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ABSTRACT
A majority of modern software is constructed using languages that
compute by producing side-effects such as reading/writing from/to
files, throwing exceptions, acquiring locks, etc. To understand a
piece of software, e.g. a class, it is important for a developer to
understand its side-effects. Similarly, to replace a class with another,
it is important to understand whether the replacement is a safe
substitution for the former in terms of its behavior, a property
known as substitutability, because mismatch may lead to bugs. The
problem is especially severe for superclass-subclass pairs since
at runtime an instance of the subclass may be used in the client
code where a superclass is mentioned. Despite the importance of
this property, we do not yet know whether substitutability w.r.t.
effects between subclass and superclass is preserved in the wild,
and if not what sorts of substitutability violations are common and
what is the impact of such violations. This paper conducts a large
scale study on over 20 million Java classes, in order to compare the
effects of the methods of subclasses and superclasses in practice.
Our comprehensive study considers the exception, synchronization,
I/O, and method call effects. It reveals several interesting findings
and provides useful guidance for bug detection, testing, and code
smell detection tool design.
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1 INTRODUCTION
A huge amount of software has been written in Object-Oriented
languages such as Java, C#, and C++. These languages frequently
contain methods with side effects in order to perform work. Side
effects can include a variety of operations such as state changes,
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throwing exceptions, acquiring a lock, and reading from a file. In-
heritance is another frequently used feature, especially in Java, and
is often used to organize and modularize code by subtyping a class
and overriding methods.

With these two features, understanding how to safely use classes
or APIs requires understanding both the methods’ side effects and
the side effects of any submethods that may override them. Doing
this exhaustively is difficult for two reasons. First, determining a
single method’s side effects requires delving into the implementa-
tion of it and any other methods it may call. Secondly, inheritance
hierarchies mean re-doing this process again for each overriding
submethod due to polymorphism.

This process is highly simplified if we assume that the Liskov
substitution principle [10, 11] holds. The principle says that a sub-
type should be able to replace a supertype without changing the
supertype’s properties such as its correctness or, as is this paper’s
concern, its side effects. Under this assumption we would not need
to examine the submethods. This leads us to ask several questions.
Is this principle being upheld in practice? If not, in what ways is
the principle being violated? Are the violations problematic, and if
so, how? This paper’s focus is on answering these questions.

To see why violating substitutability is a problem, consider the
following example.

1 class Services {

2 Map <Integer ,Object > map;

3 synchronized void addService(int id, Object service) {

4 if (map.containsKey(id)) return;

5 map.put(id, service);

6 } }

From this implementation, we can infer that the addService
method is thread-safe due to the synchronized keyword. It also
does not throw exceptions so there is no error case to handle. We
might then have a client of this class such as the one below:

1 Services s = App.getServicesList ();

2 s.addService (0, service0);

The client retrieves a Services instance from a factory and adds
a service 0. Now suppose the App.getServicesList method re-
turned a subclass:

1 class TrackedServices extends Services {

2 @Override void addService(int id, Object service) {

3 if (id <0 || map.containsKey(id)) throw new IllegalArgument ();

4 map.put(id, service);

5 configFile.println(id + "=" + service);

6 } }

Immediately we see several unexpected behavioral differences.
Firstly, our client will unexpectedly crash with a IllegalArgument
due to the 0th ID despite the superclass implementation accept-
ing it. Secondly, other clients may run concurrently and require
thread safety to avoid data races, which they will lose in this sub-
class. Finally, the subclass outputs to a configuration file that could
change program-wide behavior. Clearly, this subclass both violates
substitutability and causes problems for its clients.

https://doi.org/10.475/123_4
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Motivated by these problems, we aim to answer the following
research questions.

RQ1: Can we accurately infer a subclass’s effects based solely
on the superclass’s implementation or do the subclasses often
violate substitutability?

RQ2: When violations occur, how do the two implementations
differ and what common patterns arise throughout all viola-
tions?

RQ3: When violations occur, what is the impact? For example,
it could be the source of a substitutability bug [17, 18] or a
code smell.

This paper investigates these questions on real world Java projects
hosted on GitHub. We present a comprehensive study comparing
the effects of superclasses to their subclasses in these projects us-
ing the Boa infrastructure [4]. Boa allows us to examine the Java
projects’ ASTs to determine the side effects of a method and com-
pare them to its super and submethods [5]. To generalize our find-
ings, this study focuses on a broad range of effect kinds including
exception, synchronization, and I/O, and method call effects.

We find that only 8-24% method pairs have the same effects, and
31-56% of submethods have more effects than their supermethod
when considering the effect types independently. Finally, when
analyzing method pairs in terms of these effects, we confirm the
above: a large percentage of the effects of submethods cannot be
inferred through the supermethod’s implementation when at least
one of them has an effect.

The rest of this paper will discuss our study’s methodology, its
results, and threats to validity. Finally the paper will discuss related
work, future work, and conclude.

2 METHODOLOGY
Our substitutability study was conducted in two phases: automated
analysis followed by a manual inspection. For the first we ana-
lyzed Boa’s September 2015 GitHub dataset, containing 380,125
Java projects [4]. Our analysis collected effect information on each
non-abstract method, made scalable by using a lightweight syntax
directed effect inference based on [22]. After this process, the anal-
ysis pairs each non-private, non-static, non-constructor method
with the one they override, if any, forming many method pairs
containing a submethod and supermethod. Finally, each pair is cat-
egorized by comparing the effects of the two methods. The exact
categories depend on the effect being examined. We then use the
pair categorization in order to investigate the effect differences
in method pairs, and later examine a few categories that suggest
substitutability violations. Table 1 shows the counts of examined
projects, classes, and more in the dataset.

In an effort to make our analyses more accurate, we added a few
exceptions: Firstly, pairs containing abstract methods are ignored
since there is no implementation to compare with. It also ignores
files containing JUnit tests, identified by use of the @Test annota-
tion, in an effort to skip mock objects used only for testing. Finally,
we identified that many of the projects may have potentially dupli-
cate class files identified by the package name plus the file name. In
these cases we took the file that was either modified last or, if both
were modified in the same commit, we discard both. We assume the
last modified file is the latest version of it, but if the duplicates are

modified in the same commit it can indicate that they are separate,
conflictingly named, parts of the program. The idea behind this is
that in a given project we want to avoid counting a class twice and
to be sure that a given pair is correct.

