
Applying Translucid Contracts for Modular Reasoning
about Aspect and Object Oriented Events

Mehdi Bagherzadehβ Gary T. Leavensθ Robert Dyerβ
βIowa State University θUniversity of Central Florida

{mbagherz, rdyer}@iastate.edu leavens@eecs.ucf.edu

ABSTRACT
The Implicit Invocation (II) architectural style improves modularity
and is promoted by aspect-oriented (AO) languages and design pat-
terns like Observer. However, it makes modular reasoning difficult,
especially when reasoning about control effects of the advised code
(subject). Our language Ptolemy, which was inspired by II lan-
guages, uses translucid contracts for modular reasoning about the
control effects; however, this reasoning relies on Ptolemy’s event
model, which has explicit event announcement and declared event
types. In this paper we investigate how to apply translucid contracts
to reasoning about events in other AO languages and even non-AO
languages like C#.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Programming by con-
tract, Assertion checkers; F.3.1 [Specifying and Verifying and
Reasoning about Programs]: Assertions, Invariant, Pre- and post-
conditions, Specification techniques

General Terms
Design, Languages, Verification

Keywords
Translucid contracts, modular reasoning, implicit invocation,
aspect-oriented interfaces, grey-box specification, Ptolemy, quan-
tified typed events, aspect-oriented events, object-oriented events

1. INTRODUCTION
Reasoning about the control effects of aspect-oriented (AO) pro-

grams seems difficult because: (1) join point shadows are perva-
sive, and (2) advice can have interesting control effects (e.g., throw-
ing an exception or not proceeding) which are difficult to specify
using black-box behavioral contracts. One way to avoid the first
problem is to limit the application of advice to the base code. In
our previous work on Ptolemy, join point shadows are limited to
the places where events are explicitly announced [13]. To solve the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOAL’11, March 21, 2011, Pernambuco, Brazil.
Copyright 2011 ACM 978-1-4503-0644-7/11/03 ...$10.00.

second problem, we proposed translucid contracts [3]; these are
grey-box based specifications limiting the behavior of advice. The
grey-box nature of translucid contracts makes it possible to reveal
some implementation details while hiding others.

In this paper we show the extent to which translucid contracts can
be applied to several AO interface proposals as well as a non-AO
language (C#). That is, we separate the ideas of translucid contracts
from their original context, namely the Ptolemy language. The key
features of Ptolemy that are relevant are explicitly declared event
types, explicit event announcement and its quantification mecha-
nism. Ptolemy’s event announcement makes join point shadows in
the base code, explicit. The quantification mechanism allows static
computation of the set of advice at a specific place in the code.

Contributions of this work include:

• Application of translucid contracts to other AO interfaces,
specifically crosscutting programming interfaces (XPI) [17],
aspect-aware interfaces (AAI) [9] and Open Modules [1].

• A programming idiom to apply translucid contracts to a non-
AO language with built-in support for events, C#.

In the rest of the paper, Section 2 provides background infor-
mation about translucid contracts in Ptolemy. Section 3 shows
how to apply translucid contracts to other proposals for AO inter-
faces. Section 4 discusses a proposed programming idiom to apply
translucid contracts to C# events. Section 5 discusses related work
and finally Section 6 concludes the paper.

2. TRANSLUCID CONTRACTS IN
PTOLEMY

The canonical figure editor example in Figure 1, illustrates
translucid contracts in the Ptolemy language [13]. A figure ele-
ment Point sets the value of its x-coordinate in method setX.
The requirement in this example is: skip the modification of the x-
coordinate, of the figure element point, if the figure element is fixed
and not modifiable. This requirement could be implemented using
event-driven programming techniques, which announce an event
when setX is about to modify the Point and have an event han-
dler method like enforce which enforces the non-modifiability
requirement of the fixed figure element.

Our language Ptolemy, used in the implementation of the exam-
ple in Figure 1, enables event-driven programming by the introduc-
tion of quantified, typed events. Event type Changed (lines 10-20)
abstracts concrete events which represent modification to figure el-
ements, such as points. Context variable fe (line 11) is a piece of
information communicated between Point (subject), which an-
nounces Changed, and its handler Enforce (observer). The

1 class Fig {int isFixed;}

2 class Point extends Fig{

3 int x, y;

4 Fig setX(int x){

5 announce Changed(this){

6 this.x = x; this

7 }

8 }

9 }

5

6

}

Event

Announcement

A
O

 i
n

te
rf

a
ce

 (
E

v
e

n
t

T
y

p
e

)

