairer than individual classifiers. Feffer et al.
[28] conducted an empirical study to analyze modular ensem-
bles. They developed a library to find the best configuration
using any combination of ensembles and mitigators. In Fair
Pipelines [15], the authors explored the propagation of fairness
in multi-stage pipelines where a set of decisions impacts the
final result, e.g., the hiring process. MAAT [63] proposes an
ensemble approach to improve fairness performance by sepa-
rately combining models optimized for fairness and accuracy.
Finally, Tizpaz-Niari et al. studied the parameter space of ML
algorithms and its impact on fairness [32]. This work is the
closest to our study; however, it proposed a testing approach to
tune the parameters for achieving fairness and did not consider
ensembles (except random forest). Our work has focused on
comprehensively evaluating fairness composition in all popular
ensemble models and how the different algorithmic design
configurations (parameters) impact fairness.

IX. CONCLUSION

Ensembles are widely used for predictive tasks due to
superior performance. However, most approaches to measuring
fairness and mitigation focus on single classifiers. In this paper,
we conduct an empirical study to evaluate the composition of
fairness in popular ensemble techniques. The results showed
that base learners induce bias in ensembles and that we
can mitigate inherent bias in ensembles by using certain
base learner configurations and appropriate parameters. Lastly,
works have shown the need to support developers during
model training in mitigating bias. Our analysis of the hyper-
parameter space should help developers build fairness-aware
ensembles and automated tools to detect bias in ensembles.
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