Table 1: Summary of the data studied
Metric Count
# of projects 380,125
# of source files 20,302,663
# of classes 20,569,922
# of methods 149,294,833
# of method pairs 5,975,136
# of project AST nodes 6,619,264,814

The second phase consisted of studying cases randomly sam-
pled from the analysis output in order to better understand certain
categories of method pairs. We are interested in seeing if certain
categories suspected of substitutability violations are, in fact, prob-
lematic. In order to do this, the analysis output was first filtered
based on the desired category and then randomized. From this, we
gather samples, discarding those pairs which cannot be found due
to, for example, the repository having been deleted.

For each sample, we then compared the implementations of the
sub and supermethods to see if the submethod’s effects can be
inferred from the supermethod’s body. During this, we also attempt
to examine transitive effects from methods calls where possible.
If the effects cannot be inferred, we define a call sequence that, if
executed, could trigger the effect difference. An example of such a
violation would be a call sequence causing the submethod to throw
an exception that the supermethod will never throw. The resulting
set of substitutability violations was then examined in order to
discover the most common patterns making them up.

The side effects that this study focuses on are exceptions, syn-
chronization, I/O operations and method calls. The reason for study-
ing method calls as an effect is twofold. First, it is an important
effect kind well explored [15]. Second, our effect inference tool
ignores transitive effects from method calls so that it can scale up to
very large datasets. Any transitive call analysis would also be very
imprecise due to both the open world assumption [19] and dynamic
dispatch. The method call effect provides a well-understood tech-
nique for handling it by treating transitive calls abstractly in both
the super and the subclass. For the rest of this section we detail
how each of these side effects were analyzed.

In order to study exception effects, methods were assigned an
exception effect if they contain a throw statement [13]. Our effect
inference then attempts to find the type of each thrown exception
and if successful adds it to the method’s set of thrown exception
types. Otherwise the exception is given a generic UNKNOWN type and
added to the set, but this occurred in only 4% of method pairs with
an exception effect. Exceptions that may be thrown implicitly by
e.g. accessing a null object or accessing an array out of its bounds
are ignored as is standard in exception analyses.

For synchronization, we differentiate methods between acquir-
ing and releasing locks. The analysis considers the synchronized
keyword (either as a modifier or block) to be both acquiring and
releasing a lock. We also consider Java’s Lock interface, its im-
plementations, and the Semaphore class. In order to include the
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fine-grain lock objects, the analysis examines each method call.
From this it attempts to infer the type of the callee and when suc-
cessful looks up the type and method in a table and assigns the
appropriate effect, if any.

In methods with I/O operations, we distinguish between oper-
ations related to input and output. We consider a list of 52 Java
standard I/O classes and interfaces, and assign an effect to each
of these types’ methods. In addition, operations on System.out,
System.err, and System.in are added as special cases to the anal-
ysis. Similarly to synchronization, this analysis attempts to infer
the type of object called and assign the appropriate effect.

Finally, for the method call effect, we consider each call expres-
sion to be a pair consisting of a category and the method name
(standard in the intraprocedural phase of effect inferences [21]).
These categories are this, super, and other. The this category
means the callee is the object this, and similarly for super while
the other category covers the remaining method calls. Each of
theses pairs are added to a set that represents the method’s call
effect.

3 RESULTS
This section describes the results of our large scale study for each
of the aforementioned side effects. Table 2 shows data for all of the
side effects. The table shows that while few methods have all four
kinds of side effects that we study, a substantial number of methods
are effect-full.

Table 2: Effects kinds per concrete method
Exception Sync I/O Call # Methods
✗ ✗ ✗ ✗ 47,215,362
✗ ✗ ✗ ✓ 84,729,294
✗ ✗ ✓ ✓ 3,989,859
✗ ✓ ✗ ✗ 357,272
✗ ✓ ✗ ✓ 2,082,889
✗ ✓ ✓ ✓ 108,370
✓ ✗ ✗ ✗ 1,752,771
✓ ✗ ✗ ✓ 6,372,803
✓ ✗ ✓ ✓ 540,276
✓ ✓ ✗ ✗ 23,742
✓ ✓ ✗ ✓ 333,082
✓ ✓ ✓ ✓ 28,862
Total Methods 147,534,582

Table 3 shows data for submethod and supermethod pairs that
have at least one effect. The submethod has more effects category
means the submethod has "more" effects than the supermethod in
at least one side-effect kind and none where the supermethod has
"more". For example a submethod reading from a file where the
supermethod does not would fit this category. The data shows that
for a large number of cases (53%) the submethod has more effects
compared to the supermethod.

Next, we examine each side effect over all methods in the dataset,
and then move onto examining pairs of sub and supermethods. For
each pair, we compare the effects of the paired methods in order to
see how many have substitutability violations, and verify this by
examining a small subset of pairs in more detail.

Table 3: Combined effect breakdown
Submethod has more effects 2,680,336 (53%)
Supermethod has more effects 1,287,747 (25%)
Both have same effects 395,940 (8%)
All others 710,258 (14%)
Total Pairs 5,074,281

3.1 Exceptions
We begin our examination of exception effects by first looking
at how many individual methods explicitly throw an exception.
These results are shown in Table 4, which categorizes methods
by the number of different exception types they throw. In this
table, all private methods are grouped together, including private
constructors and static methods. The next 2 columns denote non-
private static methods and constructors respectively, and the "other"
column denotes all remaining methods.

Our results show that the vast majority (94%) of methods do not
explicitly throw an exception. For those that do, most will only
throw a single exception type regardless of the type of method.
Proportionally, private and static methods throw exceptions more
often, but there are far more methods in the "other" category throw-
ing exceptions than those two combined.

These results are so far consistent with the previously published
study on purity analyses [21, 24], although our study considers a
thousand times more projects and, later on, other effect kinds.

