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ABSTRACT
Deep Learning (DL) techniques are increasingly being incorporated

in critical software systems today. DL software is buggy too. Recent

work in SE has characterized these bugs, studied fix patterns, and

proposed detection and localization strategies. In this work, we

introduce a preventative measure. We propose design by contract

for DL libraries, DL Contract for short, to document the properties

of DL libraries and provide developers with a mechanism to identify

bugs during development. While DL Contract builds on the tradi-

tional design by contract techniques, we need to address unique

challenges. In particular, we need to document properties of the

training process that are not visible at the functional interface of

the DL libraries. To solve these problems, we have introduced mech-

anisms that allow developers to specify properties of the model

architecture, data, and training process. We have designed and im-

plemented DL Contract for Python-based DL libraries and used it

to document the properties of Keras, a well-known DL library. We

evaluate DL Contract in terms of effectiveness, runtime overhead,

and usability. To evaluate the utility of DL Contract, we have de-
veloped 15 sample contracts specifically for training problems and

structural bugs.We have adopted four well-vetted benchmarks from

prior works on DL bug detection and repair. For the effectiveness,

DL Contract correctly detects 259 bugs in 272 real-world buggy pro-

grams, from well-vetted benchmarks provided in prior work on DL

bug detection and repair. We found that the DL Contract overhead
is fairly minimal for the used benchmarks. Lastly, to evaluate the

usability, we conducted a survey of twenty participants who have

used DL Contract to find and fix bugs. The results reveal that DL
Contract can be very helpful to DL application developers when

debugging their code.
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1 INTRODUCTION
Deep learning is a popular tool for solving complex software devel-

opment problems such as NLP and vision, but research has shown

that deep learning models also have unique bugs [33, 36, 37, 66]. To

address this, SE researchers have focused on detecting and localiz-

ing these bugs [46, 57, 62]. In this work, we explore an alternative

approach to improve the reliability of deep learning software, de-

sign by contract (DbC). Traditional DbC [19, 41, 43, 48] provides

support for writing preconditions and postconditions at APIs. How-

ever, prior work does not provide mechanisms for documenting

properties of the model architecture, data, and training process,

which are crucial for applying DbC to deep learning APIs. Recent

research has proposed techniques for inferring these properties, but

DbC aims to provide specification mechanisms for programmers.

We propose a DbC methodology for deep learning libraries,

called DL Contract. It exposes meta-level properties of the DL train-

ing process and model structure as variables, calledML variable, for
use in writing contracts. Unlike grey-box contracts [23] that expose

part of the program,ML variable provides a higher-level abstraction
of the training process and model structure. They are similar to

specification-only fields [27] in object-oriented programs [42, 49],

but abstract away from the details of the DL model.

We have developed DL Contract for Python and a runtime as-

sertion checking framework for DL Contract. We have applied con-

tracts to key API methods of the Keras library and evaluated them

using four benchmarks for deep learning bug detection from prior

https://doi.org/10.1145/3611643.3616247
https://doi.org/10.1145/3611643.3616247
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Figure 1: Buggy code [2, 3, 6, 7, 9] achieves 9.78% training accuracy. Similar correct code [10] achieves ∼ 99% training accuracy.

works [52, 57, 62, 65], comprising 272 Keras codes. Our results show
that the Keras library with contracts can identify 95% of such bugs

during runtime checking. Additionally, we have evaluated the anno-

tation overhead of DL Contract and found it to be zero for users of

DL libraries. This means that users do not need to add any contract

annotations to their code in order to benefit from our approach. We

have also added 15 contracts to the model compilation and training

methods of the Keras API and evaluated 257 correct programs, find-

ing 18 false positives due to the randomness effect during training.

To evaluate the usability of the contract-enabled Keras library, we
conducted a user study with 20 participants with varying levels

of expertise in DL application development. Our evaluation also

shows that the runtime overhead of checking contracts is fairly

minimal. We found that the runtime overhead increases by around

15% compared to the baseline. DL Contract can be disabled during

production to result in zero overhead.

Our contributions are as follows:

• A novel methodology for writing and checking contracts for

deep learning libraries by specifying DL APIs with precon-

ditions and postconditions.

• A framework [15] that is extensible and generalized to differ-

ent classes of DL bugs and maps contract violation as a bug,

symptoms as the constraint to check, and contract violation

messages as suggestions to fix bugs.

• The notion of specifying DL-specific contracts by abstracting

the DL model architecture, its data properties, and training

behavior.

• A collection of 15 contracts that prevents prevalent training

problems and structural bugs in DL programs.

• An annotated version of Keras with the DL Contract as a
virtual environment (@Keras) [11]. Developers can use this

@Keras environment for debugging without any annotation

overhead and minimal runtime overhead (≈15%).

2 MOTIVATION
To highlight the difficulty in specifying deep learning APIs and

the need for DL Contract, consider a simple Convolutional Neural

Network (CNN) code shown in Fig. 1. This code is intended for

digit classification when implemented correctly, as outlined in the

Keras documentation [10], it achieves 99% training accuracy on

the MNIST dataset. In the correct version, images are normalized

to the range [0,1] before being processed by a Sequential model

with a specific layer architecture. The model is configured using

the Compile API and trained using the Fit API, and the evaluate
API is used to calculate the loss and accuracy. However, as shown

in Fig. 1, the code snippet contains three bugs (on lines 19, 20, and

22) which result in low accuracy and high training time. These bugs

are specific to DL programs [62] and may not cause crashes. For

example, on line 19, the incorrect activation function, ‘relu’ is used

in the last layer of the Dense API [2, 5, 6]. Additionally, on line 20,

the incorrect loss function of ‘binary_crossentropy’ is applied in

the Compile API [2, 3, 9]. Lastly, on lines 5 and 6, the data is not

normalized before being fed into the Fit API [6, 7].
This example also illustrates another challenge for specifying

DL APIs. All DL APIs work on a shared DL model, where early

APIs construct the model and later APIs, such as fit, compile, and
evaluate, make use of it. To write pre/postconditions for DL APIs,

having access to only the formal parameters and return values of

the APIs is not sufficient. Correct usage depends on the model state

at the point of the API call. DL Contract addresses these challenges
and can help prevent such bugs by providing a clear specification

of the intended behavior of deep learning APIs.
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3 DEEP LEARNING CONTRACTS
In the DL Contract approach, we abstract the data properties, ex-
pected output, model architecture, and training behavior of a DNN

model and specify the properties of DL APIs connected via a com-

putation graph. We gather and inspect necessary conditions from

three sources (details in §4.1). We filter out the obligations from

the DL app developer as preconditions and expectations from DL

software in as postconditions. Here, we use a novel runtime asser-

tion check in DL computation. In the contract checker modules

first parse those contracts and translate them into templates. Those

templates are validated to handle the exception if it occurs. If a

contract is violated, the user receives a contract violation message

Otherwise, the API returns the normal execution output. Thus, our

proposed solution generalizes to other bugs and model categories

in this way. It would be easy for library developers to specify the

contracts for other types of bugs following these procedures of DL
Contract.

Next, we present the design and usage of DL Contract, including
examples and our approach for abstracting DL related properties.