10 Fig event Changed {

11 Fig fe;

12 requires fe != null

13 assumes{

14 if(fe.isFixed==0)

15 invoke(next)

16 else

17 establishes fe==old(fe)

18 }

19 ensures fe != null

20 }

requires fe != null

13 assumes{

14 if(fe.isFixed==0)

15 invoke(next)

16 else

17 establishes fe==old(fe)

18 }

ensures fe != null

Event

Declaration

21 class Enforce {

22 Enforce init(){ register(this)}

23 Fig enforce(thunk Fig rest,Fig fe){

24 if(fe.isFixed==0)

25 invoke(rest)

26 else

27 refining establishes fe==old(fe){

28 fe }

29 }

30 when Changed do enforce;

31 }

30

Quantification

register

thunk

(fe.isFixed==0)

establishes

enforce;

Registration

Translucid

Contract

Figure 1: A translucid contract for the event type Changed

translucid contract (lines 12–19) limits the behavior of the refin-
ing handler methods like enforce using pre- and post-condition
constraints phrased in requires and ensures clauses (lines
12 and 19). It also limits the control effects of the refining han-
dlers by imposing structural constraints on their implementation
using assumes block (lines 13–18). Subject Point announces
event Changed explicitly using an announce expression (lines
5–7), passing the parameter this to be mapped to the context vari-
able fe. Observer Enforce shows its interest in being notified
about announcements of event Changed using the binding decla-
ration when − do (line 30), which says to run method enforce
whenever an event of type Changed is announced. The subject
Enforce registers itself as an observer for event Changed using
the register expression (line 22).

As mentioned earlier, translucid contracts restrict the control
effects of the refining handlers by imposing constraints on the
structure of the code in their implementation. Handlers of a spe-
cific event should refine the translucid contract of the event. The
assumes block (lines 13–18) contains this information. Translu-
cid contracts are more expressive compared to black-box contracts
as they can reveal some implementation details about their refin-
ing handlers using program expressions, while hiding others us-
ing specification expressions. For example, the program expression
(line 14) is conveying the fact that each refining handler must eval-
uate the if expression in its implementation as the very first ex-
pression followed by an invoke (line 15). While program expres-
sions reveal implementation details, specification expressions (line
17) hide them, which allows for variability in the refining handlers’
implementations. The programmer of the observer module, by just
looking at the observer and the translucid contract, can conclude
that if the figure element fe is not fixed then the handler method is
called, allowing the modification of the figure (lines 14–15); other-
wise the handler is skipped and the figure is not changed (line 17).
invoke is Ptolemy’s equivalent of AspectJ’s proceed.

In terms of variability of the handlers, outside the scope
of this example, structural constraints in the assumes block
could be as liberal as establishes true which speci-
fies any handler without an invoke expression in its body
or establishes true;invoke(next);establishes true
which allows any handler, with the invoke expression somewhere
in its implementation.

Verification of the handler method’s refinement of the translu-
cid contracts is carried out via a hybrid static and dynamic ap-
proach. Static structural refinement checks for the textual match-
ing between program expressions in the translucid contract and the
handler implementation at the same structural positions in the code
and the contract [3]. For example, lines 14–16 match lines 24–

26. Specification expressions in the contract must be refined by
refining expressions carrying the same specification. For ex-
ample, line 17 is refined by the refining expression on lines 27-28.
Runtime assertions assure that refining expressions actually refine
the specification they claim to refine. Pre- and post-conditions of
the translucid contract are also enforced using runtime probes in-
serted at the beginning and end of each handler and before and after
event announcement.

The key point to notice when applying translucid contracts to the
event types in Ptolemy, is that: In Ptolemy, each handler knows
about the type of events it handles, statically at compile time.
Thus, having the handler’s implementation and the declaration of
the event type it handles, refinement of the contract by the han-
dler could be carried out modularly without any need for whole-
program analysis. This is not the case in all languages with built-in
event-driven mechanism such as C#. In these languages handlers
do not statically know about the type of events they might handle.
In this work, we propose a very simple programming idiom which
allows the handlers to know about the type of events they handle,
which in turn enables modular verification of their refinement of
the translucid contract of the events they handle.