Table 4: Number exceptions types thrown per method kind
(NP means non-private, and Init means constructor)

# Types Private NP Static NP Init Other
0 14M (91%) 12M (92%) 14M (96%) 99M (94%)
1 1.2M (8%) 961K (7%) 509K (3%) 5.6M (5%)
2 86K (1%) 92K (1%) 39K (0%) 462K (0%)
3+ 14K (0%) 12K (0%) 3017 (0%) 98K (0%)
Total 14,936,491 12,938,996 14,883,048 104,776,047

We now turn to examine method pairs where at least one of
the methods contains a throws expression. Table 5 shows our com-
parison of the sub and supermethods for these pairs. Each pair’s
methods were compared by the set of exception types each throws.
The pair was then placed into one of 6 categories depending on
both how the submethod’s set’s cardinality compared to the su-
permethod’s and whether one was a subset of the other. In each
category, sub refers to the set of exception types the submethod
throws and super the set of exceptions the supermethod throws.

The pairs themselves are additionally split into an "Expected"
and "Unexpected" grouping. The term "Expected" refers to pairs
where the set of exceptions thrown in the submethod are covered
by either the supermethod implementation, its throws clause, or
both. Listing 1 provides an example of this. In this example, the
submethod throws IllegalArgument and IOException. However,
it is consistent with the supermethod because the supermethod
throws IllegalArgument and the throws clause declares that it
may throw IOException. Thus, it would be categorized as Expected.
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1 class Super {

2 void m(Object x) throws IOException {

3 if (x == null) throw new IllegalArgument ();

4 } }

5
6 class Sub extends Super {

7 @Override void m(Object x) throws IOException {

8 if (x == null) throw new IllegalArgument ();

9 else throw new IOException ();

10 } }

Listing 1: Example pair where submethod’s exceptions are
expected

Table 5: Exception pair types (s=sub, p=super)

Category Pairs
Unexpected Expected Total

s ⊂ p 0 (0%) 350K (67%) 350K (48%)
s 1 p, |s | < |p | 5,399 (3%) 643 (0%) 6,042 (1%)
s ⊃ p 163K (79%) 61K (12%) 224K (31%)
s 2 p, |s | > |p | 3,203 (2%) 240 (0%) 3,443 (0%)
s = p 0 (0%) 103K (20%) 102K (14%)
s , p, |s | = |p | 34K (17%) 7,222 (1%) 41K (6%)
Total Pairs 205,844 521,880 727,724

Our results indicate that 38% of submethods may be unsafe sub-
stitutes of the superclass equivalent when considering only the
method implementations. When including the throws clause, this
drops to 28%, which is still a large percentage of these method pairs.
This finding motivates our further study to understand these cases
to see whether they indicate substitutability bugs. In order to do
this, we first examine what types of exceptions are most common
in this situation.

Finding 1: One quarter (28%) of the exception pair submeth-
ods’ effects cannot be inferred from the supermethod’s body
or throws clause. We will see similar results for the other three
effects.
Implication: Programmers and tools should consider sub-
method implementations when analyzing a method’s effects.

0%

2%

4%

6%

8%

10%

12%

Figure 1: Top 10 exceptions thrown when the submethod
throws more types (Exception suffix omitted)

Figure 1 shows exceptions most commonly thrown by pairs
where |sub | > |super |. Notice that several of these exceptions are re-
lated to preconditions such as IllegalArgument and IllegalState.
This may indicate that these submethods have stronger precon-
ditions than their supermethod, which is problematic from the
viewpoint of supertype abstraction [10].

Another top exception, UnsupportedOperation, is intended for
an operation a class cannot support. Submethods throwing this
exception likely indicate a violation of substitutability in which a
client may expect a class to support an operation that it does not
due to being a subclass instance. The case study investigates these
two groups in more detail.

Finally, RuntimeException, as themost common, is a very generic
exception to throw, and may be used for a variety of different pur-
poses. In most cases, a subclass of this exception should be thrown
instead so that clients catching the exception have some idea ofwhat
the particular error is. Thus, throwing this exception likely indicates
a code smell. Even when normalizing Figure 1 by project (i.e. each
project can only count 1 towards an exception), RuntimeException
is still the top exception type. This indicates that these kinds of
pairs are not specific to a few large projects, but many.

3.1.1 Are Exception Substitutability Violations Problematic? To
understand this, we start by examining exceptions related to precon-
ditions whose submethods throw more types of exceptions than the
supermethod. This group is further filtered so that the method pair
must throw at least one of IllegalArgumentException, NullPoi-
nterException, IllegalStateException, or IndexOutOfBounds-
Exception in addition to the array and string variants of that ex-
ception. From this set, we sample 50 method pairs that we examine
for substitutability violations. In the context of exceptions, this
means that we can construct a call sequence that would cause the
submethod to throw an exception while the supermethod either
throws a different or no exception.We find that 80% of these cases
indicate a violation.

In general, most of the violations have at least one of 3 common
patterns. The first is brittle parameters [18] either via instanceof
(16 cases) or restricting the allowed range of values (8 cases). The
supermethods generally do not have any explicit parameter restric-
tions in comparison, and do not throw the precondition-related
exceptions the submethods throw. The second pattern consists
of state-related exceptions, almost completely characterized by
IllegalStateException being thrown, encompassing 11 cases.
The general pattern for these is that the submethod checks to en-
sure the object state is valid while the supermethod has no such
checks in place, mostly due to not having the extra state that the
subclass has. For the third group (7 cases), the sub and supermeth-
ods have the same constraints, but handle it differently. For example
a supermethod may just return on a null argument while the sub-
method instead throws NullPointerException.

This characterization leaves 6 remaining violations. 4 of which
fit into multiple of the aforementioned patterns, and 2 that fit into
none of the above. We will now examine some of the violations in
more detail.

The first1 pair we examine is a case of a brittle parameter (List-
ing 2), and is from the Java Swing library. In this example, the
1From https://github.com/MIPS/mips-src

https://github.com/MIPS/mips-src
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superclass InputMap accepts any other InputMap or subclass of it
as a parent in the setParent method. One may reasonably expect
that, given any object of that type, we can assign the parent to be
any other object of the same type. However, this assumption does
not hold with a subclass. Instead, ComponentInputMap only accepts
other instances of that subclass as parent. Clearly we cannot rely
on the static type to tell us what the potential effects of setParent
are, nor do we intuitively expect it to ever throw an exception.
1 class InputMap {

2 public void setParent(InputMap parentMap) {

3 parent = parentMap;

4 } }

5 class ComponentInputMap extends InputMap {

6 public void setParent(InputMap parentMap) {

7 if (parentMap != null && !( parentMap instanceof

ComponentInputMap))

8 throw new IllegalArgumentException ();

9 ...