3.1 Writing Deep Learning Contract
DL Contract uses an annotation-based approach [18, 28] to add

contracts to DL APIs, which allows library developers to add con-

tracts without modifying compilers and build tools. This means that

software using DL APIs does not need to be modified. DL library

developers can add preconditions that must be satisfied before the

API is called and postconditions that the API guarantees to be true

upon completion.

3.1.1 Syntax. To use contracts in a deep learning library, it is nec-

essary to annotate the API with @contract and @new_contract.
This allows library developers to create expressions for checking

specified contracts. DL Contract can check types such as tensors

and model objects, as well as simple data types like strings, floats,

numbers, arrays, and booleans. It utilizes logical operators like

AND(,) and OR(|) and allows for arithmetic and comparison expres-

sions. Additionally, DL Contract can be used to check constraints

of various model properties during training and abstraction.

3.1.2 Illustrative Example. To create a contract, a library devel-

oper annotates a DL API using @contract and @new_contract.
Inside @contract, the developer defines types and functions for

checking contracts. Using @new_contract, the developer writes

functions for performing computations necessary for a contract

and for checking preconditions and postconditions. For instance,

in Example 3.1, a contract is imposed as a precondition on the

Keras training function Fit to ensure that data is within a speci-

fied range before training. To prevent this type of bug, a function

data_normalization is declared as a contract definition using the

@contract annotation (line 8) using the parameter x. Inside the
@contract annotation, in the data_normalization function (line

2), the developer further computes to get the range of training data,

declared as normalization_interval as a ML variable (line 3).

The developer can specify the appropriate range of the ML variable
within the contract checker function. The condition is checked on

line 4 and if the contract is violated, a suggestion to fix the issue is

raised on line 7.

1 @new_contract
2 def data_normalization(x):
3 normalization_interval = np.max(x) - np.min(x)
4 if(normalization_interval >2.0):
5 msg = "Data should be normalized before training ,train and
6 test data should be divided by value " + str(np.max(x))
7 raise ContractException(msg)
8 @contract(x=’data_normalization’)
9 def fit(self, x=None, y=None,...):

Example 3.1: A contract on Fit API inside Keras library

When a buggy DL program makes use of this annotated API, DL
Contract will throw the following error.

ContractViolated: Data should be normalized before training, train and test
data should be divided by value 255.0.

Example 3.2 illustrates the use of DL Contract to prevent over-
fitting bugs [46], in which a model has high training accuracy but

low test accuracy. A contract is specified on the validation loss and

training loss to check for increasing differences in validation loss

and decreasing differences in training loss [57], which is a common

cause of overfitting. This expectation is encoded as a postcondition.

1 @new_contract
2 def overfitting(history ):
3 i=0
4 while i<=(len(history.epoch )-2):
5 epochNo = i + 2
6 diff_loss = history['loss '][i + 1] - history['loss '][i]
7 diff_val_loss = history['val_loss '][i + 1] -
8 history['val_loss '][i]
9 i += 1
10 if(diff_val_loss >0.0):
11 if(diff_loss <=0.0):
12 msg = "After Epoch"+str(epochNo )+", diff_val_loss ="
13 +str('%.4f' % diff_val_loss )+"and diff_loss ="
14 +str('%.4f' % diff_loss) + "causes overfitting"
15 raise ContractException(msg)
16 @contract(returns=’overfitting’)
17 def fit(self, x=None, y=None,...): return self.history

Example 3.2: Overfitting Contract on Fit API

To prevent overfitting, a contract can be added to the output

of the Fit method in Keras using @contract and a postcondition

can be checked using the overfitting function specified with

returns (line 16). In this function, the contract writer uses the

obtained history object to compute diff_loss and diff_val_-
loss (line 6-7) and checks if the difference between validation

loss of consecutive epochs tends to increase while the difference

between training loss continues to decrease. If this condition is not

met, a contract violation message is thrown and when a buggy DL

program uses this annotated API, DL Contract will throw an error.

ContractViolated: After Epoch: 11, diff_val_loss = 0.34 and diff_loss = -0.12
causes overfitting.

3.2 DL Contract Approach
Next, we present our approach and describe the technical chal-

lenges in DL contract checking, such as the need for context-aware

ML variable (§3.2.1), assertion techniques (§3.2.2), and support for

contracts across multiple APIs in the ML pipeline (§3.2.3). Also, we

discuss our technique’s support for post-training contract checking

(§3.2.4).

3.2.1 Abstraction of DL specific properties to contracts. To
enforce DbC technique for deep learning APIs, a mechanism is

needed to capture model abstraction, data properties, and training

behavior beyond just the formal parameters and return values of

the DL APIs. Standard contracts only enforce constraints on the
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values of formal parameters and return values of an API method

or attributes of an API class. Additionally, machine learning APIs

are not isolated, but connected through a computational graph [16].

Therefore, specifying contracts on one API with its formal parame-

ters alone is not sufficient in the DL-specific settings.

Fig. 2 describes a scenario in which the developer wants to add a

contract to the method dense to ensure that the activation function

for the last layer is not relu [8]. Additionally, the developer wants

to check the appropriate loss function parameter for the Compile
API Fig. 2. The problem with this scenario is that the conventional

Design by Contract (DbC) technique cannot specify this contract on

a model’s API without causing false alarms in correct codes because

it only allows for checking contracts on each API of a model.

To solve such problem, we design a way to write DL Contract
using functions that allows to compute subset of meta-information

with ML variable abstracting model architecture, data properties,

training behavior. Fig. 2 shows one way to solve this challenge us-

ing DL Contract. In this solution, activation, and loss_func are

computed in specified @new_contract contract_checker func-

tions where activation is the parameter of last layer Dense API
and loss_func is the parameter of Compile API. This is how DL
Contract mechanism enables specifying and checking contract with

abstracted model properties which works on any stage of computa-

tion graph pipeline.

3.2.2 DL Contract runtime assertion technique. A model is

more than what the configuration script defines. Many properties

of the model only become tractable during training. As a result, a

DL Contract must enable a runtime assertion technique that allows

enforcing contracts beyond formal parameters, unlike traditional

contract checkers. Furthermore, it must be possible to impose con-

tracts on different pipeline stages of the modeling, i.e., data prepro-

cessing, during model building, and training, etc. To that end, we

propose a DL Contract checker with such capabilities by enabling

library developers to annotate APIs. Eventually, DL Contract anno-
tations benefit end-users to check their model, data properties, and

training behavior at different stages in the DL pipeline.

