
23 Shades of Self-Admitted Technical Debt: An Empirical Study
on Machine Learning Software

David OBrien
Dept. of Computer Science

Iowa State University
Ames, IA, USA

davidob@iastate.edu

Sumon Biswas∗

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
sumonb@cs.cmu.edu

Sayem Imtiaz
Dept. of Computer Science

Iowa State University
Ames, IA, USA

sayem@iastate.edu

Rabe Abdalkareem
School of Computer Science

Carleton University
Ottawa, ON, Canada

rabe.abdalkareem@carleton.ca

Emad Shihab
Concordia University
Montreal, QC, Canada

emad.shihab@concordia.ca

Hridesh Rajan
Dept. of Computer Science

Iowa State University
Ames, IA, USA

hridesh@iastate.edu

ABSTRACT

In software development, the term łtechnical debtž (TD) is used to

characterize short-term solutions and workarounds implemented

in source code which may incur a long-term cost. Technical debt

has a variety of forms and can thus affect multiple qualities of soft-

ware including but not limited to its legibility, performance, and

structure. In this paper, we have conducted a comprehensive study

on the technical debts in machine learning (ML) based software.

TD can appear differently in ML software by infecting the data that

ML models are trained on, thus affecting the functional behavior of

ML systems. The growing inclusion of ML components in modern

software systems have introduced a new set of TDs. Does ML soft-

ware have similar TDs to traditional software? If not, what are the

new types of ML specific TDs? Which ML pipeline stages do these

debts appear? Do these debts differ in ML tools and applications

and when they get removed? Currently, we do not know the state

of the ML TDs in the wild. To address these questions, we mined

68,820 self-admitted technical debts (SATD) from all the revisions of

a curated dataset consisting of 2,641 popular ML repositories from

GitHub, along with their introduction and removal. By applying

an open-coding scheme and following upon prior works, we pro-

vide a comprehensive taxonomy of ML SATDs. Our study analyzes

ML SATD type organizations, their frequencies within stages of

ML software, the differences between ML SATDs in applications

and tools, and quantifies the removal of ML SATDs. The findings

discovered suggest implications for ML developers and researchers

to create maintainable ML systems.

∗At the time this work was completed, Sumon Biswas was a graduate student at Iowa
State University

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549088

CCS CONCEPTS

• Software and its engineering→ Software creation and man-

agement; • Computing methodologies→Machine learning.

KEYWORDS

technical debt, machine learning, open-source, data science

ACM Reference Format:

David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad

Shihab, and Hridesh Rajan. 2022. 23 Shades of Self-Admitted Technical Debt:

An Empirical Study on Machine Learning Software. In Proceedings of the

30th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE ’22), November 14ś

18, 2022, Singapore, Singapore. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3540250.3549088

1 INTRODUCTION

The recent uprising and rapid integration of machine learning (ML)

models has empowered developers to tackle problems previously

infeasible such as safety-critical systems, financial fraud detection,

and medical diagnostics [3, 13]. However, the sudden emergence

and adoption of ML models risks the creation of hastily-planned

machine learning software deployed long-term [45]. Thus, the func-

tionalities of future machine learning software depends upon the

maintainability of present-day machine learning software.

Through decades of traditional software practices, the term łtech-

nical debtž (TD) was coined by Ward Cunningham to characterize

short-term solutions, workarounds, or unfinished implementations

that exist in long-term software. TD can worsen software’s legi-

bility, performance, and quality, consequentially complicating its

maintenance lifetime. Similar to fiscal debt, TD becomes more łex-

pensiveł the longer an instance exists, costing a heavy amount of

developers’ time, effort, and knowledge to pay off. Therefore, the

awareness of TD types has historically informed developers how to

best manage their software to minimize the TD accumulated and

prioritize their TD management [2, 19, 33, 53].

ML software contains additional components not found within

traditional software development. Sculley et al. explored the hidden

TD in ML to describe challenges encountered when Google engi-

neers were maintaining ML software [44, 45]. Because ML software

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

734

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3540250.3549088
https://doi.org/10.1145/3540250.3549088
https://doi.org/10.1145/3540250.3549088

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

is accompanied by challenges native to its own domain, it is suscep-

tible to new forms of TD not encountered by traditional software

practices. For example, because ML software has an implicit depen-

dence upon the quality of its training data, problems in the data

are reflected upon the resulting model behavior [1, 29]. Previous

work has provided a framework to contain the contagion of TD in

ML software through multi-level evaluations [11]. Moreover, Tang

et al. [52] further studied TD in ML software through studying

refactorings and their corresponding removal strategies found in

Java ML software.

Historically, the notion of self-admitted technical debt (SATD)

describes a developer’s expressed beliefs on necessary improve-

ments to current implementations of software [4, 27]. SATD is most

commonly associated with source code comments documenting a

potential change, although SATD has also been found in an analysis

of software issue trackers [57]. SATD has been used as a proxy to

study TD, since SATD contains natural language to communicate

proposed changes to source code. A large financial organization

in practice discovered that their developers used SATD to guide

the management of their TD [54], further emphasizing the value of

examining SATD.

Because previous studies have used SATD to indicate TD pat-

terns, it may provide insights on ML specific TD symptoms. How-

ever, to the best of our knowledge no study has been conducted to

understand the ML-specific SATD types and their characteristics

present in the ML software.

Motivated by this, we created and filtered a dataset consisting

of popular ML repositories written in Python which have been

used in previous studies [26, 50]. We chose Python because it has

been referred to as the de-facto language for ML development

due to its popularity [5, 14], then performed a labeling process to

create a statistically significant dataset of 856 labeled instances of

SATD within these repositories to answer the following research

questions:

RQ1: What types of SATD are found in our studied ML software?

SATD can indicate the presence of TD, and is more human un-

derstandable by nature of natural language comments. Are there

new types of SATDs that exist in ML software that previous works

haven’t discovered?

RQ2: What is the distribution of SATD types in the different ML

pipeline stages? The ML pipeline splits up the ML development

workflow into distinct objectives [3, 10]. Do different stages have

unique frequencies of SATD types? Does a SATD appearance

change in differing stages?

RQ3: Is there a difference in SATD types between ML applications vs

ML tools? ML application developers and ML tool developers have

different goals. Does this influence the SATD that they encounter?

RQ4: How much effort is needed to remove SATD types in ML soft-

ware? Since SATD indicates problems affecting ML software’s

maintainability, it is important to understand which types of SATD

comments have historically been difficult to remove.

Our findings indicate that ML developers are most concerned

with improving how their software meets their project’s functional

and non-functional requirements. Moreover, our observations find

a substantial focus on the configuration of data processing code

across multiple pipeline stages. Additionally, our study finds that

Table 1: Filtering Overview.