10 } }

Listing 2: Preconditions added by the subclass

Our second example2 is shown in Listing 3, is a case where the
submethod has a state-related precondition via a switch statement.
The non-constant static variables referenced in these methods are
all set by the client of these classes. While the superclass may
throw IndexOutOfBoundsException if tag is set incorrectly, the
submethod may instead throw IllegalStateException if it can-
not handle a certain constant object’s tag. What makes this example
interesting, is that clients of the superclass in the project avoid call-
ing the submethod by using instanceof to check the runtime type
of their Attribute variable. However, checking the other samples
shows that this pattern does not appear, indicating that it is rare for
a client to check runtime types explicitly before calling a method
when it contains a substitutability violation.

1 abstract class Attribute {

2 public String toString () {

3 return Constants.ATTRIBUTE_NAMES[tag];

4 } }

5 class ConstantValue extends Attribute {

6 public String toString () {

7 Constant c = constant_pool.getConstant(constantvalue_index);

8 switch (c.getTag ()) {

9 case Constants.CONSTANT_LONG: buf = ...; break;

10 ...

11 default: throw new IllegalStateException (...);

12 } } }

Listing 3: Different handling of the same precondition

Our results show that only in one case do clients use reflection
(via instanceof) to avoid an exception being thrown by a subtype
method. Most clients do not handle substitutability violations ex-
plicitly by checking the object runtime type and that is an indication
that violations can lead to mostly latent bugs.

We also sampled 20 method pairs where the submethod throws
more exceptions than its supermethod and also throws Unsupported-
OperationException. All 20 of these pairs violated substitutability.
When examining the submethods, we find 4 patterns. For 5 ex-
amples, the exception is used to restrict changes and notify the
client. This is to either make the subclass immutable, or to enforce
a specific container size in one case. For another 4 examples this
exception is thrown due to the submethod being more specialized

2From https://github.com/hkff/JInterfaceHack

and unable to support an operation as stated in either Javadoc or the
exception message itself. Thirdly, in only 1 case, the submethod uses
UnsupportedOperation as a "to do" that was never completed. Fi-
nally, in the 9 remaining examples no explanation is given through
method documentation or as an exception message, making it diffi-
cult to ascertain why the submethod is unimplemented.

Finding 2: Program patterns where the submethod appears
to have more effects than the supermethod are often (80%)
indicators of substitutability violations.
Implication: Code smell detection tools can accurately warn
about substitutability violations from submethods that explic-
itly throw exceptions not found in the supermethod.

3.1.2 Are Developers Documenting Exception Substitutability Vi-
olations? We found that the majority of the time the answer to this
question was no, though a number of cases were documented.

We examined the context in which these method pair implemen-
tations exist in order to see if developers are aware of and document
substitutability violations. In 6 cases, the supermethod’s Javadoc
declares that the method may throw the submethod’s exceptions
where 2 of these supermethods include a throws clause for the
unchecked exceptions. However, for the remaining it is impossible
to infer the exception side-effect from the supermethod alone. In
5 cases the subclass Javadoc alone states either the exception (2)
or at least the precondition. The Javadocs in these submethods
indicate potential points of code smell where the supermethod’s
Javadoc simply was not updated. Finally, while Javadocs do not
provide information about either the exception or preconditions in
the remaining cases, 18 at least provide a exception message though
6 do not, providing no information on why the exception occurred.

Beyond looking at Javadocs and exception messages, we found
evidence that some of the method pairs indicate problems, or bugs.
In one case the Javadoc of both the sub and supermethods is not cor-
rect for the submethod’s implementation. For example, in a reposi-
tory clone3 of the JFreeChart library, the Javadoc for VectorRender-
er.findDomainBounds states that the null argument is permitted,
and indeed it is in the supermethod. However, the submethod
throws IllegalArgumentException if the argument is null, in-
dicating that a mistake may have been made in the submethod’s
implementation. A similar situation was found in a repository4
that contains a copy of the Java Swing library. Specifically the
TitledBorder.getBaselinemethod whose Javadoc indicates that
the submethod expects its supermethod Javadoc to say that NullPoi-
nterException may be thrown (via the {@inheritDoc}), but it
does not. One other sample has a similar inconsistency between
the sub and supermethod documentation.

We also found two other cases where the submethod’s precondi-
tion is likely valid in the supermethod. However, the supermethod
does not check that the precondition is true. For example, one reposi-
tory5 that is a clone of GNUClasspath, the BandedSampleModel.ge-
tDataElement (submethod), checks the bounds of the arguments
specifying an (x ,y) coordinate. However, the supermethod does not
though some other methods in the superclass do bounds checking.

3From https://github.com/JSansalone/JFreeChart/
4From https://github.com/andreamoruno/Mora-Ormj
5From https://github.com/sandeep-datta/gcc/

https://github.com/hkff/JInterfaceHack
https://github.com/JSansalone/JFreeChart/
 https://github.com/andreamoruno/Mora-Ormj
https://github.com/sandeep-datta/gcc/
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3.2 Synchronization
Next, we examine synchronization effects, either via one of the
Java standard library locks or using the synchronized keyword.
Methods may have no locking effect, acquire or release a lock, or
do both. No distinction is made between what object is used for
the lock. This is because many classes may use multiple different
lock objects to ensure more fine-grained thread-safety, so it will
not necessarily provide useful information when examining these
methods. However, we group these methods and pairs by how fine-
grained their locks themselves are. That is, whether they use a lock
object (finest), synchronized blocks (fine), or just the synchronized
method modifier (coarse).