Our method outlined in Algorithm 1 shows the steps involved in

parsing and checking contracts in a library. It consists of two steps:

registering new contracts defined by the library developer and pars-

ing and validating newly defined contracts applied to the functions

defined by the library developer. The framework inspects the library

code base to find custom user-defined contracts defined as functions

with the @new_contract annotation. The usage of @new_contract
on a function invokes the register_new_contractmethod, which

stores a reference to the function in a dictionary. This way of an-

notating contracts allows writing contracts using abstracted DL

properties as discussed in section 3.2.1. For instance, if a library

developer writes a contract with any of the properties of 𝑚𝑜𝑑𝑒𝑙

object and checks as a precondition before model compilation or

before model training, our technique allows doing that in this way

(more details in Example 3.3) which is different than the traditional

way of writing contract. The contract_checker method is used

to intercept and validate such contracts applied to user-defined

functions with the @contract annotation before the function is

executed. The method parses the annotation reference, obtains a

Algorithm 1 DL Contract Checker

1: procedure contract_checker (userFRef, annoteRef)

2: fArgs← 𝑓 𝑜𝑟𝑚𝑎𝑙_𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 (𝑢𝑠𝑒𝑟𝐹𝑅𝑒𝑓 )
3: argContrDict← 𝑝𝑎𝑟𝑠𝑒_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑅𝑒 𝑓 )
4: for each (fArg, cond) in argContrDict do
5: aArg← 𝑎𝑐𝑡𝑢𝑎𝑙_𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠(fArg, userFRef)

6: template← 𝑝𝑎𝑟𝑠𝑒_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 (cond)
7: template.𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (aArg)
8: returnCondition← 𝑝𝑎𝑟𝑠𝑒_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (annoteRef )
9: aArgs← 𝑎𝑐𝑡𝑢𝑎𝑙_𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡𝑠 (userFRef )
10: result← 𝑢𝑠𝑒𝑟𝐹𝑅𝑒𝑓 (aArgs)
11: returnTemplate← 𝑝𝑎𝑟𝑠𝑒_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 (returnCondition)
12: returnTemplate.𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (result)
13: return result

14: procedure register_new_contract (funcRef) ⊲ @new_contract

15: identifier← 𝑔𝑒𝑡𝐹𝑢𝑛𝑐𝑁𝑎𝑚𝑒 (funcRef )
16: newContRegister[identifier] ← funcRef

17: procedure parse_template (cond)
18: if len(cond) > 1 then ⊲ multiple conditions

19: subclauses←[ ]

20: for c ∈ cond do
21: subclauses← 𝑝𝑎𝑟𝑠𝑒_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 (c)
22: return And(subclauses)
23: if istype(cond) then ⊲ if it is cond type

24: return CheckType(cond)
25: if cond 𝜖 newContRegister then ⊲ if it is callable

26: return CheckCallable(newContRegister[cond] )

dictionary of conditions applied to the function’s arguments, and

validates the conditions using the visitor design pattern.

Consider a contract, @contract(loss=‘str,contract_func’).
It validates the loss function and the validation takes place in-

side a user-defined contract, contract_func. The contract body is

stored in argContrDict as <loss,(str,contract_func)>. Then,
it obtains the value for the argument loss. The method parse_-
template is used to obtain a validation tree for the conditions by

composing validation classes (in Algorithm 2). In the example of

loss contract, an And class is obtained, with each condition as a sub-
clause. If the first condition, str, is satisfied, a CheckType validation
class is returned. If the second condition is a user-defined function,

a CheckCallable validation class is returned. The composed vali-

dation tree is returned in a template variable. Each validation class

implements the method check_contract. To validate the template,

check_contract is invoked on the root validation class, which is

And. If validation fails for any subclause, And raises an exception.

The argument on which a contract is imposed is validated. If precon-

ditions are satisfied, the postconditions are validated. The returned

result of the user function is validated as per written contracts.

3.2.3 Contextualized Inter-API Call Contracts. The next chal-
lenge is to ensure that DL Contract can be written involving multi-

ple APIs at different stages of the DL pipeline. To solve this prob-

lem, DL Contract is designed to write multiple functions using

@new_contract annotations that take formal parameters across

multiple DL APIs. For example, when the number of the target class

is 2 (i.e., binary classification), the activation function of the last

layer should not be softmax or relu [3, 5, 9] (which is a type of

contract within the same Dense API) and loss function should be

‘binary_cross-entropy’ [2, 3] (which is an inter-argument contract

with different APIs, i.e., between last layer and Compile API). Al-
though the best activation function for hidden layers is ReLu [30],
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Figure 2: DL Contract approach using activation and loss functions involving multiple APIs in DL computation graph

Algorithm 2 Check Contract

1: class CheckContract
2: procedure abstract check_contract (value)

3: end class
4: class CheckCallable(CheckContract)
5: procedure init (funcRef)

6: callable← funcRef

7: procedure check_contract (value)

8: if callable(value) 𝑟𝑎𝑖𝑠𝑒𝑑 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 then
9: raise 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 ( )
10: end class
11: class And(CheckContract)
12: procedure init (subclauses)

13: subclauses← subclauses

14: procedure check_contract (value)

15: for sc ∈ subclauses do
16: if sc.𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (value) 𝑟𝑎𝑖𝑠𝑒𝑑 𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 then
17: raise 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 ( )
18: end class
19: class CheckType(CheckContract)
20: procedure init (type)

21: expected_type← type

22: procedure check_contract (value)

23: actual_type← 𝑔𝑒𝑡𝐴𝑐𝑡𝑢𝑎𝑙𝑇 𝑦𝑝𝑒 (value)
24: if actual_type ∉ expected_type then
25: raise 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 ( )
26: end class

if ReLu is used on the last layer, it will set all the negative out-

put to zero, thus leading to an accuracy problem. To prevent such

kinds of problems in model architecture, library developers can

write DL Contract using the activation and loss function for the

binary and multi-class classification according to the experts’ sug-

gestion [2, 3]. Our insight is that such types of contracts can be

added to deep learning model-compilation API, i.e., Keras Compile,
exposing objects capturing the entire model properties.

1 @new_contract
2 def contract_checkerfunc1(model):
3 last_layer_output = int(str((model.layers[len(model.layers)
4 - 1]). output_shape ).split(',').pop(-1). strip(')'))

5 activation_func = str(model.layers[len(model.layers) - 1].
6 __getattribute__('activation ')). split ()[1]
7 if (last_layer_output >= 3):
8 if (activation_func not in 'softmax '):
9 msg1= 'For multiclass classification activation_func
10 should be softmax '
11 raise ContractException(msg1)
12 @new_contract
13 def contract_checkerfunc2(loss):
14 if (loss not in 'categorical_crossentropy '):
15 msg2 = 'loss should be categorical crossentropy '
16 raise ContractException(msg2)
17 @contract(self=’model, contract_checkerfunc1’)
18 @contract(loss=’str, contract_checkerfunc2’)
19 def compile(self,optimizer=’rmsprop’,loss=None,metrics=None,...):

Example 3.3: Last layer activation and loss function contract
on Keras Compile API

Example 3.3 shows last layer activation and loss function contract

applied to Keras Compile API, which asserts before Compile API
execution. Here, contract_checker1 has been annotated with

model object type on line 17 and contract_checker2 has been

annotated using loss parameter with string type on line 18. Here,

last_layer_output and activation_func are computed on line

3 and line 5 from model object. The loss function has been a formal

parameter of Compile API, and contract_checkerfunc2 checks
the condition on line 14 and shows a message with suggestions

to fix if a contract violation occurs for both Dense and Compile
APIs. As those specified contacts are ANDed one after another

for one contract (last layer activation and loss function), ‘con-

tract_checkerfunc2’ is only executed if ‘contract_checkerfunc1’ is

executed. Since ‘contract_checkerfunc1’ checks whether the num-

ber of classes ≥ 3, then ‘checkerfunc2’ would also know if the

program runs a multiclass classification. In Example 3.3, on lines

17–18, ‘contract_checkerfunc1’ and ‘contract_checkerfunc2’ have

been enforced together. A case of that contract violation is shown

below,

ContractViolated: For multiclass classification activation_func should be
softmax, loss should be categorical crossentropy.
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3.2.4 Post-training Contracts. The challenge of capturing DNN
training behavior at different stages of the DL pipeline can be ad-

dressed with our proposed DL Contract. Library developers can

specify desired training behavior for their DL software by adding

training-related contracts on properties such as, gradients rate, gra-

dients percentage etc. Training behavior-related properties indicate

the expected output from the DL model, so this is a postcondition.