Stage Name Remaining Comments

Extracted 9,725,127 changes
Length > 1 7,415,024 changes
SATD Detector / Keyword Search 193,787 changes
Removed Autogenerated 189,912 changes
Removed Non-Unique Removals 85,599 comments
Not in "site-packages" Folder 68,820 comments

ML tools contain more SATD involving dependencies on outside

code than ML applications. Finally, our observations suggests that

various types of ML SATDs take varying degrees of effort to remove.

To allow replication and future research, our labeled dataset of

identified SATD in ML repositories is available to the public1.

The rest of the paper is organized as follows. Section 2 presents

our methodology to gather and filter a dataset of source code com-

ments, as well as our strategy to construct ML SATD taxonomies.

The results of our four RQs are presented in Section 3. We discuss

the implications of our work in Section 4. The limitations of our

study are highlighted in Section 5. Section 6 discusses the related

works, and Section 7 concludes the paper.

2 METHODOLOGY

In this study, we will manually analyze source code comments

found in ML systems. This section describes the dataset utilized,

our filtering and sampling processes, our classification scheme, and

our classification process.

2.1 Dataset

Our study involves open-source machine learning repositories pre-

sented in [26] which has been used in a prior study examining ML

bugs’ associations with programming languages [50]. This dataset

contains popular ML repositories, including ML tools (repositories

supplying ML functionality) such as the scikit-learn 2 repository

and ML applications (repositories applying ML to a problem) such

as deepfake’s faceswap repository3. The repositories found in the

dataset have been filtered so that every software repository within

has more than 5 stars OR ≥ 5 forks, must have been active in 2019,

and must be a non-trivial software project. Although the reposito-

ries were gathered in 2019, we generate the data using the source

code data as of January 2021. The resulting dataset contains repos-

itories spanning across 439 topic labels on GitHub, indicating a

representation of a variety of ML topics. Although the resulting

dataset contains 5,224 repositories across a variety of programming

languages, this study will only analyze the 2,684 which have been

written in Python due to its popularity in the ML community [5, 14].

From the 2,684 repositories present in the dataset, 43 were not

present on GitHub when our dataset was generated, resulting in

2,641 total projects being analyzed in this study.

2.2 Identifying SATD Comments

This section describes the filtering process used to extract SATD

comments that have existed in the repositories described in the

previous section. Table 1 provides an overview of the process.

1https://github.com/DavidMOBrien/23Shades
2https://github.com/scikit-learn/scikit-learn
3https://github.com/deepfakes/faceswap

735

23 Shades of Self-Admitted Technical Debt: An Empirical Study on Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Weuse Boa [15, 16], a language specifically designed tomine data

from software repositories which has demonstrated capabilities to

analyze data science repositories [7]. Boa analyzes each revision

to determine when a source code comment has been introduced or

removed [17, 18]. 9,725,127 comment changes are extracted from

our dataset in this manner. After manual inspection of the dataset’s

contents, we found comments with a text length of one character

likely do not represent SATD or contains enough information to

classify an SATD comment. We remove such comments, leaving

7,415,024 comment changes remaining.

To filter our comment changes to include only SATD comment

changes, we use both a previously trained classifier and a keyword

search. First, we use the SATD detector classifier created by [27]

which was trained upon comments from 8 active software reposito-

ries to obtain an average F1-score of 0.737. However, since SATD

found in ML software may differ from SATD in traditional software,

we measured the performance of this classifier on a sample of 1,255

ML source code comments, where 35 were labeled to be SATD by

the authors. Previous work’s classifier obtained a precision of 82.6%

and a recall of 54.2% on this sample. However, we found that many

of the false negatives from this experiment contained a keyword

discovered to indicate a SATD ("todo", "fixme", "hacky", etc.) [36].

Therefore, we take the union of comments classified as SATD by

previous work, and comments which contain a keyword presented

in [36] to reach a recall of 82.6%. 193,787 comment changes remain

after filtering in this manner.

Additionally, we remove comments which are likely irrelevant

to SATD as done in previous work [36]. Therefore, we manually ob-

serve comments in our dataset which appear most often to identify

cases such as comments describing software licensing, comments

which have been automatically generated (i.e., #generated protocol

buffer), and comments to assist linters (i.e., #NOQA) as cases which

likely do not contain SATD. 189,912 comment changes remain after

removing such comments.

We then organize our comment changes to separate comments

which have been removed or not in their repositories lifetime. Prior

work shows that data from GitHub has been found difficult to

mine cleanly due to events such as merges, rebases, and rollbacks,

among others [6, 22]. Additionally, a repository may have multiple

copies of the same SATD comment. Therefore, we follow a similar

procedure to [37] by considering a comment removed if there is a

unique removal of a comment after its introduction. We find 85,599

unique comments in this manner.

Following manual evaluation, we identified the case where a

source code comment is not native to the analyzed repository.

Rather, the source code comment is found in the "site-packages"

directory. Because the goal of this study is to analyze SATD com-

ments in ML repositories, we choose to filter out comments which

appear in this directory. After this step, we find 68,820 comments

remaining in our dataset.

We took a statistically significant sample of our filtered dataset

with a confidence interval of 95% and a margin of error of 3.33% to

calculate the size of our sample dataset. Then, we sample comments

similar to a previous study on SATD comments [25]where the SATD

dataset is sampled so that the resulting sample’s characteristics is

proportional to the original dataset. Table 2 illustrates the respective

proportions of the dataset and its sample.

Table 2: Total and Sampled SATD Comments

Dataset Bucket
of SATD
Comments

of Sampled
SATD Comments

Tool + Comment Removed 8,104 101
Tool + Comment Not Removed 19,724 245
App. + Comment Removed 10,215 127
App. + Comment Not Removed 30,777 383
Total 68,820 856

2.3 Building SATD Classification Scheme

In this section, we will describe the classification schemes used to

label our sampled dataset.

Previouswork on TD inML applications argued thatML software

can become indebted in similar ways to traditional software devel-

opment, as well as in ways unique to ML systems [44]. Therefore,

we review prior works on traditional software SATD types [2, 4, 42]

to construct a taxonomy which this study refers to as "Software

SATD Types". This study also presents a taxonomy consisting of

SATDs which appear in ML-specialized software. To accomplish

this, we identify TD types found in ML software from previous

studies [45, 52]. Using these prior works, we construct a taxonomy

of SATDs from the corresponding TDs which this study will refer

to as "ML SATD Types".

We use the ML pipeline defined in a previous work [10] which

analyzed 3 representations of the ML pipeline at varying levels to

find 7 well defined pipeline stages which is used to answer RQ2.