3. APPLICABILITY TO OTHER AO IN-
TERFACES

As mentioned in Section 1, pervasive join point shadows are
one of the obstacles in the modular reasoning about AO programs.
AO interfaces tackle this problem by making join points explicit.
Ptolemy’s event types could be thought of as AO interfaces. We
show the applicability of translucid contracts to crosscutting in-
terfaces (XPI) [17], aspect-aware interfaces (AAI) [9], and Open
Modules [1] and discuss changes in the refinement rules required
to verify such programs. Other AO interfaces such as join point
types (JPT) [16] and explicit join points (EJP) are not discussed as
they are similar to Ptolemy’s event types, discussed in our previous
work [3]. For a more detailed discussion on the applicability of
translucid contracts to AO interfaces see our previous work [2].

3.1 Translucid Contracts for XPIs
The key idea in crosscut programming interfaces (XPIs) [17] is

to establish an interface, based on design rules, to decouple the
base and the aspect design. An XPI limits the exposure of join
points and also the behavior of advised and advising code using
black-box contracts in terms of provides and requires clauses, with
no mechanism to check the full compliance to the contract.

Figure 2 illustrates the applicability of translucid contracts to
XPI Changed on lines 4–11, in an AspectJ implementation of
the figure editor example introduced in Section 2. XPI Changed

13 aspect Enforce {

14 Fig around(Fig fe): Changed.jp(fe){

15 if(fe.fixed == 0)

16 proceed(fe);

17 else

18 refining establishes fe==old(fe){

19 return fe;

20 }

21 }

22 }

X
P
I

1 aspect Changed {

2 pointcut jp(Fig fe):

3 call(Fig Fig+.set*(..))&& target(fe);

4 requires fe != null

5 assumes{

6 if(fe.fixed == 0)

7 proceed(fe);

8 else

9 establishes fe == old(fe);

10 }

11 ensures fe != null

12 }

Figure 2: Applying translucid contract to XPI

and aspect Enforce in Figure 2 are the counterparts of Ptolemy’s
event type Changed and handler Enforce in Figure 1. The lan-
guage for expressing translucid contracts is slightly adapted to use
AspectJ’s proceed instead of Ptolemy’s invoke, on lines 7, 16.

Unlike Ptolemy, where the translucid contract is attached to the
event type (lines 12–19, Figure 1), in the XPI the contract is at-
tached to the pointcut declaration (lines 4–11, Figure 2). In the
Ptolemy example of Figure 1 only the context variable fe defined
on line 11 could be accessed in the contracts, likewise in the XPI
example, only the variable fe exposed by the pointcut (lines 2–3,
Figure 2) is used in the contract. In Ptolemy the event type of in-
terest is specified by the handler in the binding declaration (line 30,
Figure 1) whereas in the XPI example, handler Enforce reuses
the pointcut declaration in XPI Changed (line 14, Figure 2). Our
refinement rules could be added here in the AO type system enforc-
ing that the advice body on lines 15–21 must refine the translucid
contract of the pointcut declaration on line 14. As it can be seen, the
refinement rules are applicable to XPIs with only minor changes.

3.2 Translucid Contracts for AAIs
Some AO interfaces such as XPIs could be specified explicitly,

whereas others such as aspect-aware interfaces (AAIs) [9] could be
computed from the implementation, given whole-program informa-
tion. Figure 3 illustrates the AAI for the figure editor example of
Section 2. Figure 3 shows the extracted AAI for the method setX
on lines 3–4 along with a translucid contract on lines 5–12, carried
over from the pointcut to the join point shadow. In AAI the ad-
vised join point in method setX contain the details of the advising
advice on lines 3–4. Syntax and refinement rules similar to XPIs
are applicable here. Similar ideas can also be applied to aspect-
oriented development tools such as AJDT, which provide AAI-like
information at each join point shadow in an AspectJ program.

3.3 Translucid Contracts for Open Modules
Open Modules [1] allow explicit exposure of pointcuts for be-

havioral modifications by aspects, which is similar to signaling
events using the announce expression in the Ptolemy. The imple-
mentations of these pointcuts remain hidden from the aspects which
in turn reduces the impact of the base code changes on the aspect.
However, in Open Modules, each explicitly declared pointcut has
to be enumerated by the aspect for advising.