The root cause behind a training problem could be client obligation

in hidden layers APIs such as activation function, which is a pa-

rameter of Dense API (this is a precondition) We might encounter

such types of preconditions and postconditions in DL-specific set-

tings, and contracts can be specified using @new_contract and

@contract annotations in our proposed approach. To handle such

cases, DL Contract advocates specifying contracts as postconditions
on DL training APIs, e.g., Keras Fit API, which provides detailed

training history. Based on the supplied contract checking function

in @new_contract, we compute relevant training properties from

the history object such as validation accuracy, loss value, gradient
rate etc. Algorithm 1 (lines 8–13) describes how we check and vali-

date postconditions in our framework. Example 3.2 demonstrates

this type of postcondition contract.

4 EVALUATION
In this section, we aim to answer the following research questions:

• RQ1 (Effectiveness): How effective is DL Contract in real

world programs?

• RQ2 (Applicability): Is DL Contract enabled Keras appli-
cable to find performance (i.e., low accuracy, high training

time) bugs?

• RQ3 (Efficiency): How efficient is DL Contract for detecting
DL performance bugs in terms of precision and recall?

• RQ4 (Overhead): What is the overhead of the DL Contract
compared to related works in terms of runtime?

• RQ5 (Usability): How useful is the DL Contract enabled
Keras in developing DL Apps?

First, in order to evaluate our approach, we collect contracts

by following the procedure described in §4.1. We implemented DL
Contract (in §4.2) using our proposed approach (in §3.2). Then we

conducted experiments using the setups (in §4.3). Finally, we report

results and analysis (in §4.4).

4.1 Deep Learning Contracts Collection
In this section, we describe the process of contract collection used

in the evaluation. We have identified contracts related to the model,

data, and training properties. These contracts prevent structure and

training bugs, which lead to performance issues (i.e., low accuracy,

high training time). DL libraries like Keras does not provide error
messages for such types of bugs yet. Fig. 3 shows how we collected

the conditions ofDL Contract. In 1 , we abstract the data properties,

expected output, model architecture, training behavior of a DNN

model. In 2 , we gather and inspect necessary conditions from

three sources. We used the official Keras library documentation [4].

In particular, we followed the selection criterion from DL bugs

from prior works [34, 36, 37] while focusing on the APIs used for

model compilation and training. Again, we collected a list of state-

of-the-art research articles and their benchmarks of buggy and

Table 1: Collected contracts targeting DNN structural and
logical bugs, improper data, and training problems

Class of bugs DL Contract

D
at
a
bu

gs

Data normalization problem Precondition: normalization_interval≤2,
Postcondition: True

St
ru

ct
ur

al
an

d
lo
gi
c
bu

gs

Incorrect activation and loss

function: regression

Precondition: activation=‘linear|tanh’, loss_func=‘mse’,

Postcondition: True

Incorrect activation and loss

function: binary classification

Precondition: activation=‘sigmoid’, loss_func=‘binary_crossentropy’,

Postcondition: True

Incorrect activation and loss

function: multiclass classifica-

tion

Precondition: activation=‘softmax’,

loss_func=‘categorical_crossentropy’,

Postcondition: True

Incorrect activation and loss

function: multilabel multiclass

classification

Precondition: activation=‘sigmoid’, loss_func=‘binary_crossentropy’,

Postcondition: True

Incorrect activation in hidden

layers

Precondition: activation !=linear,

Postcondition: True

Incorrect hyperparameter Precondition: learn_rate >0.0000007,<0.01, Postcondition: True

T
ra
in
in
g
pr

ob
le
m

Overfitting Precondition: True, Postcondition: diff_val_loss<0, diff_loss≤0
High validation accuracy Precondition: True,

Postcondition: val_acc_threshold<0.95, diff_val_acc_train_acc<0.05

High dropout rate Precondition: dropout_rate>0.5

Dying relu Precondition: activation!=‘tanh|exponential|relu|sigmoid’

Postcondition: zero_gradients_percentage ≤ _

Vanishing gradient Precondition: activation!=‘tanh|exponential|relu|sigmoid’

Postcondition: gradients_rate > 𝛽
1
, norm_kernel>Z

Exploding gradient Precondition: activation!=‘tanh|exponential|relu|sigmoid’

Postcondition: gradients_rate_EG<𝛽
2
, gradient_value!=nan

Oscillating loss Precondition: True,

Postcondition: accuracy_fluctuation_rate ≤ [, val_acc_diff >= 𝛿

Slow convergence Precondition: True, Postcondition: acc_diff >= 𝛿
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Figure 3: Methodology to collect deep learning contracts

correct DL programs [34, 36, 37]. The selection criterion for these

articles is that if the work in question solves DL performance bugs

and renders the conditions that lead to these bugs. We filter out

the obligations from DL app developer as preconditions (in 3 ) and

expectation from DL software as postconditions (in 4 ). This process

resulted in the collection of 15 contracts. A detailed table( Table 1)

with collected contracts with corresponding bugs are shared in the

supplementary material [12].

4.2 Implementation
To implement DL Contract, we extended the open-source package

PyContracts [32]. PyContracts allows developers to declare con-

straints onmethod parameters and return values. We have extended

PyContracts to support tensor, model types, as existing DL APIs

require additional preconditions and postconditions [39]. We have

addressed all the technical challenges described in §3.2.

4.3 Experimental Setup
To evaluate DL Contract on Keras, we modify the library by im-

porting the extended PyContracts package in library codes. We also

decorate respective Keras APIs with relevant implemented con-

tracts that prevent performance bugs (in §4.1). We have conducted

all the experiments on a machine with a 2 GHz Quad-Core Intel

Core i7 and 32 GB 1867 MHz DDR3 RAM running the macOS 11.14.
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Table 2: Effectiveness of DL Contract in real world programs targeting different class of bugs using collected benchmarks

DeepLocalize UMLAUT AUTOTRAINER NeuraLintDL Contracts targeting class of bugs SO GH CIF-10 FMNIST Blob Circle MNIST CIF-10 SO GH
#Contract
Violation

Improper Data Data normalization problem 5 2 1 1 - - - - 1 1 11

Incorrect activation & loss function 17 5 1 1 - - - - 6 5 35

Incorrect activation in hidden layers 3 1 1 1 - - - - - - 6Structural bugs
Incorrect learning rate 1 1 1 1 - - - - - - 4

Overfitting 1 - - - - - - - - - 1

High validation accuracy 2 1 1 1 - - - - - - 5

High dropout rate 1 1 1 1 - - - - 1 - 5

Dying relu 1 - - - 4 9 23 36 - - 73

Vanishing gradient - - - - 16 36 34 35 - - 121

Exploding gradient - - - - 11 18 21 20 - - 70

Oscillating loss 1 - - - 1 3 1 - - - 6

Training problem

Slow convergence 5 2 - - 28 41 19 42 - - 137

* Numbers represented total contract violations in real world buggy programs from DeepLocalize, UMLAUT , AUTOTRAINER, NeuraLint benchmarks; SO, GH, CIF-10 indicates

benchmark from Stack Overflow, GitHub, CIFAR-10 respectively, “-” indicates contracts are satisfied and did not trigger a violation in buggy programs.