We performed a pilot study using previousworks’ taxonomies [45,

52] on a sample of 100 comments from the dataset filtered in Section

2.1. Although every type in previous works’ ML TD taxonomy was

not reached in the 100 samples, we did notice beneficial improve-

ments that could be proposed. For example, we observed that the

Configuration debt [45] was too broad to effectively analyze and

reason about its symptoms and effects. Therefore, we split the Con-

figuration debt into five specific types of configurable options (Data

Configuration, Data Storage Configuration, Weight Configuration,

Hyper-parameter Configuration, Layer Configuration). Additionally,

we also propose new types not found in previous studies (Machine

Learning Dependency,Machine Learning Knowledge,Machine Learn-

ing Reliability, Model Interpretability, Prediction Quality).

2.4 Classifying SATD Related Comments

Once we created the classification schemes, we want to apply our

classification scheme on the sampled SATD comments. We per-

formed a coding process [46]. To do so, an initial training meeting

with three of the authors to discuss the classification schemes and

the pilot study described previously. Following this meeting, two

of the authors would independently label 30-40 SATD comments,

then discuss in the presence of the third author acting as a moder-

ator. Since our classification is prone to human bias, we calculate

the Cohen’s Kappa coefficient to measure the agreement between

two annotators. Cohen’s Kappa coefficient is a common statistical

method that is used to evaluate the inter-rater agreement level

for classification scales by discarding the possibility of random

agreement. The resulting coefficient is scaled to range between -1.0

and 1.0, where a negative value means poorer than chance agree-

ment, zero indicates exactly chance agreement, and a positive value

indicates better than chance agreement.

736

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

The two labeling authors achieved a Cohen’s Kappa coefficient

of 63% between their first independently labeled sets, 77% on their

second, and 80% on their third. Because the authors’ Cohen’s Kappa

coefficient had reached very strong agreement, they labeled once

more independently to achieve Cohen’s Kappa coefficient of 83%,

which is considered to be excellent agreement [21]. After each

labeling session, the two labeling authors and the third moderating

author would meet to reconcile any disagreements held in the

classifications, while also discussing the cause of the disagreements.

After meeting to reconcile the fourth independently labeled sets,

the authors then labeled the rest of the unlabeled data. In cases

where an author was not confident on the appropriate label to

assign to an SATD comment, other authors were consulted in order

to reach a decision on the appropriate labels for those cases. Finally,

the entire dataset was reviewed so that every comment was checked

by at least two authors.

3 RESULTS

In this section, we investigate our labeled dataset to answer the

four research questions.

As a result of our manual classification process and literature

review, we ended up with 6 different Software SATD Types which

are described and exemplified in Table 3.

After conducting our pilot study on SATD types in ML software,

we found that some SATD comments were not well described by

pre-existing works or are too broad to describe unique characteris-

tics [45, 52]. To best fix these scenarios, we propose a newML SATD

classification scheme consisting of 23 ML SATD Types consisting of

13 pre-existing TD in ML software types [45, 52], and 5 new types

as well as 5 split-up types proposed in this study which were used

to label our dataset. All ML SATD Types presented upon have at

least one comment in our labeled dataset. To further analyze the

aspect by which a SATD in ML software is concerned with, we

further organize the 23 ML SATD Types found in Section 2.3 into 9

high-level groups that will be referred to as "ML SATD Groups". We

believe ML researchers and practitioners can use this hierarchical

classification scheme to guide and evaluate ML software mainte-

nance. Table 4 shows a detailed description of the ML SATD Types

organized by ML SATD Groups.

3.1 RQ1: What types of SATD are found in our
studied ML software?

In this section, we analyze the distributions within our dataset

to present commonly found SATD types in ML software, their

symptoms, and example comments.

Our results are organized as such: Table 3 presents the distribu-

tion of all Software SATD Type comments that occur. It is important

to note, some comments were not well described by one of the 6

Software SATD Types, and was then left blank. Similarly, if an

SATD comment in our labeled dataset was found to be described

by multiple ML SATD Types, then it is counted as a unique debt

for each ML SATD Type it received. For example, the comment

TODO: experiment with more layers received the labels Layer

Configuration and Machine Learning Knowledge, so it is counted in

the totals for both ML SATD Types. The results from performing

this study are shown in Table 5.

Finding 1: Requirement debt accounts for 40.68% of the

Software SATD Types in ML software.

As seen in Table 3, more than a third of SATD comments in

our labeled dataset which have a Software SATD Type received

the Requirement debt label. Requirement debts are concerned with

shortcomings involving incomplete functionality or non-supported

features (functional requirements) as well as poorly performing

code (non-functional requirements), ML-specific examples of these

are provided in Table 3. Because ML is an active area both in indus-

try and academia, there are rapid discoveries and improvements that

can be made to ML software [26]. Cases such as algorithmic config-

urations, API updates, and developer improvement could contribute

to the resolution of non-functional Requirement debts. Similarly,

code reviews, issue trackers, and feature requests are methodolo-

gies which may identify functional Requirement debts. However,

the abundance of Requirement debts in our studied ML software

repositories may indicate that ML developers prefer to focus on

other matters besides functional and non-functionally indebted sub-

systems, leading to the introduction of these self-admitted technical

debts.

Our findings indicate that ML developers should be aware of how

fast-pacedML development can be and how changes to requirement

specifications could affect the evolution and maintenance of their

software. Additionally, ML framework developers should also be

aware that the functionalities they provide may lead to the intro-

duction of Requirement debts in the applications which use them

through API misuse, unclear intents, and cascading upgrades [45].

We recommend that ML framework developers should de-

sign APIs such that its users are supplied with a complete

picture of its requirements and limitations. For example, the

SATD comment TODO add param for relative path vs just

folder names reveals the requirements and limitations found in

an evaluation utilities class. Knowledge of this limitation can save

developer time later in development. Furthermore, ML developers

should carefully consider how their current implementations may

hold up against future requirement changes [11, 44, 45].

Finding 2: When compared to traditional software, ML

software contains less prioritized Code debts.

To put our results in perspective, the results from prior work

on SATD types in traditional software development by Bavota

and Russo are shown in Table 6 [4]. They analyzed 159 software

repositories, resulting in the mining of 2 billion comments and

the labeling of 273 SATD comments with the same classification

scheme we used to construct our taxonomy of the Software SATD

Types.

When we compare our results in ML software to Bavota and

Russo, we see that our investigations indicate that ML developers

might differ in their SATD management to traditional software

developers. Instead of Requirement debt, Code debt is the SATD

type which appears most in Bavota and Russo’s study on traditional

software SATD [4]. Code debt involves areas of poorly legible source

code. Cases of Code debts include sections of code where code logic

can be simplified to allow for easier understanding, variables or

functions can be renamed, a function can be refactored, or code can

be reformatted to adhere to expected coding standards. Example

SATD comments of Code debts found in our dataset include: #

hackier; fixme to use regex or something and It’s only

737

23 Shades of Self-Admitted Technical Debt: An Empirical Study on Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 3: Definitions and Examples of the 6 Identified Software SATD Types.