A
A
I

1 class Point extends Fig {

2 int x, y;

3 Fig setX(int x): Enforce -

4 after returning Changed.jp(Fig fe)

5 requires fe != null

6 assumes{

7 if(fe.fixed == 0)

8 proceed(fe);

9 else

10 establishes fe == old(fe);

11 }

12 ensures fe != null

13 /* body of setX */

14 }

requires fe != null

6 assumes{

7 if(fe.fixed == 0)

8 proceed(fe);

9 else

10 establishes fe == old(fe);

11 }

ensures fe != null

Figure 3: Applying translucid contract to AAI

13 aspect Enforce {

14 Fig around(Fig fe): target(fe) &&

15 call(Fig Fig+.set*(..));

16 if(fe.fixed == 0)

17 proceed(fe);

18 else

19 refining establishes fe==old(fe){

20 return fe;

21 }

22 }

23 }

O
p

e
n

 M
o

d
u

le

1 module Changed{

2 class Fig;

3 expose to Enforce: call(Fig Fig+.set*(..));

4 requires fe != null

5 assumes{

6 if(fe.fixed == 0)

7 proceed(fe);

8 else

9 establishes fe == old(fe);

10 }

11 ensures fe != null

12 }

Figure 4: Applying translucid contract to Open Modules

Figure 4 illustrates the applicability of translucid contracts, lines
4–11, to Open Module Changed in the figure editor example of
Section 2. To retain similarity with other examples in the paper,
syntax from Ongkingco et al.’s AspectJ implementation [12] is
used in the example. Compare Open Module Changed and as-
pect Enforce with event type Changed and handler Enforce
in Figure 1. Open Module Changed in Figure 4 exposes a point-
cut of class Fig on line 2 which is only advisable by the aspect
Enforce marked by expose to, line 3. The translucid contract
on lines 4–11 limits the the interaction between Enforce and the
pointcut exposed on line 3.

Like contracts in XPIs, in Open Modules the contract on lines
4–11 is attached to the pointcut declaration on line 3. Variable fe
named in the contract is the one exposed by the pointcut on line
3, again like XPIs. The proposed rules for verifying refinement
need to be modified slightly. In Ptolemy, the event type of interest
Changed is specified in the binding declaration (line 30, Figure 1),
whereas in the AspectJ implementation of Open Modules [12], as-
pects cannot reuse pointcuts exposed by the Open Module and need
to enumerate the pointcut in the advice declaration again, lines 14–
15. Refinement rules could be added here in the AO type system.
The same adaptations in the syntax and refinement rules as of XPI’s
are applicable to Open Modules. The challenge is to match aspect
Enforce pointcut definition on lines 14–15, with the Open Mod-
ule one on line 3 to pull out its contract for refinement checking.

4. APPLICABILITY TO NON-AO LAN-
GUAGES

Section 3 discussed the application of translucid contracts to AO
interfaces rather than Ptolemy’s event types. But the applicability
of translucid contracts is not limited to just AO languages. In this
section we discuss their applicability to a non-AO language, C#,
with built-in support for event announcement and handling.

4.1 Problem
As discussed earlier in Section 1, Ptolemy’s key feature for ap-

plicability of translucid contracts is that for any specific handler the
set of potential events it handles is statically known. In other words,
for each event type in Ptolemy, it is pretty straightforward to deter-
mine the set of its potential handlers using Ptolemy’s quantification
mechanism. Thus the translucid contract for the handler could be
easily pulled out and refinement can be checked in a modular fash-
ion using only the handler implementation and the contract.

In languages with built-in event announcement and handling,
such as C#, the set of handlers for an event is not easily known stat-
ically. In C# the event model relies on type-safe method pointers
(delegates) which could be used to dynamically register a method
as a handler for a specific event. The signature of the handler often
only includes the context variable and does not indicate the specific
type of event being handled, such as:

Fig enforce (Fig fe);

This handler could handle multiple events, as long as the events
pass in the context variable fe of type Fig. To determine the spe-
cific event being handled by each handler, we propose a simple pro-
gramming idiom which requires the event type to be passed as an
argument to the handler method. Using this idiom, by only look-
ing at the handler method’s signature, the type of event it handles
can be easily determined. The idiom resembles the quantification
mechanism in Ptolemy, as in line 30 in Figure 1.

4.2 Translucid Contracts for C#
In this section event declaration, announcement and handling in

C# is illustrated and compared with Ptolemy using the figure ed-
itor example in Figure 1. The C# example is more verbose than
needed in order to provide handlers with an Invoke statement
which causes the next applicable handler to run, like its counterpart
the invoke expression in Ptolemy. This section also discusses the
proposed programming idiom. All our proposal requires is to pass
into the handler the event type it handles, as a formal parameter.