First we look at individual methods in Table 6. The columns
represent the aforementioned lock grouping based on how fine
grained the lock is, and the rows represent whether the method
acquires, releases, or both acquires and releases a lock. Note that the
"Block" column, due to how synchronized works in Java, always
acquires and releases the lock. Secondly, the "Modifier" column
represents both methods that use only the synchronized modifier
and those who have no synchronization effects. The entries with
"N/A" indicate that the entry is not applicable for the group.

The vast majority of methods with synchronization use the key-
word, likely due to ease of use. Of those, they split almost evenly
between using synchronized blocks and the synchronized modi-
fier. For those using a lock object provided by the standard library,
most both acquire and release locks, indicating that they might not
rely on other methods to release or acquire the necessary locks.
However, 15% of methods with lock objects seem to expect a differ-
ent method to acquire or release a lock, indicating more complex
locking scenarios.

Table 6: Synchronization types per method
Type Lock Block Modifier
None N/A N/A 145M (99%)
Acquire 8,488 (8%) N/A N/A
Release 7,134 (7%) N/A N/A
Both 94K (86%) 1.4M (100%) 1.5M (1%)
Total 109,408 1,373,460 146,051,714

Next is to examine the method pairs with synchronization shown
in Table 7. Similarly to the previous table, method pairs are grouped
based on how fine-grained their locks are with the exception that
"Modifier" does not include pairs without synchronization. In the
table categories, a method m having "more" of an effect than the
other, m’, indicates that m’ has no effect and m does or m’ acquires
or releases a lock and m does both. The same category similarly
means that the sub and supermethods have the same kind of syn-
chronization effect, and different means one method acquires a lock
while the other releases it. This last row is only applicable to locks
since the synchronized keyword forces the method to both acquire
and release the lock.

The different category would likely indicate a bug, but since
no pair fit into this category, we cannot examine this idea further.
However, a significant percentage of pairs have a supermethod
with synchronization and a submethod that does not, and may in-
dicate the presence of substitutability bugs. Consider for example,

Table 7: Synchronization pair types

Category Pairs
Lock Block Modifier Total

Super more 1,741 (51%) 33K (38%) 24K (25%) 58K (31%)
Sub more 1,366 (40%) 36K (41%) 44K (47%) 82K (44%)
Same 288 (8%) 18K (21%) 27K (28%) 45K (24%)
Different 0 N/A N/A 0
Total 3,395 86,821 94,912 185,128

a supermethod that is thread-safe, but a submethod that is not. If a
client expects the superclass, but gets a subclass, it may assume it
is thread-safe and allow multiple threads to use the object concur-
rently. This could lead to race conditions or visibility bugs. Visibility
bugs occur when a thread caches a value it changes without making
it available to other threads, leading to stale values and potentially
inconsistent object state.

3.2.1 Are there Synchronization Substitutability Violations and
what Kinds? To understand this, we sampled 50 pairs where the
supermethod has more synchronization effects than its submethod
out of 58K cases. The idea behind this is that, perhaps synchroniza-
tion in the subclass has been forgotten, causing a client that believes
an object with the static type of the superclass to be thread-safe
when it is not. Will two threads that operate safely on the super-
class cause a potential race condition or state visibility bug when
operating on the subclass? We assume that the two threads initially
obtained a properly published instance of the object in question.
We also assume the first thread knows of the subclass object, while
the second thread is only aware of the superclass.

Out of the selection, 15 or 30% have a substitutability violation
caused via a race condition or value visibility problem. Of these
cases, 7 of them are violations that will cause visibility problems
of some sort, such as the fields of the subclass getting out of sync
across threads. Then in 4 cases, two threads calling the submethod
can end up doing different things due to a visibility issue caused
during execution of the call sequence. 3 of the violations from the
aforementioned cases require one of the threads to be aware of the
subclass and call subclass-specific methods. Then for 3 cases the
violation leads to a race condition such as when manipulating a
thread unsafe collection or other object. Finally, the last violation
is due to the supermethod being synchronized but only throwing
UnsupportedOperation whereas the submethod is unsafe.

Let us now examine two of these substitutability violations. The
first6 shown in Listing 4 contains a typical supermethod that enters
a synchronized block, does some work, and exits. In comparison,
the submethod in question has no explicit synchronization. In-
stead, it calls multiple methods that are already thread-safe (e.g.
getBinding() and setType()). However, after this it updates a
BindValue structure that is stored in its superclass’s state with-
out synchronization. So if two threads both call this method on
the same subclass instance, they may see different versions of the
same or other BindValues. Whether this leads to a bug depends
on what the threads do (or do not do) next. For example if thread
1 attempts to retrieve the binding thread 2 modified and thread

6From https://github.com/yvens47/Portfolio
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2 has not entered a lock by then, thread 1 may receive outdated
information.
1 class PreparedStatement {

2 void setNCharacterStream(int parameterIndex , Reader reader , long

length) {

3 synchronized(checkClosed ()) { ... }

4 } }

5 class JDBC4ServerPreparedStatement

6 extends ServerPreparedStatement /* extends PreparedStatement */ {

7 void setNCharacterStream(int parameterIndex , Reader reader , long

length) {

8 ...

9 } else {

10 BindValue binding = getBinding(parameterIndex , true); //

supposedly thread -safe call

11 setType(binding , MysqlDefs.FIELD_TYPE_BLOB); // supposedly

thread -safe

12
13 binding.value = reader;

14 ...

15 } } }

Listing 4: Reference visibility race condition

The second example7 is a case of unsafe operations on collections
and shown in Listing 5. In the superclass, most methods are marked
as synchronized except for several setters (not shown). However,
the subclass does no synchronization for its HashSet _prefixes.
In a case where two threads have an instance of the subclass and
one knows the runtime type, that thread may add to the collection
and call the addABox method. However, if the second thread calls
the method as well, it may see an inconsistent or outdated version
of the collection that could cause a call that would otherwise pass
the filtering to fail.