Table 3: Applicability of DL Contract comparing against Keras Callbacks, Deeplocalize [62] and DL Contract (full table [14])

DeepLocalize Buggy Code Correct Code
Benchmark Original TOnNaN ES(’loss’) ES(’accuracy’) Union (TOnNaN, ES) DeepLocalize DL Contract Original DL Contract RT

Source # RT RT Bug# RT Bug# RT Bug# RT Bug # RT Bug# RT Bug# RT RT Overhead
StackOverflow 30 42.20 30.15 2 24.92 19 24.76 23 18.53 27 447.05 27 6.41 29 34.60 37.93 0.22

GitHub 11 352.90 439.88 0 299.18 6 269.70 7 160.77 7 2772.77 7 9.23 10 345.04 27.37 0.23

* Total detected bugs in buggy and correct codes (#), Keras debugging TerminateOnNan (TOnNan), EarlyStopping(monitor=’loss’) (ES(loss), EarlyStopping(monitor=’accuracy’

(ES(accuracy))

Table 4: Applicability of DL Contract, Runtime comparison between UMLAUT callback [57] and DL Contract

Benchmark

Buggy Code Correct Code
Original UMLAUT DL Contract Original UMLAUT DL Contract UMLAUT DL Contract
Runtime Bug Runtime Bug Runtime Runtime Runtime Runtime Runtime Overhead Runtime Overhead

A1 (CIFAR-10) 1318.99 Y 8.85 Y 28.52 1376.04 1455.99 1353.81 1.06 0.02

A2 (CIFAR-10) 1483.26 Y 8.93 Y 24.80 1459.21 1384.75 1478.52 0.95 0.01

A3 (CIFAR-10) 1455.93 Y 140.98 Y 23.56 1483.29 1251.69 1497.94 0.84 0.01

B1 CIFAR-10 1493.12 Y 152.57 Y 16.28 1420.40 1049.76 1438.59 0.74 0.01

B2 (CIFAR-10) 1319.18 Y 8.85 Y 26.58 1448.27 792.97 1440.55 0.55 0.01

B3 (CIFAR-10) 1692.83 Y 664.60 Y 669.83 1463.87 795.15 1499.39 0.54 0.02

A1 (F-MNIST) 17.09 Y 7.02 Y 23.25 16.84 15.55 22.76 0.92 0.35

A2 (F-MNIST) 17.04 Y 9.61 Y 18.62 16.36 15.59 24.57 0.95 0.50

A3 (F-MNIST) 15.69 Y 9.61 Y 18.30 16.36 14.34 23.52 0.88 0.44

B1 (F-MNIST) 17.90 Y 9.87 Y 21.06 15.93 14.96 22.92 0.94 0.44

B2 (F-MNIST) 15.96 Y 7.16 Y 18.94 16.96 14.48 23.93 0.85 0.41

B3 (F-MNIST) 17.62 Y 12.31 Y 31.85 15.39 14.85 24.06 0.96 0.56

Benchmark selection: To answer the RQs, we compare and

contrast DL Contract against four recently-published DL perfor-

mance bug localization benchmarks [52, 57, 62, 65]. The DeepLo-
calize’s benchmark proposed by Wardat et al. [62] consists of 41
executable Keras codes with buggy and correct versions of DL pro-

grams from Stack Overflow (30) and GitHub (11). For the UMLAUT
benchmark [57], we followed their procedure. AUTOTRAINER [65]

reported their tool’s results on 495 DL programs where 262 have

training problems Here, we have utilized 4 out of 6 datasets which

are comprised of sequential models. NeuraLint [52] utilized a total

of 63 buggy programs of crash and performance bugs. We have used

16 buggy programs from the benchmark which does not yield crash

bugs. We have considered all 4 of these benchmarks as “unseen”

because we have not seen their buggy and correct programs before

writing and implementing contracts.

Metrics: We recorded the total execution time utilization for

all techniques when analyzing buggy and correct programs from

the benchmarks and computed overhead. Also, we recorded how

many bugs were detected by each approach. For computing the effi-

ciency of DL Contract, we utilize performance metrics as precision,

recall following prior work [46, 65]. We consider the benchmarks

as ground truth for buggy and correct programs. Here, a false posi-

tive indicates that a bug was detected in the correct program. True

positive represents if a bug is detected in a buggy program. A false

negative indicates that there is no bug detected in a buggy program.

Lastly, if there is no bug detected in a correct program, we consider

that as a true negative.

We collected the real-world time elapsed between the program

entry and program exit using the python time module. We collected

this information for both correct and buggy programs five times to

reduce randomness, following [61, 65]. To isolate the other process

and void interference in this experiment, we executed only one

program under analysis in a standalone environment inside the IDE.

We start recording the time from the beginning of a DL program

until the first contract violation has been thrown, and the rest of the

execution is halted in the buggy program. For the correct program

and if there is no contract violation, we obtained the elapsed time

until the complete execution of the program.
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4.4 Results and Analysis
4.4.1 RQ1 (Effectiveness). To demonstrate the effectiveness of DL
Contract in real-world programs, we have utilized 4 benchmarks

of DL performance bugs. Table 2 shows the results of DL Contract
targeting different class of bugs. We have developed a total of 15

contracts and annotated on model compilation and training Keras
APIs using DL Contract approach targeting different classes of bugs

related to improper data, structural bugs, and training problems. In

particular, each row represents the number of contract violations

in buggy programs where DL Contract successfully detected bugs

and terminated the program execution. We observe that in the last

‘Contract Violation’ column, those 15 contracts trigger a total of

474 contract violation messages in 272 buggy programs. In Table 2,

“-” indicates contracts were used but did not trigger a violation for

that class of bugs. For example, AUTOTRAINER mainly focuses on

training problems, which is why there is no contract violation in-

volving structural and improper data-related bugs. Those contracts

(postcondition) violations have been triggered by DL Contract using
abstracted training properties. DeepLocalize, UMLAUT , NeuraLint
benchmarks consist of structural and data bugs, that precondition

violation triggers using ML variable related to model abstraction.

DL Contract did not detect bugs in 13 out of 272 programs. We have

investigated these undetected bugs and discussed in §4.4.2. We

also evaluated that the same 15 contracts were used in 257 correct

programs in benchmarks. We found 18 contract violations as false

positives, mainly due to randomness factor [55, 67] during training.

In summary, DL Contract is efficient in real-world DL programs.

4.4.2 RQ2 (Applicability). Table 3, 4, 5, and 6 show the applicability

of DL Contract on real-world benchmarks comprising of perfor-

mance bugs in DL software. Each table highlights and summarizes

the results of Buggy and Correct programs.