SATD Types Description Example comment # of Occ. % of Occ.

Requirement Requirement debts can be functional or non-functional. In the functional case,
implementations are left unfinished or in need of future feature support. In the
non-functional case, the corresponding code does not meet the requirement
standards (speed, memory usage, security, etc...)

TODO: handle channel modalities later, TODO: make

efficient, TODO: Implement Conv Transpose.
321 40.68%

Code Bad coding practices leading to poor legibility of code, making it difficult to
understand and maintain.

TODO: This next code is dense and confusing. Clean up

at some point.

207 26.24%

Test Problems found in implementations involving testing or monitoring sub-
components.

XXX: should we rather test if instance of estimator? 84 10.65%

Defect Identified defects in the system that should be addressed. TODO this will fail if a parameter cant handle size=(N;) 82 10.39%
Design Areas which violate good software design practices, causing poor flexibility to

evolving business needs.
TODO maybe improve this so it doesn’t use a global 80 10.14%

Documentation Inadequate documentation that exists within the software system. TODO update doc above 15 1.90%

needed for a specific purpose in the short term; will

go. Because the two types of developers differ in the types

of SATD they accrue, it may be the case that the nature of

the software domain affects the developers’ maintenance

patterns.

As speculated by previous work [52], some ML developers may

not be primarily software developers. Instead, they might be data

scientists, researchers, or domain experts. Therefore, developers in

these roles may not be as prepared to maintain software solutions.

Regardless, a comparison between Bavota and Russo’s study [4]

and our own suggests that there are distinctions between the SATD

patterns between both types of developers. Additionally, the lan-

guages which are used by the studied software in both studies

are different. Bavota and Russo studied 159 repositories which are

written in Java [4], while our study analyzes Python projects, both

languages are studied together in a previous work on technical

debt [51]. Therefore, the difference in programming language us-

age may cause a shift in SATD management.

Finding 3: 30.58% of ML developers’ ML-specific SATD is

due to Data Dependency.

As seen in Table 5, Data Dependency is the most used ML SATD

Group. ML software functionality is heavily dependent upon the

quality, structure, and consistency of models’ training data. There-

fore, the code that processes or stores this data may have became

a natural focus for ML developers [45]. Because data is influenced

and through ML models can influence the outside world, it is cru-

cial that ML developers ensure their data is well-monitored and

well-understood. Misunderstood data can cause unintended conse-

quences, and as a result can effect the outside world when naively

deployed [44, 45].

Based on our manual analysis, we observe that ML developers

may leave more Data Dependency debts than any other group of ML

SATDs. Technically indebted data can be harmful for ML models

because it implies that the current data has identified shortcom-

ings, similar to how code can be described with technical debt.

For example, the comment text # TODO: EXPAND PROPER NOUNS

FOR COMMON WORDS AROUND WORD admits a preprocessing task

that should be improved upon. Because this current short-term

solution exists, not only is the software suffering from a

SATD, but the data may be considered technically indebted

as well. Although many Data Dependency debts observed in our

dataset involve data preprocessing tasks, there are other caseswhich

Data Dependency can be concerned with. Other examples of Data

Dependency involved debts include those associated with data vi-

sualizations (TODO add general Distribution), data storage

management (TODO check the local cache and cloud for

different images of same name), configuring qualities of train-

ing data (TODO: weight by length here), and interfacing with

model output (FIXME: Only keeping the first label).

While Data Dependency SATD comments can involve how data

is processed, represented, and used through ML software, we also

find reoccurring symptoms in the Data Dependency SATD com-

ments. These symptoms indicate an implied problem or suggested

fix on ML code that interacts with data. We find that these symp-

toms typically indicate a change involving the addition, removal,

improval, replacement, reapplication, or handling an edge case of

some data involved component. An addition indicates a spot where

a new data procedure can be used (TODO: Add Hebrew-to-Aramaic

converter). A removal indicates a procedure that may need to be

removed (FIXME don’t l2_normalize for any metric). An

improvement is an area where the data procedure can be modified

to perform better (NOTE: probably more efficient to sort

then stride by nt_regions). A replacement indicates where

a different data-involved functionality can be used (TODO: hard

coded for now; looking for better extraction methods). A

reapplication involves the reuse of a pre-existing procedure (TODO:

It could be nice if this method was run on entire data;

not just a sample). Finally, symptoms can indicate cases where

the current procedures fail or do not behave as expected (Double

newlines seem to mess with the rendering).

Therefore, ML developers should consider how their data con-

figuration implementations could evolve overtime. If a particular

component does not allow for the fix of one of the symptoms

described above, then an underlying data-dependent TDmay

exist. Since our data suggests that these problems are encountered

commonly in ML software, preparation for these modifications can

save maintenance activity.

Finding 4: Awareness account for 17.45% of our ML SATD.

Awareness consists of debts types where the lack of developers’

knowledge or understanding negatively affects its associated soft-

ware. SATD comments of this kind may be found in the form of a

question, such as the comment TODO - does this handle N-dim

tensors correctly?. Also, Awareness debts may be caused by the

nature of working with ML models whose functionality can be con-

sidered a black box [39, 40]. When such cases arise, the demand for

new functionality may arise to better understand model behavior.

For example, the comment in our dataset TODO: Model Precision

admits a new evaluation metric to be used to better understand the

performance of a ML model, and was considered an Awareness debt

under this context.

738

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

Table 4: Definitions and Examples of the 23 Identified ML SATD Types: Awareness (AWR), Readability (RDB), Duplicate

Code Elimination (DCE), Configurable Options (CFO), Code Dependency (CDD), Data Dependency (DTD), Modularity (MDL),

Performance (PRF), and Scalability (SCL). ♣ New ML SATD Type proposed in our study.

Dim.Name Definition Example

A
W

R Machine Learning

Knowledge♣

Machine learning software carries plenty of unique challenges. Uned-

ucated solutions by unaware developers may have to be revisited.

FIXME: can I backprop error

through both

Model

Interpretability♣

Machine learning models are a black box, causing poor understanding

of model’s functionality. This can lead to unknown behavior.

TODO: Model Precision

R
D
B Model Code Com-

prehension [52]

Model code carries extra legibility concerns that do not occur in tradi-

tional software. (i.e., poorly named temporary matrix variables).