10 class Changed:EventType <Fig, Changed.Context>{

11 class Context{

12 Fig fe;

13 Context (Fig fe){ this.fe = fe;}

14 Fig contract() {

15 Contract.Requires(fe != null);

16 Contract.Ensures(fe != null);

17 if (fe.isFixed==0)

18 return new Changed().Invoke();

19 else {

20 Contract.Assert(1==1);

21 Contract.Assert(fe==Contract.OldValue(fe));

22 }

23 }}}

Contract.Requires(fe != null);

Contract.Ensures(fe != null);

if (fe.isFixed==0)

return new Changed().Invoke();

else {

Contract.Assert(1==1);

Contract.Assert(fe==Contract.OldValue(fe));

Translucid

Contract

Figure 5: Applying translucid contract to C#

Figure 5 illustrates declaration of event type Changed, simi-
lar to Changed in Figure 1, with return type Fig, line 10, and
the context variable fe, defined on line 12 and set on line 13.

Like Ptolemy, in C# the contracts are attached to the event type,
lines 15–21. Method contract on lines 14–22 is the place-
holder for the translucid contract. Lines 15–16 state pre- and
post-conditions of the contract using the Embedded Contracts Lan-
guage [6]. Lines 17–22 illustrate the body of the assumes
block of Figure 1 lines 13–18. Lines 20–21 in Figure 5 are the
equivalent of the specification expression of line 17 in Figure 1.
Specification establishes fe == old (fe) is the sugar for
requires true ensures fe == old (fe). The Invoke
method on line 18 causes the next applicable handler to run. It is
provided by the class EventType in the C# library for Ptolemy,
which is not shown here.

1 class Fig { int isFixed; }

2 class Point:Fig {

3 int x, y;

4 void setX(int x) {

5 Changed.Announce(new Changed.Context(this),()=>{

6 this.x = x;

7 return this;});

8 }

9 }

Figure 6: Event announcement with event types in C#

Figure 6 illustrates the subject Point. Compare it with class
point in Figure 1. On line 5, Point announces the event Changed
using the Changed.Announce method, similar to event an-
nouncement on line 5 of Figure 1. The receiver of the announce
method is the event type being announced and the event body is
provided as an anonymous lambda statement, lines 6–7. The con-
text variable fe is created and set on line 5 by creating the object
Changed.Context.

24 class Enforce {

25 Enforce init(Changed.Register(enforce);}

26 Fig enforce(EventType<Fig, Changed.Context next){

27 Contract.Requires(fe != null);

28 Contract.Ensures(fe != null);

29 if (next.fe.fixed == 0)

30 return next.Invoke();

31 else {

32 Contract.Assert(1==1);

33 return next.context().fe;

34 Contract.Assert(next.Context.fe ==

35 Contract.OldValue(next.Context.fe));

36 }}}

(next.Context.fe));

Figure 7: Event handler in C#

Figure 7 illustrates the handler method enforce on lines 26–
36. Compare it with the enforce in Figure 1. Event registration
is done via the call to the register method on the event type,
line 25. The Invoke statement is similar to Ptolemy’s invoke ex-
pression, allowing the next applicable handler to be called. Lines
32-35 are the equivalent of Ptolemy’s refining expression on lines
27–28 of Figure 1. Assertion statements on lines 32 and 34–35 are
run time probes added to enforce the specification stated by spec-
ification expression on lines 20–21 of Figure 5. Ptolemy’s quan-
tification mechanism is simulated in C# by the proposed idiom of
passing the event type to the handler as a parameter, on line 26 .

4.3 Discussion
As previously mentioned in Section 2, runtime assertions assure

that each handler method refines the pre- and post-condition of the
event type it handles. They also check that Ptolemy’s refining
expression actually refines the specification it claims. In C# it
means the insertion of runtime probes on lines 27–28 of Figure 7
to enforce the contract’s pre- and post-conditions, stated on lines
15–16 of Figure 5. Also, the addition of assertions on lines 32 and
34-35 to make sure the specification expression on lines 20-21 of
Figure 5 is not violated by any program expression which claims to
refine it, line 33 of Figure 7. Insertion of runtime probes and struc-
tural refinement of the contract by handlers could be carried out
by a simple source to source transformation. The transformation
also makes sure that the refining handler methods and each code
block constrained by a specification expression have one exit point
to avoid unreachable code (line 33, Figure 7) . Structural similarity
is crucial to structural refinement [3, 14].

5. RELATED WORK
This work, especially the internals of the translucid contracts,

relates to works which propose: (1) behavioral contracts for aspects
and (2) modular reasoning techniques for AO interfaces.