Table 3 shows the summary of the results [14] of deploying

the DeepLocalize benchmark. Please refer to supplementary mate-

rial [15] for more details. Table 3 shows that DL Contract can detect

39 out of 41 buggy programs with precise contract violation

messages. Out of these results, 29 are from Stack Overflow and 9 out

from GitHub. Also, when compared with Keras and DeepLocalize
callbacks. Keras debugging techniques TerminateOnNan, EarlyStop-
ping(monitor=’loss’), EarlyStopping(monitor=’accuracy’) andDeepLo-
calize can detect 2, 24, 28, 32, and 34 respectively [62]. Again, 2

out of 41 were not detected from DeepLocalize [62] benchmark.

SO52800582 and GH[2] were missed because generalized contracts

cannot be applied on weight initialization and optimizer. Finally,

regarding bug detection speed, DL Contract is 200 times faster than

DeepLocalize and 11 times faster than Keras callbacks.
Table 4 shows that DL Contract applies to all 12 buggy pro-

grams from the UMLAUT benchmark. In terms of computation

overhead, we observed DL Contract has lower runtime than UM-
LAUT (in §4.4.4). Lastly, we have manually verified the contract

breaches reported by DL Contract and found no false alarms for

buggy programs.

Table 5 shows that DL Contract has detected 195 bugs in 203
buggy programs in the AUTOTRAINER benchmark. WhileAUTO-
TRAINER reports the symptoms of 5 training problems, DL Contract
detects bugs as postcondition violations. We observed that both ap-

proaches detect the Slow Change in accuracy (SC) more often than

the other four symptoms. 8 out of 203 buggy programs in AUTO-

TRAINER [65] benchmark were not detected due to the randomness

in DNN training. In terms of runtime, DL Contract is slightly faster

than AUTOTRAINER. In particular, DL Contract takes on average

241.19 seconds, while AUTOTRAINER 248.43 seconds. Lastly, out of
188 correct programs, DL Contract misdetected 3 programs.
Further investigation revealed that those misdetections were due

to data normalization issues, unsupported by AUTOTRAINER.
Table 6 shows how DL Contract performs on 16 bugs compared

to the NeuraLint tool. DL Contract detected 13 out of 16 bugs in
the NeuraLint benchmark. 3 out of 16 from the NeuraLint bench-
mark [52] were missed because we investigated that we had no

layer properties related contracts written. NeuraLint detects 14
out of 16 bugs but DL Contract requires less time than NeuraLint.
In particular DL Contract on average required 5.10 seconds while

NeuraLint 9.80 seconds. These buggy programs use common API

methods such as Compile and Fit, which were annotated with 15

DL Contracts. These 272 buggy programs have common root causes

and symptoms. For instance, AUTOTRAINER [65] benchmark con-

sists of 203 buggy programs, with 5 different training problems. By

writing 5 contracts on the fit method targeting those problems, DL

Contract detects 195 out of 203 bugs. In summary, DL Contract is
applicable to detect performance bugs in real-world buggy programs
with good accuracy.

4.4.3 RQ3 (Efficiency). We have measured the efficiency of DL
Contract using 4 benchmarks DeepLocalize [62], UMLAUT [57],

AUTOTRAINER [65], NeuraLint [52] (in Table 7). We have eval-

uated 257 correct (clean) real-world programs and found 18 false

positives. We have found 10 FPs in DeepLocalize, 0 in UMLAUT ,
3 in AUTOTRAINER, and 5 in NeuraLint benchmark. In terms of

efficiency, our evaluation results show that DL Contract has similar

accuracy to UMLAUT (12 TPs and no FPs) but has lower time con-

sumption (in Fig. 4). Regarding the AUTOTRAINER benchmark, DL
Contract could not detect bugs due to the accuracy threshold [65]

(0.6) due to randomness factor during training. Regarding the Neu-
raLint benchmark, we observed 3 FN. As DL Contract does not have
contracts on layer properties yet. Compared to other tools using

DeepLocalize benchmark, we found DeepLocalize, AUTOTRAINER,
UMLAUT , NeuraLint, DeepDiagnosis [61] resulted in 19, 14, 14, 35

TP and 22, 27, 23, 6 FN respectively [13]. DeepDiagnosis reported
70 FP and 67 FN in correct codes from AUTOTRAINER benchmark.

In summary, DL Contract efficiently detects performance bugs in
real-world buggy programs.

Superiority of DLContract: Prior work specifically DeepLocal-
ize [62], UMLAUT [57], AUTOTRAINER [65], DeepDiagnosis [61]
and NeuraLint [52] are not comprehensive enough to detect dif-

ferent classes of structural and training bugs. Furthermore, these

approaches depend on specific implementations such as model for-

mat (.h5), semantic change in model architecture, and rely upon

additional debugging or verification facilities, e.g., Keras callbacks
(DeepLocalize,UMLAUT ,AUTOTRAINER), andGroovemodel checker

(NeuraLint). Also, DeepLocalize, UMLAUT , NeuraLint did not com-

pute FP and FN. AUTOTRAINER computed FP, FN only with AU-
TOTRAINER benchmark. All 4 baseline techniques did not com-

pare against any other benchmarks except their own benchmarks.

DeepLocalize [55] invokes callbacks after each epoch and computes
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Table 5: Applicability of DL Contract, Runtime (RT) comparison with AUTOTRAINER [65] (AT) and DL Contract (DLC)

Buggy Correct
Benchmark

#

AT DLC

#
Original AT DLC

Overhead Overhead

Dataset
Detected Symptoms # Postcondition Violation # AT DLC

VG EG DR SC OL RT VG EG DR SC OL RT RT Sym # RT Viol # RT Runtime Runtime
Blob 48 12 10 8 29 4 13.83 6 5 4 30 1 11.95 39 8.62 0 9.22 0 11.79 0.070 0.368

Circle 71 10 10 9 43 7 16.50 10 8 9 41 3 11.54 36 16.06 0 12.28 2 16.27 0.235 0.013

CIFAR-10 46 5 8 3 28 2 1302.06 5 16 37 43 0 487.43 35 1186.50 0 1898.54 0 1528.16 0.600 0.288

MNIST 38 8 3 4 21 8 688.02 8 13 23 19 1 423.55 78 466.22 0 535.90 2 535.51 0.149 0.149

Total/ Avg 203 35 31 24 121 21 505.10 29 42 73 133 5 233.62 188 419.35 0 613.99 4 522.93 0.464 0.247

* Count (#), Vanishing Gradient (VG), Explode Gradient (EG), Dying Relu (DR), Slow Change in Accuracy (SC), Oscillating Loss (OL), Symptom (Sym), Contract Violation(Viol)

Table 6: Applicability of DL Contract, Runtime overhead comparison with NeuraLint [52] and DL Contract

Benchmark

Buggy Code Correct Code
Original NeuraLint DL Contract Original NeuraLint DL Contract Runtime Overhead Runtime Overhead
Runtime Bug Runtime Bug Runtime Runtime Runtime Runtime NeuraLint DL Contract