1 class LinkFilterDefault {

2 synchronized void addABox(Node[] nx, int i) {

3 addUri(nx, i);

4 }

5 synchronized void addUri(Node[] nx, int i) { ... } }

6 class LinkFilterPrefix extends LinkFilterDefault {

7 void addPrefix(String prefix) { _prefixes.add(prefix); }

8 void addABox(Node[] nx, int i) {

9 boolean found = false;

10 for (String prefix: _prefixes) // a HashSet in sublass

11 if (nx[i]. toString ().startsWith(prefix)) found = true;

12 if (found) super.addUri(nx, i)l

13 } }

Listing 5: Unsafe operations

Now that we have examined the violations, let us look at the
cases with no synchronization violation. In 11, the submethod is ei-
ther trivial (returns, empty method, throws exception) or delegates
the call to the supermethod with no changes in logic. For 5 more
cases, the submethod delegates calls to an object that either itself
delegates calls or is thread-safe. In 7 cases, the submethod conducts
only thread-safe operations on state (such as calling a thread-safe
method), and while it may be possible to use them in a way that
causes strange results, they do not appear to contain race condi-
tions. Then in 8 cases the supermethod has very specific locking
behavior, and alone may not be intended to be thread-safe. Finally,
1 case’s safety depends on something a user would implement and
2 contain methods throwing UnsupportedOperation.

3.2.2 Do Developers Document Synchronization Substitutability
Violations? Of the violations, in two cases the thread-safe superclass

7From https://github.com/researchstudio-sat/ldspider4won

was from the AWT library and the unsafe subclass from the Swing
library. Since the Swing library was built on top of the AWT library
and, unlike AWT, did not attempt to be thread-safe, we consider
these violations to not be bugs. Note that this decision requires
outside knowledge to understand the thread-safety of the particular
subclass. We similarly found that there is no documentation of the
thread-safety properties of any pair of the classes we studied in their
Javadocs. This suggests a problem where a client of a superclass
may assume certain operations are thread-safe whereas the subclass
may have different ideas. From these cases, subtle race conditions or
value visibility problems could appear that might not be discovered
until much later.

For the remaining pairs with violations, it is more likely that the
thread-safety of the subclass was not on the implementer’s mind as
there is no indication of locks or explicitly thread-safe collections.

Finding 3: There is sparse to no documentation on class
thread safety guarantees, including between a sub and su-
pertype. It can only be inferred from general knowledge of
the project or examining the implementation.
Implication: Tools are needed first to help document synchro-
nization guarantees and second warn on mismatches between
the sub and supermethods based on these guarantees for large
concurrent programs.

3.3 I/O
For our I/O analysis, we categorize methods based on whether they
have input, output, both, or no I/O operations. Table 8 shows how
common different I/O operations are among all the methods ana-
lyzed. Similarly to exceptions and synchronization, the majority do
not contain I/O operations. In this table, the methods are grouped in
the same way as described in Table 4. It turns out that the number of
output operations in each category is about 2.7 for private methods,
3.6 for non-private constructors, 4.3 for non-private statics, and 4.2
for the rest times the number of methods with input operations in
that category.

Table 8: I/O effects per method (NP means non-private, and
Init means constructor)
IO Type Private NP Static NP Init Other
Output 664K (4%) 878K (7%) 94K (1%) 2.0M (2%)
Input 205K (1%) 107K (1%) 21K (0%) 351K (0%)
Both 79K (1%) 124K (1%) 6,973 (0%) 201K (0%)
Total 14,936,491 12,938,996 14,883,048 104,776,047

In order to investigate why there were so many more write
operations across all types of methods, we examined what out-
put I/O objects were used most. This was done by, for each type,
counting the number of methods that do an I/O operation on an
instance of it. We also make a distinction between any I/O objects
and the standard System.out and System.err objects. As Figure 2
shows, System.out is the most commonly used by far followed by
System.err combined making up over 60% of output.

Now suppose we conservatively ignore that percentage of meth-
ods with output operations, (making the assumption they only used
System.out or System.err). In this case, writes will still outnum-
ber reads in all 4 cases, although only slightly for private methods.

https://github.com/researchstudio-sat/ldspider4won
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Figure 2: Top 10 I/O Output Types

Now we discuss the comparison between method pairs with
I/O effects displayed in Table 9. Like with synchronization, the
categories for one method m having "more" I/O effects than the
other (callm′) refers to eitherm having an I/O effect andm′ not
orm having both read and write effects whilem′ either write or
reads.

Method pairs are grouped into one of three categories in the table
based on what kind of I/O objects they use. If either method uses
console-related I/O such as the Console class or System.out they
are placed in the "Console" category. Otherwise if either uses file-
related I/O objects then they are placed in "File". Finally, the "Bus"
category signifies using streams, readers, and writers, referring to
how these objects may be used to move bytes from one stream to
another. This last category may include pairs with file and console
I/O if the streams are connected to a file or the standard output/input
streams. However, this is not necessarily the case for all of these
objects.

Table 9: I/O pair types

Category Pairs
Console File Bus Total

Sub has less 123 (0%) 20 (0%) 70K (54%) 70K (37%)
Sub has more 36K (75%) 11K (91%) 34K (26%) 82K (43%)
No difference 12K (25%) 1077 (9%) 26K (20%) 39K (21%)
Different 77 (0%) 7 (0%) 116 (0%) 200 (0%)
Total 48,440 12,314 129,858 190,612

Finding 4: The majority (75%-91%) of method pair console
and file-based I/O is located in submethods.
Implication: Tools that infer a call’s potential I/O effects will
benefit from examining methods overriding the callee.

The table shows a marked difference between console and file
I/O with the rest, where the first two pairs have a majority (75% -
91%) of submethods with more I/O effects. These types of pairs may
indicate substitutability violations such as being able to crash the
submethod but not the supermethod (or with different exceptions)
due to an I/O error, or to cause unexpected output in the submethod.
We investigate these types of pairs further in the I/O case study.

3.3.1 What kinds of I/O Substitutability Violations are present?
As before, we gather 50 samples where the submethod has more I/O
effects than the supermethod of which there are 81K pairs. There are
two types of substitutability violations we consider. First, can the
submethod throw an exception caused by an I/O error that in the
supermethod either causes a different or no exception to be thrown
by the method? Alternatively, can an output difference occur (e.g.
the submethod outputs debugging info where the supermethod
outputs nothing)?

Overall, 37 or 74% of the selected cases has at least one of these
violations. Of these, 9 are due to differing behavior from an I/O op-
eration throwing an exception. The remaining 28 are due to output
differences, 21 from directly using System.out or System.err.