Behavioral contracts for Aspects:. Use of behavioral contracts
to limit the behavior of aspects for the ease of reasoning is an ac-
cepted approach, exercised in the works such as crosscut program-
ming interfaces (XPI) [8, 18], Pipa [19] and Cona [10, 15] among
the others. XPI’s informal contracts in terms of constraints for the
advised and the advising code, Pipa’s JML-like annotations and
Cona’s contracts for both aspects and objects are all behavioral
contracts, which makes them incapable of specifying any control
effect of interest. Furthermore, there is no verification mechanism
proposed for XPI contracts.

Modular Reasoning for AO Interfaces:. Frequent join point
shadows are one of the obstacles in modular reasoning about AO
programs. Open Modules [1], explicit join points [7], join point
types [16] and Ptolemy [13] tackle this problem by limiting the
number of join point shadows as we have done in this work. How-
ever they do not provide any concrete specification and verification
mechanism for reasoning.

Understanding the control effects of the advice is another prob-
lem in modular reasoning. “Harmless” advice [5] assumes aspects
with no side effects. Categorizing the aspects as assistants (or spec-
tators) [4], which can(not) enhance the behavior of the base code
helps with reasoning. EffectiveAdvice [11] proposes explicit ad-
vice points and composition and its typed model enforces control
and data flow properties. However, its non-AO core makes it diffi-
cult to adapt it to II, AO and Ptolemy as it lacks quantification.

6. CONCLUSION
Although implicit invocation (II) improves modularity, it makes

modular reasoning difficult especially reasoning about control ef-
fects. In the previous work [3] translucid contracts were proposed
to enable modular reasoning in Ptolemy. In this work, we show
that translucid contracts are independent of their original context,
Ptolemy, and are applicable to other AO interfaces. We also pro-
pose a simple programming idiom to enable application of translu-
cid contracts to C#. The basic requirement when applying translu-
cid contracts is: for each handler, it should be possible to statically
tell which event types it handles. The proposed idiom meets this
requirement. The idiom is simple and general and can be applied
to other OO languages. Using the idiom makes it possible to know
what events a handler method can handle. In summary, translucid

contracts are independent of Ptolemy and are applicable to implicit
AO and explicit OO event announcement models.

Acknowledgments
Bagherzadeh and Dyer were supported in part by NSF grant CCF-
10-17334. The work of Leavens was supported in part by NSF
grant CCF-10-17262.

7. REFERENCES
[1] J. Aldrich. Open modules: Modular reasoning about advice.

In ECOOP’05.
[2] M. Bagherzadeh, H. Rajan, and G. T. Leavens. Translucid

contracts for aspect-oriented interfaces. In FOAL ’10.
[3] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney.

Translucid contracts: Expressive specification and modular
verification for aspect-oriented interfaces. In AOSD ’11.

[4] C. Clifton, G. T. Leavens, and J. Noble. Ownership and
effects for more effective reasoning about Aspects. In
ECOOP ’07.

[5] D. S. Dantas and D. Walker. Harmless advice. In POPL’06.
[6] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded

contract languages. SAC ’10.
[7] K. J. Hoffman and P. Eugster. Bridging Java and AspectJ

through explicit join points. In PPPJ’07.
[8] K. J. Sullivan et al. Information hiding interfaces for

aspect-oriented design. In ESEC/FSE’05.
[9] G. Kiczales and M. Mezini. Aspect-oriented programming

and modular reasoning. In ICSE’05.
[10] D. H. Lorenz and T. Skotiniotis. Extending design by

contract for aspect-oriented programming. CoRR,
abs/cs/0501070, 2005.

[11] B. Oliveira, T. Schrijvers, and W. R. Cook. Effectiveadvice:
Disciplined advice with explicit effects. In AOSD’10.

[12] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren,
O. de Moor, and G. Sittampalam. Adding Open Modules to
AspectJ. In AOSD’6.

[13] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantified, typed events. In ECOOP’08.

[14] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular
verification of higher-order methods with mandatory calls
specified by model programs. In OOPSLA’07.

[15] T. Skotiniotis and D. H. Lorenz. Cona: Aspects for contracts
and contracts for aspects. In OOPSLA’04.

[16] F. Steimann, T. Pawlitzki, S. Apel, and C. Kastner. Types and
modularity for implicit invocation with implicit
announcement. TOSEM, 20(1), 2010.

[17] K. J. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai,
M. Shonle, and N. Tewari. Modular aspect-oriented design
with XPIs. TOSEM, 20(2), 2009.

[18] W. G. Griswold et al. Modular software design with
crosscutting interfaces. IEEE Software’06.

[19] J. Zhao and M. Rinard. Pipa: A behavioral interface
specification language for AspectJ. In FASE’03.