TODO refactor second part of if

statement when implementing live

model prediction

D
C
E

Duplicate Model

Code [52]

Code duplication frequently occurs in model code. TODO: Basically identical to

‘test_intra_cv_target_transform’

except for repeated KFold

Duplicate Fea-

ture Extraction

Code [52]

Code duplication frequently occurs in feature extraction code. XXX de-duplicate this with code

from Montage somewhere?

C
F
O

Weight Configu-

ration ♣

Editing code that involves the weights of a ML model, or configuring

a ML model’s weights directly.

FIXME non-uniform sample weights

not yet supported

Layer Configura-

tion

Editing code that deals with ML models’ layers, or configuring a ML

model’s layers itself.

TODO: experiment with more

layers

Hyper-parameter

Configuration

Configuring hyper-parameters of ML model, or editing the default

values of off-the-shelf model.

TODO convert this to x/y params?

C
D
D

Machine Learning

Dependency ♣

When a needed change in ML software occurs because of its depen-

dency on an external library or other piece of the ML software system.

Usually indicates a condition that is waiting to be met before removal.

TODO add test for keypoints once

their handling was improved in

Convolve

Glue Code [45] Supporting code written to interface with other code, inhibiting im-

provements due to peculiarities of dependent code.

FIXME XXX: Implement by

rewriting functions above

copied from autoresolve.py

Custom Data

Type [52]

Using data types provided by general-purpose packages can cause

extensive inter-operating with external libraries.

TODO: Repeat_elements and

tf.split doesn’t support dynamic

splits.

Multiple Lan-

guages [45]

Components written in other languages may introduce difficulties in

ML development.

TODO(sonots): Implement in C++

Unnecessary

Model Code [52]

Model code that either bottlenecks performance, is unreachable or

deprecated, or is unnecessary and should be removed.

DEPRICATE? I don’t think this is

needed anymore

D
T
D

Data Processing

Configuration ♣

Configuring the way that data is processed either by editing the data

directly, or by adding in new processing steps.

TODO: normalize true states

Plain Old Data

Type [45]

Using raw data types in ML causes confusion when interpreting pro-

cesses.

TODO: handle record value which

are lists; at least error

Data Storage Con-

figuration ♣

Configuring how data is represented within the source code (data

structure) or how data is stored externally (database).

TODO json?

M
D
L

Abstraction [45] Lack of abstractions in ML systems and subsystems cause cascading

changes when changes are introduced to one component.

TODO Split into separate

functions

Boundary

Erosion[45]

Lack of boundaries between subsystems, creating difficulties when

maintaining software and isolating changes made in ML software.

@todo nrows is for testing only!

Model Code Mod-

ifiability [52]

Model code should be implemented in ways that enable easy mainte-

nance and future modifications.

TODO init this somewhere else in

a more principled way

Model Code

Reusability [52]

Model code should be generalized to be able to be reused in varying

situations.

TODO: At the moment LHUC is RNN

specific.

P
R
F Prediction Qual-

ity ♣

Previous work in evaluating ML workflows [11] shows that changes

may affect performance.

TODO: compare the performance!

Machine Learning

Reliability ♣

Machine learning models’ functionalities are determined by the quality

of their data, measures should be in place to ensure robustness.

TODO: extract an eval func more

robustly

S
C
L Prototype [45] Small-scale prototypes being deployed into full systems can be dan-

gerous.

TODO: This matching process is

slow. Make it faster; avoid loops

where possible.

739

23 Shades of Self-Admitted Technical Debt: An Empirical Study on Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 5: Distribution of ML SATD Groups.

ML SATD Group Name # of Occur. % of Occur.

Data Dependency 170 30.58%
Code Dependency 127 22.84%
Awareness 97 17.45%
Modularity 55 9.89%
Configurable Options 51 9.17%
Scalability 31 5.58%
Readability 12 2.15%
Performance 11 1.97%
Duplicate Code Elimination 2 0.36%

Symptoms of Awareness debts include doubts on the correctness

of algorithmic procedures, doubts on the current design decisions,

lack of knowledge of proper API usage, erroneous cases where a

solution is not identified, and lack of domain knowledge. Doubts

on algorithmic procedures, either by interfacing with other soft-

ware or correctness of algorithms can lead to Awareness debt (TODO

figure out what exactly size does, FIXME: What if we

never find a fail-high?). Doubts on current design decisions

can be due to questioning the qualities of a current implementation

(TODO: Something smarter?) or questioning the design decisions

in place (TODO: do we want gainsbiases to be trainable?).

Lack of proper API understanding can also be a symptom of Aware-

ness debts (TODO: Check if self._mean_squared_error_w_-

precision can be used here). Additionally, cases where errors

are encountered or incorrect behavior is discovered, but a solu-

tion is not yet known can also be a symptom (TODO: skip on

error???). Finally, since ML software can be applied in various

domains, it is not surprising that a lack of domain knowledge con-

tributes to questionable software behavior (TODO Figure out how

to distinguish oxidation states).

Consistently updated documentation can alleviate such SATDs,

disclosing proper API usage and possible design intentions. Since

prior work shows that most SATD is addressed by a different devel-

oper than the one who self-admitted it [4, 37], including documen-

tation details such as limitations, advantages, and defense of the

current implementation can inform future developers of identifiable

improvements. For example, the comment TO-DO: this causes

very long running when unique numbers are high. Find a

workaround for this describes the symptoms and limitations of

present implementations, and gives an actionable starting point for

future developers. Therefore, the more information which can be

disclosed by a developer in a Awareness debt scenario may enable

timely removals of these debts regardless of the symptoms they

contain.

Our findings indicate that ML SATDs may reflect the fast-paced

environment of ML software through a large amount of Require-

ment debts, setting itself apart from traditional software develop-

ment. Furthermore, data dependent code and lack of developer

awareness are major factors contributing to SATD.

3.2 RQ2: What is the distribution of SATD types
in the different ML pipeline stages?

This section further analyzes distributions of ML SATDs by also

considering which stage of the ML pipeline every SATD comment

appears within. Because the ML pipeline consists of unique tasks

whichML software commonly works through, we question whether

Table 6: Results from prior work by Bavota and Russo [4].

SATD Type
of SATD
Comments

of Sampled
SATD Comments

Code Debt 81 29.67%
Defect Debt 55 20.15%
Requirement Debt 55 20.15%
Design Debt 34 12.45%
Documentation Debt 27 9.89%
Test Debt 21 7.69%
Total 273 100%

some ML SATDs occur more frequently in varying stages. We uti-

lized prior works studying the ML pipeline [3, 10, 30] to construct

our taxonomy of ML pipeline stages which includeData Acquisition,

Data Preprocessing, Modeling, Training, Prediction, Evaluation, and

Other. TheOther stage is reserved for tasks that can occur anywhere

in the ML pipeline for a variety of reasons (i.e., data visualization

and data storage) as well as cases where the authors were not confi-

dent on a pipeline label due to lack of distinguishable information.