For those examples in which a violation is caused by a thrown
exception, all but 1 are due to a pattern of the submethod containing
an implementation while the supermethod is trivial (simple return,
throws an exception, or empty). In two of these cases we can cause
the exception to occur by calling a shutdown or similarly named
method. For the rest, the difference can be seen by providing an
illegal file name or already closed stream to operate on.

The example Listing 68 is one of the I/O violations due to a
thrown exception. The supermethod only closes the stream and
then throws a particular exception, also indirectly outputting to
System.out if the call to close() throws. However, the submethod,
during its execution, outputs to the provided stream. Now when
comparing the sub and supermethods in the case where the stream
os has already been closed, we observe the following difference: The
supermethod will simply output the error to System.out, but the
submethod will throw IOException when it writes to the stream.

Of course, any client of these methods will need to handle both
checked exceptions that themethod declares. However, anyonewho
uses the superclass’s implementation as a point of reference may
be misdirected without also examining subclass implementations.
The problem is exacerbated by the other examples where instead
the supermethod is trivial, which could be seen as a hint to look
elsewhere for the true effects of the method.

1 abstract class ImageParser {

2 void writeImage(BufferedImage src , OutputStream os, Map params)

3 throws ImageWriteException , IOException {

4 try { os.close(); }

5 catch (Exception e) {

6 Debug.debug(e); // outputs to System.out

7 }

8 throw new ImageWriteException (...);

9 } }

10 class GifImageParser extends ImageParser {

11 void writeImage(BufferedImage src , OutputStream os, Map params)

12 throws ImageWriteException , IOException {

13 ...

14 os.write(0x47);

15 ...

16 } }

Listing 6: I/O failure causing an exception in subclass

In many other cases the submethod would instead produce (in
the supertype client’s view) undesirable I/O output. An example of
this is shown in Listing 79. In this example the supermethod updates
several fields with properties of its input. The submethod operates
similarly, but its operations can throw an exception, in which case
8From https://github.com/bedatadriven/appengine-export
9From https://github.com/jankotek/asterope-kotlin-prototype
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it catches the exception and disables some checks. However, no-
tice that in addition to this, the submethod outputs a message via
System.err.

A client of the supertype may not realize that unexpected output
had been produced. However, the subtype’s output would cause
corruption in console-based application output where the console
is the user interface or is used to print results. A similar situation
would occur in applications who use certain logging facilities rather
than writing to the console.

Similar patterns abound in the other related output violations.
In 6 cases the output is due to detecting some sort of failure or
announcing a warning. A more common pattern (10 cases) are
cases where the console output appears to consist of debug-related
statements. That is, statements that do not indicate errors nor nec-
essarily useful information for a user. A single case contains both
debugging and failure messages. Finally, the remaining 4 come from
a console-based projects for which the output is neither apparent
debugging or failure statements.

1 abstract class Sampler {

2 void setInput(Image inImage) {

3 this.inImage = inImage;

4 this.inWidth = inImage.getWidth ();

5 ...

6 } }

7 class Clip extends Sampler {

8 void setInput(Image in) {

9 ...

10 try { ...

11 inImgScaler = inImage.getWCS ().getScaler ();

12 inImgScalerInv = (Scaler) inImgScalar.inverse (); // can

throw

13 } catch (TransformationException e) {

14 System.err.println (...);

15 pixelCheck = false;

16 straddleCheck = false;

17 } } }

Listing 7: I/O output difference

This leave 7 cases that do not use System.out or System.err,
but still present output differences. In only one of these, the subclass
transforms the input via another stream, but the remaining exam-
ples generally consist of straightforward string output to either a
stream or writer (which doesn’t throw IOException) object.

For those examples that turned out not to be violations, 7 are
due to I/O operations that will never throw an exception. These
I/O operations also either not result in actual I/O occurring or
produce the same output as the supermethod when considering
transitive calls. An example of this is writing to a non-subclassed
StringWriter, which simply builds a string for its client. Then there
are only 2 occurrences of System.out statements hidden behind a
final debug flag set to false. Then 3 extend an existing Java stream
class, which relies on abstract method calls to work. Finally, the
last case contains what appears to be an output difference, with no
apparent way to trigger it from the code provided.

3.3.2 Are these I/O Substitutability Violations Problematic? When
we examine the 9 I/O violations caused by an exception, we note
that in each of them, the exception effect can be inferred from the
supermethod signature through the supermethod throws clause (in
addition to the Javadoc in 2 cases). This suggests that, exceptions
thrown from I/O substitutability violations are not necessarily a
problem, at least in Java when using the checked exceptions such as

IOException. However, violations due to output differences paint
a different story.

In general, the biggest problems would likely be caused by the
submethod corrupting output unexpectedly. For example, 5 sub-
methods appear to output debug or informational messages. To
provide an example, an Android app10 has a class ChapterReader
whose methods use System.out that outputs some informational
messages when certain methods are called. Interestingly the class
also uses the standard Android Log class for other messages. Further
examination shows that this class is one of two in the repository
that use System.out while Log is used the rest of the time. This is
an inconsistency in logging with the norm of the project, indicating
that the use of System.out is a code smell.

In 12 cases, the subclass I/O difference appears to be intentional,
either due to it being a console-based program or due to the sub-
class’s purpose indicating the intention (e.g. VerboseObject vs. Ob-
ject). 6 other cases use System.out or System.err solely for report-
ing problems or warnings, though it may still surprise a developer
aware only of the superclass implementation.

Finding 5: Whether I/O substitutability violations are prob-
lematic are often situation-dependent.
Implication: Tools intended to warn about I/O substitutabil-
ity violations should be able to take into account the method
pair’s context.

3.4 Method Calls
This section analyzes method calls as effects, starting with individ-
ual methods in Table 10. This table shows that, unlike the other
effects, most (66%) methods have at least one call, and a significant
number (30%) call 3 or more different methods.