50555434 2.73 Y 18.72 Y 4.77 2.66 6.29 4.78 1.37 0.80

34311586 3.17 Y 9.62 Y 4.81 3.09 3.18 5.12 0.03 0.66

50079585_1 2.88 Y 18.02 Y 5.11 2.75 6.52 4.92 1.37 0.79

51749207 2.80 Y 17.89 Y 4.87 2.68 5.89 4.84 1.20 0.81

58844149 3.03 Y 8.46 Y 5.06 2.89 6.28 5.01 1.17 0.73

33969059 5.20 Y 5.20 Y 6.53 2.62 2.64 4.63 0.01 0.77

44322611 2.93 Y 8.80 N 4.94 2.62 2.69 4.62 0.02 0.76

55776436 3.11 Y 10.78 Y 5.27 3.04 3.06 5.15 0.01 0.69

60566498 2.87 Y 16.57 Y 4.74 2.74 7.38 4.86 1.69 0.77

GH 1 2.90 Y 5.13 Y 5.04 2.96 7.71 4.97 1.60 0.68

GH 2 2.83 Y 5.52 N 4.91 2.80 6.94 4.86 1.48 0.74

GH 3 3.05 Y 5.51 Y 4.96 3.00 6.70 4.89 1.23 0.63

GH 4 4.43 Y 8.50 N 6.44 4.04 137.13 5.99 32.94 0.48

GH 5 2.78 Y 7.42 Y 4.88 2.78 6.38 4.82 1.30 0.74

GH 6 2.74 N 5.20 Y 4.69 2.68 6.14 4.66 1.29 0.74

GH 7 2.72 N 5.39 Y 4.59 2.71 5.97 4.61 1.20 0.70

Total/Average 3.14 14 9.80 13 5.10 2.88 13.81 4.92 2.99 0.72

Table 7:DL Contract efficiency on different buggy and correct
benchmarks

DL Contract
Benchmark FP TP FN TN Precision Recall
DeepLocalize 10 39 2 31 0.80 0.95
UMLAUT 0 12 0 12 1.00 1.00
AUTOTRAINER 3 195 8 185 0.98 0.96
NeuraLint 5 13 3 11 0.72 0.81

metrics to detect numeric bugs which take lots of time. AUTO-
TRAINER [58] requires the model in a specific format and needs

to finish the training to detect bugs and then provide solutions as

fixes. In the case of UMLAUT [50], without a semantic change of

model, the tool will report a false alarm. NeuraLint [48] requires
graph computation from the model and performs static checking

with some specified rules which yield a longer runtime.

4.4.4 RQ4 (Overhead). We have computed the runtime overhead

of DL Contract using UMLAUT , DeepLocalize, NeuraLint, and AU-
TOTRAINER benchmark. Figure 4 shows the runtime overhead of

DL Contract. DL Contract (DLC) runtime overhead is lower than

the one of all approaches. In particular, DL Contract is 4.31, 3.69,
1.85, and 4.15 times more efficient in terms of runtime overhead

than DeepLocalize, UMLAUT , AUTOTRAINER, and NeuraLint. The
runtime overhead of DL Contract is minimal because the technique

only checks model structure-related preconditions before model

compilation API and training-related postconditions before train-

ing. Unlike techniques DeepLocalize, UMLAUT , AUTOTRAINER,
that rely on Keras callbacks, DL Contract does not invoke model

DLoc DLC UM DLC AT NLDLC DLC

Deeplocalize (DLoc) 
Benchmark

UMLAUT (UM) 
Benchmark

AUTOTRAINER (AT) 
Benchmark

NeuraLint (NL) 
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Figure 4: Comparison of runtime overhead

compilation or training APIs multiple times to monitor metrics pe-

riodically during or after training. Specifically, NeuraLint requires
graph computation from model and performs static checking with

some specified rules, yielding longer runtime. Also, We measured

that the runtime overhead increases by around 15% compared to

the baseline Keras. In summary, DL Contract incurs less runtime
overhead compared to existing deep learning debugging tools.

4.4.5 RQ5 (Usability). We have evaluated the usability of DL Con-
tract annotated Keras in terms of its usefulness to find and fix bugs

while developing DL programs. Also, we evaluate separately the

efforts of API designers to write and integrate DL Contract. To that

end, we perform a user study following IRB guidelines and collected

feedback on using DL Contract annotated Keras.
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RQ5.1 (Usefulness): How useful is the DL Contract enabled
Keras in developing DL Apps?

RQ5.2 (Easiness) : How easy is to write DL Contract and inte-

grate it with DL library APIs?

Participants: After following similar procedure [24, 57] from

prior work we recruited 20 participants from university mailing lists

for our study (17 Ph.D., 2 MS students, and a Post-doc). Participants

were asked to self classify their level of expertise from 1 - beginner

to 5 - expert and we obtained their expertise level: programming

(` = 3.3, 𝜎 = 1.0), debugging (` = 2.9, 𝜎 = 1.4), using existing

neural networks (` = 2.9, 𝜎 = 1.1), and developing new DNNs (` =

2.5, 𝜎 = 1.2), and developing other ML algorithms (` = 2.7, 𝜎 = 1.3).

So, the average/mean (`) of the expertise levels is more than 2.5 in

all of the 20 selected participants.

Study Design, Procedure and Tasks Participants completed

an hour-long online study on their machines. Each participant com-

pleted two sessions with corresponding tasks. After each session,

participants completed survey questions online via Qualtrics. For

RQ5, in session 1, we provided the necessary environment to exe-

cute buggy programs in regular Keras (baseline condition) and DL
Contract enabled Keras. We provided 3 buggy versions of randomly

chosen real-world programs with 3 different performance bugs re-

lated to model architecture, data properties, and training behavior.

The buggy programs have low accuracy and high training time

issues. We asked the participants to execute the buggy programs

using both regular Keras and DL Contract enabled Keras. Then, we
asked participants to detect and fix the buggy programs by using

the outputs from both regular Keras and DL Contract-enabled Keras.
Finally, we asked participants the survey questions regarding their

experience using DL Contract.
For RQ5, in session 2, we first provide tutorial to participants on

how to write contracts on Keras API. Then, we asked them to write

3 similar contracts with instructions. After completing the sessions,

participants filled up a survey indicating their experience while

using DL Contract enabled Keras to detect and fix bugs as a DL

application developer. In that survey, participants also shared their

experience about the writing process of DL Contract as a library
developer. The details of the survey questions for session 1 and

session 2 are provided in the supplementary material [15].

Results and Discussion: RQ5.1 (Usefulness): For all 3 buggy

programs in session 1, none of the participants was able to find

any of the bugs in the baseline condition (regular Keras). That is
because Keras does not inform users about such types of perfor-

mance bugs. However, participants were able to detect and fix the

bugs by following DL Contract enabled Keras’s contract violation
messages. Furthermore, survey responses indicate that DL Contract
enabled Keras helps participants to detect and fix bugs efficiently.

In particular, on a 5-point Likert scale questions (1 = Not helpful to

5 = Very Helpful), participants rated their experience on questions.

Participants indicated that, DL Contract enabled Keras was very
helpful to 65% (` = 4.55, 𝜎 = 0.67) in detecting bugs in deep learn-

ing programs that yield unexpected performance (low accuracy,

high training time). 25% rated helpful (rating 4), and 10% of par-

ticipants rated reasonably helpful (rating 3). Therefore, 90% of the

participants responded positively (rating > 3) regarding this criteria.

Likewise, 95% of participants rated positively (rating > 3) about the

message from DL Contract fixing those bugs (` = 4.75, 𝜎 = 0.54).

Q1: Rate how DL Contract enabled Keras 
helped you to detect bugs in deep learning 
programs that yield unexpected performance 
(low accuracy, high training time)

Q2: Rate how well do the 
messages from DL Contract 
enabled Keras helped you to 
fix those bugs.