Table 7 presents the distribution of the ML SATD Groups amongst

the pipeline stages.

Finding 5: Data Preprocessing is the pipeline stage with

the most SATD.

Data Preprocessing is the stage in the ML pipeline that has the

most SATD comments out of all pipeline stages. RQ1 found that

Data Dependency is the most used ML SATD Group. However,

since Data Preprocessing contains the most SATD in our dataset,

it suggests that ML developers leave SATD comments of a wide

variety in data preprocessing code. For example, the comment

TODO validation_split is not used exemplifies an Unneces-

sary Model Code debt that was found in the Data Preprocessing stage.

Similarly, the comment FIXME: does pytorch has something

similar to tf.add_n which sum over a list? is a Machine

Learning Knowledge and Custom Data Type debt that appeared in

the Data Preprocessing stage as well. The high SATD activity in the

Data Preprocessing stage could be caused by feature engineering

components having the largest body of code, therefore there is

more code to self-admit technical debts. Sculley et al. [45] showed

that a mature ML system may be at most 5% ML code. The rest

of the system may consist of subsystems such as process manag-

ing tools or feature engineering code, among others. Regardless,

the high activity of SATD within Data Preprocessing code stresses

the importance for rigorous review on code which handles data

preprocessing.

Finding 6: Data Dependency is the SATD Type which is

dominant in 5 out of the 7 pipeline stages.

Our observations find that Data Acquisition, Data Preprocessing,

Evaluation, Prediction, and Other stages exhibit Data Dependency

as their primary SATD Type. This observation indicates that sub-

systems across the ML pipeline encounter SATD amounts which

involve adjustments to data interactions. To demonstrate that Data

Dependency debts can take different shapes amongst the pipeline

stages consider the Evaluation stage comment FIXME don’t l2_-

normalize for any metric which involves the normalization

means in the Evaluation stage of a speaker diarization pipeline.

Meanwhile, the comment TODO combine these values to get

a final prediction! describes functionality to be implemented

for an SVM model in the Prediction stage. Our manual analysis

suggests that potential solutions to repairing data-dependent

740

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

Table 7: ML SATD Groups by Pipeline Stage

ML SATD Groups
ML Pipeline Stages

Acqu. Prep. Mod. Train. Pred. Evalu. Oth.

Awareness 12 39 18 9 2 5 12
Code Dependency 19 39 33 13 1 6 16
Configurable Options - 3 23 23 - 1 1
Data Dependency 26 82 8 13 4 6 31
Duplicate Code Elim-
ination

- 2 - - - - -

Modularity 7 12 20 9 3 - 4
Performance - - 2 2 - 5 2
Readability 1 2 4 3 1 1 -
Scalability 6 11 4 5 - 2 3

Repo Type

ML SATD Group

Awareness
Code

Dependency
Data

Dependency Modularity Performance Readability

% of SATD % of SATD % of SATD % of SATD % of SATD % of SATD

Application

Tool

22.10%

18.37%

22.83%

32.65%

36.96%

34.69%

13.41%

9.18%

3.26%

1.02%

1.45%

4.08%

ML SATD Group by Repo Type
ML SATD Group

Awareness
Code Dependency
Data Dependency
Modularity
Performance
Readability

% of Total Count of ML TD Type for each Repo Type broken down by ML SATD Group. Color shows details
about ML SATD Group. The marks are labeled by % of Total Count of ML TD Type. The data is filtered on
ML TD Type, which excludes Null. The view is filtered on ML SATD Group, which excludes Configurable
Options, Duplicate Code Elimination and Scalability. Percents are based on each row of the table.
Figure 1: ML SATD Groupings Distribution by Repo Type

SATDs may be completely different between pipeline stages,

despite their broad similarities. Another explanation to this

observation is the concept of Pipeline Jungles introduced by Sculley

et al. [45] where there is little independent responsibility given to

each pipeline stage. Because of this, data preprocessing is not iso-

lated to one coherent stage, rather data preprocessing is performed

"as needed" [10]. Thus, the placement of data preprocessing code

within other ML pipeline stages accrues technical debt, since the

debugging or refactoring must consider the data transformation

implementations across multiple stages.

We observe that Data Preprocessing is the most popular pipeline

stage, stressing the importance of mindful data handling imple-

mentations. Similarly, Data Dependency debts are the biggest

contributor to 5 pipeline stages in our dataset, the two exceptions

being the Modeling and Training stages.

3.3 RQ3: Is there a difference in SATD types
between ML applications vs ML tools?

In this section, we separate our findings into the ML repositories

that apply ML towards a task (applications) and ML repositories

that provide ML functionalities (tools) as labeled by the original

dataset creators [26].

Figure 1 illustrates the ML SATD group distributions by reposi-

tory type to visualize differences between them. For viewing pur-

poses, only the ML SATD Groups which differ by more than 2% are

shown.

Finding 7: Our analysis of SATD comments suggests that

Code Dependency debts appear more often in ML tools than

ML applications.

According to Figure 1, Code Dependency related debts may be

more common in ML tools than ML applications. Code Dependency

refers to a similar concept to "On-Hold SATD" explained by Maipra-

dit et al. [35]. In these instances, an SATD is waiting for a condition

to be met before taking action (e.g., waiting for an update or other

development tasks to complete) such as the comment TODO Modify

mu and sigma once feature scaling is built into the

logistic regression. We describe Code Dependency as SATD

which depends upon other code. Cases such as interfacing with spe-

cific data types (TODO: Repeat_elements and tf.split doesn’t

support dynamic splits), changes to software and APIs which

cause versioning updates (TODO: assertWarns exist only for

Python 3.2+; test in all versions), or cascading changes

throughout software systems (TODO: it’s worth to switch back

to the correct preprocess_input when InceptionResNetV2

model is re-trained).

ML tools find themselves in a competitive environment amongst

themselves to provide efficient techniques for their users. Previous

work has described the temptation that a shorter time-to-market

brings to deep learning framework developers [34]. It could be that

in order to stay relevant, ML tools’ implementations must inter-

operate with other evolving ML tools. Thus, Code Dependency debts

may occur when other tasks take priority above resolving these

identified problems. Our observations suggest ML tool developers

suffer from these occurrences more than ML application developers.

We believe that ML tool developers can benefit from these ob-

servations by further evaluating the implementations which they

depend on, and what the advantages of evolving in correspondence

with those implementations may bring. Furthermore, we encourage

ML tool developers to consider how severe of a refactoring that an

API change may have upon depending systems, and to allow for

upgrading versions to be performed with ease.

Finding 8: In our dataset, ML applications encounter more

Modularity debts.