Table 10: Method calls per method (NP means non-private,
and Init means constructor)

# calls Private NP Static NP Init Other
0 2.3M (15%) 2.8M (21%) 4.8M (33%) 39M (38%)
1 2.5M (16%) 3.3M (26%) 6.4M (43%) 23M (22%)
2 2.1M (14%) 2.2M (17%) 1.5M (10%) 12M (12%)
3+ 8.1M (54%) 4.7M (36%) 2.2M (15%) 30M (28%)
Total 14,936,491 12,938,996 14,883,048 104,776,047

Next we briefly examine pairs with method calls in Table 11.
The categories seen in this table are similar to those in Table 5,
but with sets of method calls rather than exception types thrown.
18% of these pairs are cases where transitive effects of submethods
can be inferred from their supermethod. However, that leaves the
remaining 82% of pairs in which this is not the case. This strongly
indicates that, similarly to our findings for other effects, relying
on the supermethod implementation is not helpful for determining
effects. In general, this table shows that method calls in sub/su-
per pairs have a wide variety of differences leaning towards the
submethod calling more and different methods.

Finally, we turn to Table 12, which considers only pairs where
the submethod has more effects in at least one category than the
supermethod and no effects where the supermethod has more. This
10From https://github.com/AntennaPod/AntennaPod/
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Table 11: Method call pairs (s=sub, p=super)
s ⊂ p 524K (10%)
s 1 p, |s | < |p | 743K (15%)
s ⊃ p 1.9M (38%)
s 2 p, |s | > |p | 903K (18%)
s = p 398K ( 8%)
s , p, |s | = |p | 516K (10%)
Total Pairs 5,002,299

table effectively lists pairs that are likely to be substitutability vio-
lations even when method calls are taken into effect. Even under
these conditions we see a large number of method pairs, backing
our results in previous sections. For example, approximately 75K
sync pairs qualify, which is close to Table 7’s 82K pairs.

Table 12: Pair kinds where submethod have more effects
Exception Sync I/O Call # Pairs
✗ ✗ ✗ ✓ 2,301,578
✗ ✗ ✓ ✓ 71,683
✗ ✓ ✗ ✗ 5,302
✗ ✓ ✗ ✓ 54,627
✗ ✓ ✓ ✓ 2,830
✓ ✗ ✗ ✗ 18,567
✓ ✗ ✗ ✓ 201,071
✓ ✗ ✓ ✓ 11,881
✓ ✓ ✗ ✗ 656
✓ ✓ ✗ ✓ 11,418
✓ ✓ ✓ ✓ 723
Effect Pairs 2,680,336

Finding 6: Even considering method calls, a significant num-
ber of pairs contain submethod that has more effects. This in
particular indicates violations for exception and I/O effects.
Implication: While transitive calls can be important, exam-
ining only a method’s body is a good simplification to help
find substitutability violations.

3.5 Threats to Validity
3.5.1 External validity. As in all repository mining studies, rep-

resentativeness and dataset quality affect the study’s validity. We
noted, e.g., that a number of repositories included the Java Standard
Library and Hadoop codebases. Since we use Boa’s 2015 dataset,
the study is also limited to Java projects with GitHub repositories.
However, because the dataset contains over 380K Java projects,
we believe this is not a problem. For our case study, we randomly
selected examples and narrowed this selection down to specific
types of cases. Because of the limited number of cases we were able
to analyze, we cannot make broad generalizations. However, this
case study should still bring to light some common patterns where
the substitutability principle is violated.

3.5.2 Internal validity. In order to scale the analysis to so many
projects, we only examine a method’s explicit effects, which leads to
transitive effects frommethod calls to not be considered. Tomitigate
this problem we included method calls themselves as an effect and
combine this effect with the others. This allows us to take into

account method calls without attempting to find the correct method
implementation to add the call effects to the caller. The second is
that while our analysis attempts to be as precise as possible, it is
unable to deal with all possible situations. This shows up in, e.g.,
deciding the type of an exception, and we mark the exception type
as UNKNOWNwhich happened very rarely. We believe these strategies
helps to reduce their impact.

4 RELATEDWORK
There have been many studies on and tools introduced to help man-
age side effects in software. Most commonly they target exception
and synchronization effects.

On the exception side, there have been many [2, 3, 8, 9, 14, 20]
studies examining different ways developers handled exceptions.
Many of the results are similar to ours. Kechagia et al. found 19%
of a set of 4,900 crash traces in Android applications were avoid-
able if exceptions had been documented [8]. Another study [14]
showed Java checked exceptions were often ignored. A third study
[20] showed that about 20% of bug reports in a number of large
projects are related to exceptions. On synchronization, multiple
studies [7, 12, 16, 23] have each examined lock usage and/or concur-
rency bugs. In comparison the above works, we focus on whether
substitutability is upheld and, in comparison to most, examined a
larger set of projects.

To our knowledge, there have been very few studies on substi-
tutability. Pradel et al. created a tool [17] to automatically test for
violations by calling sequences of method pairs. This was used to
show that many widely used Java classes violate substitutability
in ways that, for 30% of cases, lead to crashes. Another work [1]
examined cxf, a web framework, and found many problematic vio-
lations. Gordon et al. introduced a tool to reason about GUI usage
[6]. They found developers frequently created unsafe subtypes by
overriding UI-safe methods with ones that are unsafe outside of
the UI thread, and that documentation on thread safety was scarce.
Our study was larger scale, considered more side effects, confirms
some of these previous findings, and produced some of our own.

In summary, while previous works have looked at various side
effects or developed tools to help manage them, most of them
do not consider substitutability and/or are much smaller scale. In
contrast, this study examines over 380K Java projects; focuses on
substitutability; and includes exception, synchronization, I/O, and
method call side effects.

5 CONCLUSION AND FUTUREWORK
This paper describes the first large-scale empirical study of how
inheritance and side effects interact in real world Java projects. Our
study is comprehensive and general. It is based on four different
effect kinds andmore than 380K projects. It reveals many interesting
findings with implications for development, testing, and tools. Our
results show that a large portion of method pairs that have effects
violate substitutability. We have also discussed various patterns of
these pairs, and their potential impacts on supertype clients.

In the future it would be interesting to extend our study into
other effects such as memory read/write [22]. We could also create
IDE extensions that warn developers about effect substitutability
violations, or create other tools to help manage them.
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