Q3: Rate how useful would 
DL Contract enabled Keras 
be to help you develop DL 
applications.

Q4: If you are involved in doing a 
class or research project that 
requires DNNs, rate how useful 
would DL Contract enabled Keras 
be for you.

Figure 5: Survey results with participants ratings on how
useful is DL Contract enabled Keras in developing DL Apps

Again, 90% of the participants rated positively (rating > 3) specifi-

cally, 55% of the participants indicates that it would be very useful

to develop DL applications (` = 4.45, 𝜎 = 0.67). If participants are

involved in doing a class or research project that requires DNNs,

80% rated positively especially, 55% of the participants rated DL
Contract enabled Keras as very helpful (` = 4.30, 𝜎 = 0.90).

RQ5.2 (Easiness): Regarding how easy is to write DL Contract
on top of Keras APIs, we have obtained that 65% of the participants

rates the writing process of a contract to Keras positively (Rating

> 3). Regarding the rating of the writing process of a contract

to Keras, the participants’ rating (` = 3.8, 𝜎 = 0.67) is moderate

(35%), easy (50%), very easy(15%) as illustrated in Fig. 6. About

the integration of the written contract with Keras library, 60% of

the participants rated positively (` = 3.75, 𝜎 = 0.69). The detailed

breakdown rating of integration of the written contract with Keras
library, the participants’ ratings is moderate 40%), easy (45%), very

easy(15%) as shown in Fig. 6. In summary, we have evaluated that
DL Contract enabled Keras is very helpful to developers in debugging
DL software and easy to writing and integrating DL Contract is very
easy to API designers.

Q5: Rate how difficult it was to write a 
contract to DL Contract enabled Keras.

Q6: Rate how difficult it was to integrate the 
written contract for Keras library.

Figure 6: Survey results with participants ratings on how easy
is to write DL Contract on DL library APIs

4.5 Limitations
Our proposed DL Contract approach has been evaluated primar-

ily on problems related to multilabel, multiclass, binary classifica-

tion, and regression with various structural and logical bugs in the

sequential DNN model architecture and common training issues.

Further research is needed to apply and evaluate our approach for

other types of bugs and model categories. Despite this, the concept

of using contracts in deep learning is not limited to Keras and can
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be extended to other DL libraries. While our paper illustrates the

idea of deep learning contracts for Keras, our contribution can be

generalized to other DL libraries like TensorFlow, PyTorch. We

focused on Keras to keep the implementation effort manageable

and leverage this library’s large body of benchmarks.

4.6 Threats to Validity
Our proposed approach may be affected by external threats, such

as imprecise precondition and postcondition definitions obtained

from library documentation, Stack Overflow posts, and GitHub com-

mits. However, we have adopted definitions from recent research

studies [37, 46, 66] to mitigate this. Threshold parameters may also

cause false positives in some new real-world programs. Additionally,

implementation using PyContracts may have unforeseen internal

threats, but our general open-source framework can be extended

using reproducible package [15] with detailed results.

5 RELATEDWORK
Specification of Deep Neural Networks: The closest related

ideas in the specification of DNNs include [31, 58, 59]. While [58]

provides an overview of the opportunities and challenges of for-

malizing and reasoning about DNN properties, it does not propose

any methodology for writing and checking specifications for deep

learning libraries. In contrast, [31] presents a technique for com-

puting input and layer properties from a feed-forward network

using input-output characterizations as formal contracts. Addi-

tionally, [59] introduces a method for repairing neural network

classifiers by inferring the correct specifications. Both [31] and [59]

propose inference techniques, while our technique proposes a spec-

ification and checking technique that enables the specification of

DL libraries and checks those contracts in client code using those

libraries, thus preventing bugs and providing fix suggestions. Re-

cently, an empirical study [38] reports categories of required ML

contracts, which may help designers of contract languages.

Deep Learning Testing, Debugging, and Repairing: Prior
work on DL testing, debugging, and repairing includes DeepLo-

calize [62], MODE [46], AUTOTRAINER [65], DeepDiagnosis[61],
DeepFD[25], Ariadne [29], Lagouvardos [40], Nikanjam et al. [52],
SHAPETRACER [44], and Tensfa [63]. These approaches focus on

detecting and localizing bugs, but DL Contract supports documen-

tation of expected behavior. While DL Contract checker can also

double as a bug detection tool, in the long term, developers would

also benefit from the documentation and write more correct DL pro-

grams. Empirical studies [26, 34, 36, 37, 56, 64, 66] have motivated

the need for DL bug repair, but none propose a DbC methodology

like DL Contract.
Existing DbC Methodology: Existing DbC frameworks for

Python, such as PyContracts [32], Pylint [1], and PyTA [45], do not

have the capability to check contracts for properties of models and

data, or monitor training behavior of DL models. These frameworks

do not address the technical challenges of checking contracts be-

yond API parameters, contracts involving multiple APIs at different

stages of the ML pipeline, and contracts on intermediate properties

to specify desired training behavior. Additionally, DL Contract’s use
of runtime assertions is distinct from checking runtime properties,

such as interpreting statecharts [47]. To the best of our knowledge,

the concept of applying DbC over the DL computational graph and

specifying DL-specific contracts is novel.

API Misuse Detection: There have been some API misuse

detection techniques such as, [60], which examines the usage of

machine learning (ML) cloud APIs in open-source applications. This

work finds that many of these applications contain API misuses

that degrade their functionality and performance, leading to the

development of automated checkers for identifying such misuses.

[52] tackles API Misuse (APIM) bugs statically by some rules that

occur when practitioners misunderstand the usage of deep learning

APIs. Such misusage leads to inconsistencies between the designed

DL program and the API’s usage conditions, potentially resulting

in reduced effectiveness or runtime exceptions. Existing API mis-

use detection methods may not be suitable for checking contracts

written by library API designers that capture properties of models,

data, and training behavior at various program points during run-

time. To address this limitation, our approach overcomes technical

challenges associated with checking contracts beyond formal API

parameters, handling contracts involving multiple APIs at different

stages of the ML pipeline, and specifying intermediate properties

for desired training behavior.

6 CONCLUSIONS AND FUTUREWORK
In this work, we proposed a novel method for checking contracts for

deep learning libraries by specifying DL APIs with preconditions

and postconditions. Our approach is extensible and generalizable,

allowing for the abstraction of model architecture, data properties,

and training behavior. We developed 15 sample DL contracts target-

ing common bugs and found they effectively prevented structural

bugs and training problems. Additionally, our user study showed the

usability of DL Contract when applied to the Keras library. We have

submitted an API design proposal for its incorporation in future

releases of Keras. Possible future work includes static validation,

unit testing, and inferring contracts for additional libraries. With

ongoing research on decomposing DNN into modules [35, 53, 54],

we intend to write contracts for the expected behavior of a DNN

module effectively. We want to explore writing contracts to pre-

vent nonfunctional bugs such as fairness bugs [20, 21]. We would

also like to extend our approach to prevent additional types of

bugs in different stages of the ML pipeline [22]. We can adapt tech-

niques [50, 51] for collecting contracts from mined models with

improved performance in terms of accuracy and training time.

7 DATA AVAILABILITY
The replication packages and results are available in this reposi-

tory [17] that can be leveraged by further research.
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