Modularity debts describe cases where weak modular bound-

aries exist between ML subsystems. An example debt in the Mod-

ularity group is Boundary Erosion [45], an example comment of

which is @todo nrows is for testing only!, which describes a

case where a parameter intended for testing purposes was instead

used within data visualization code. AnotherModularity example is

the Abstraction debt comment TODO: refactor as independent

function which admits the task of creating a new abstraction

within a feature engineering process.

Our analysis suggests that Modularity debts are found more

often in ML applications than ML tools, hinting at a possible dif-

ference between their software maintenance patterns. A possible

explanation may lie in the common use of Jupyter Notebooks by ap-

plication developers as explored by Pimentel et al. [41]. In a Jupyter

Notebook, application developers use an interactive environment

to debug and monitor their code. However, the transition from

Jupyter Notebook to an Object Oriented (OO) design may

be difficult, and instances of Modularity SATD may be left

where these transitions were attempted. Tang et al. [52] also

speculates how ML developers may not be familiar with Object

Oriented Programming best practices, leading to the introduction

of such technical debts.

It was found that ML tools suffer from much more Code Depen-

dency debts, possibly a side effect from inter-operating with other

libraries. Additionally, our results suggest that ML application

developers incur more Modularity debts.

741

23 Shades of Self-Admitted Technical Debt: An Empirical Study on Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Figure 2: ML SATD Groupings Removal Characteristics.

3.4 RQ4: How much effort is needed to remove
SATD types in ML software?

This section analyzes the effort conducted to remove SATD in ML

software. In order to accomplish this, we only analyze our SATD

comments which have been removed at the time of data generation.

We define effort of removing an SATD comment as a compar-

ison between the time passed since its introduction and size of

the commit which removes it. Since an SATD may take multiple

commits to remove because of unknown solutions or lower prioriti-

zation, we follow the advice presented by Bird et al. [6] to connect

a comment-removing commit to a comment-introducing comment

of the same text. Because all commits are not the same size, we also

use the Boa language and its infrastructure created by Dyer et al.

[15] to perform the GumTree algorithm [20] to compute the edit

script of a source code change at the Abstract Syntax Tree (AST)

level. With this methodology, we count the number of AST nodes

modified in the revision which removes the SATD comment to get

an indication of work which removed it. Due to larger repositories

causing timeout errors, some commit revisions are unable to be

quantified in our dataset.

Figure 2 illustrates our results on the ML SATD Groups. Since we

want to present on data with larger bodies, the ML SATD Groups

shown are those which contain 10 or more removed instances. In ad-

dition, Figure 3 illustrates our results across the ML pipeline stages.

We measure our statistics in median because it is unaffected by

outliers, since it has been shown that an SATD comment may have

been removed without any additional code change or alongside

large refactorings. [37].

Finding 9: Data Dependency, Configurable Options, and

Awareness may require less removal effort.

The low number of commits and low AST count in the removing

commit suggest that these debts are more convenient to remove.

For example, the SATD comment: TODO: modify this later is

a Data Dependency debt describing a sampling modification was

removed in 9 commits with 20 modified AST nodes. Because of

these lower quantities involved in these comments’ removals, it

could be that ML developers understand these SATDs better, since

much of ML software involves operating with data dependent code,

configurable APIs, and unknown solutions. Dilhara et al. exam-

ined common code changes made in ML software by reapplying

RefactorMiner to Python programs [14]. However, further work is

needed to understand the challenges involved when ML developers

identify and implement differing code changes.

0 10 20 30 40 50

Median Amount of Commits until Removal

0

100

200

300

400

M
ed

ia
n

M
od

ifi
ed

 A
ST

 A
m

ou
nt

Sheet 6
ML Pipeline Stage

Data Acquisition
Data Preprocessing
Evaluation
Modeling
Other
Prediction
Training

Median of Amount of Commits until Removal vs. median of
Modified AST Amount. Color shows details about ML Pipeline
Stage. The view is filtered on ML Pipeline Stage, which excludes
Null.

Figure 3: ML SATD Removal Amongst Pipeline Stages

Finding 10:Modularity debts have a higher amount of AST

nodes in their removing commits.

Our analysis suggests thatModularity debt removals have larger

commits and shorter removal times. Therefore, high activity in a low

amount of time may suggest that identifiedModularity debts are the

most urgent to remove. Consider the comment TODO Promote this

to a Funsor subclass. which involves reorganizing software

classes whose removal involved 355 modified AST nodes. A possible

explanation is that the heavier refactoring of Modularity debts are

viewed as more valued improvements to ML developers, and are

prioritized sooner despite their larger change size.

Therefore, ML developers can benefit from this finding by care-

fully considering their modular decisions over potentially "simpler"

decisions earlier in development. Since our results indicate heav-

ier activity is required from Modularity debt resolutions, earlier

decisions involving abstractions and modular design are more im-

portant in a software’s lifetime than issues which are lighter to

resolve.

Finding 11: Our analysis suggests that SATD in Prediction

and Evaluation stages have larger removal characteristics.

Figure 3 shows the complexities of debt removals by the ML

pipeline stages. Our study suggests that debts removed in the Eval-

uation stage have a large amount of modified AST nodes, and debts

removed in the Prediction stage are removed after a larger number

of commits have passed.

These findings may indicate that debts removed in the Evaluation

stage may require larger activity, possibly due to reused evaluation

metrics across multiple model codes. Therefore, a change made in

this stage may have a wide reach of consequential changes. If a

debt in this stage goes unnoticed, its resolution may take a heavier

amount of work, as is suggested by the larger amount of AST nodes

modified in comment removals in Evaluation stage code.

Our observations indicate that debts found in the Prediction stage

go unresolved for larger number of commits, possibly hinting at ML

developer’s priorities when working across the pipeline for larger

periods of time. Rather than improve upon predicting involved code,

it may be that ML developers choose to prioritize the immediate

removal of SATDs elsewhere. Thus, the Prediction stage may be an

area of ML software where the removal of an SATD is not as urgent.

742

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

Our study suggests thatAwareness,Configurable Options, andData

Dependency debts are easier to remove than Modularity debts.

Moreover, there are heavier debts to pay off in the Evaluation

pipeline stage, and debts in the Prediction stage last the longest.

4 DISCUSSION

ML techniques are increasingly adopted by developers to solve

previously difficult-to-solve problems, thus there is a benefit to

understanding how these systems evolve. Although Sculley et al.

[45] previously explored the hidden technical debts encountered

at Google and Tang et al. examined how refactoring accompanies

technical debts in ML software [52], to the best of our knowledge

no previous study has examined how ML-specific technical debts

permeate as self-admitted technical debt. The study of SATD has

previously been fruitful to practitioners and researchers since an

organization has reported that SATD guides their technical debt

management [54]. This large-scale study of SATD in ML software

can also provide researchers and practitioners with insights on ML

software evolution from our analysis of ML SATD.

TheML SATD taxonomy depicted in Table 4 is a synthesis of prior

works studying TD in ML software and our manual analysis of 856

SATD comments. This taxonomy not only includes new types of TD

through SATD analysis, but also splits previous types which were

previously described a large assortment of issues. Our proposed

taxonomy is hierarchical in nature, providing ML developers and

researchers a classification scheme for reasoning about issues in

ML software maintenance. We believe this taxonomy can guide ML

developers in ML development, as well as provide researchers with

areas to further explore.

Additionally, the ML pipeline has been a focus of researchers

recently [3, 10], yet no prior study has examined the SATD which

persist through the individual stages’ evolution. Our analysis of

SATD in these pipeline stages is a step in understanding the unique

challenges each stage encounters overtime. Moreover, this study is

the first to analyze how differing types of ML projects encounter

SATD to researchers interested in improving ML developer experi-

ence. Finally, we provide a study quantifying the efforts needed to

remove various SATDs in ML software, although further work can

complement these findings.

4.1 Implications

(1) Our study suggests that SATD in ML software can be inspected

on various levels, such as how traditional software evolves in

addition toML specific ways. Our proposed taxonomy can guide

ML practitioners in their ML software maintenance, describing

23 unique problems which have become evident through our

SATD analysis. A key finding is that ML software encounters

debts frequently involve the manipulation of data processing

means, including the introduction, removal, improvement, and

reuse of code which handles the data from data acquisition to

model evaluation. Therefore, ML developers should consider

the data requirements (distribution, organization, appearance,

etc... [23]) for every pipeline stage in their software and where

these requirements are not met.

(2) Traditional software developer and ML developers differ in

their SATD activity. ML developers may prefer to evolve their

software through functional and non-functional requirement

changes as new capabilities become available or their software

interacts with the real world. Because of this, ML software

may benefit from distinct solutions and tools than traditional

software. Consequentially, researchers may be interested if

the reuse of traditional developer-assisting tools may not ade-

quately address the SATD issues encountered by ML developers.

(3) We find that ML developers’ SATD changes depending on the

type of ML software being maintained. This is an interesting

direction, showing that different types of developers may gain

greater benefits from various techniques. For instance, we find

that ML tool developers accrue larger debts from interacting

with fellow evolving libraries [13] and ML application devel-

opers can benefit from more focused modular designs imple-

mented earlier in production.

5 THREATS TO VALIDITY

In this section, we discuss the threats to internal, construct and

external validity of our study.

Internal validity: concerns factors that could have influenced

our results. Our findings depend largely on the data labeled. In

order to ensure that our labeled data is precise, two authors went

through an extensive period where their Cohen’s Kappa coefficient

was calculated, and disagreements in labeling were settled in the

presence of a third author until their Cohen’s Kappa coefficient was

above 80%.

When associating comment-introducing revisionswith comment-

removing revisions, we only consider the cases where the comment

appeared the same during both commits. The comment could have

been modified in-between, or other unusual cases might have oc-

curred [6]. Because of this, our separation of comments that have

been removed and comments that still exist within their projects

may be inaccurate. This should only affect cases where a comment

was incorrectly placed as not removed. All comments that were

found to have been removed should be true positives, which are

the cases analyzed in RQ4.

It is possible our methodologies of measuring "effort" rather

measures "priority" or "system impact". However, we argue that

there may be no perfect way to measure "effort" since develop-

ment patterns and activity likely differ across software projects.

For this reason, we utilized multiple measures (change-size and

time) to quantify effort, which can be adopted in future research to

complement our findings further.

Construct validity: considers the relationship between theory

and observation. It has been shown that the removal of an SATD

comment is a naive indication that a TD was also removed [37, 58].

A comment could be removed without any fix to the SATD or a

SATD comment could be removed at a later time than the resolution,

or the comment could never be removed at all. To mitigate this,

the authors examined the code around the SATD comment and

were able to identify a few cases where the SATD comment is no

longer relevant. These cases were then removed from our labeled

data. Additionally, the quantitative data of RQ4 was measured by

its median to avoid influence by outliers.

The projects analyzed within this project may not be indicative

of present ML software practices. However, the dataset was created

743

23 Shades of Self-Admitted Technical Debt: An Empirical Study on Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

through extensive queries of the GitHub API with a variety of key-

words consisting of topics, subtopics, technologies, and techniques

related to ML [26]. Because of this, we believe our study has a wide

representation of ML topics.

Although the SATD comment classifier used has historically

performed well, it still may produce false predictions when our

dataset was filtered. However, when labeling, the authors would

remove any false positive samples. The inclusion of using a keyword

search along with using the comment classifier’s output was used to

recover any false negative samples the comment classifier produced.

External validity: concerns the generalization of our results. In

this study, we examined only open-source Python repositories that

are divided into applications and tools used in previous studes [26,

50]. Hence, our findings may not be generalized to to other non-

Python repositories or non-open-source repositories. That said, our

decision of studying Python repositories was made by its popularity

among the ML community [26]. Also, our dataset size of 2,641 ML

Python repositories that may not represent the whole population

of ML software written in Python.

6 RELATED WORK

In this section, we describe the related work. We divided the related

work into two sections: work related to technical debt management

in general and work related to the management of technical debt

in machine learning repositories.

General management of technical debt. Several earlier works stud-

ied the management and detection of technical debt (e.g., [12, 19, 32,

47]). For example, Brown et al. [12], Kruchten et al. [32], and Seaman

and Guo [47] made several observations about the term ‘techni-

cal debt’ and mentioned that it is regularly used to communicate

development issues to managers. Similarly, Zazworka et al. [59] per-

formed a study to measure the impact of technical debt on software

quality. Other works by Fontana et al. [24] investigated design tech-

nical debt indicated in the form of code smells. Furthermore, Ernst

et al. [19] conducted a survey involving more than 1,800 partici-

pants and found that architectural decisions are the most important

source of technical debt. Similarly, in this paper, we study techni-

cal debt in software applications. However, our study focuses on

gaining a better insight into the existence of the technical debt in

ML repositories.

Recently, [42] proposed the concept of self-admitted technical

debt (SATD), which considers debt that is intentionally introduced

or identified by developers. [42] analyzedmore than a hundred thou-

sand code comments from four projects to come up with 62 patterns

that indicate self-admitted technical debt. Also, their findings re-

veal that approx. 31% of the files in a project contain self-admitted

technical debt. More specifically, they found that 1) the majority of

the self-admitted technical debt is removed in the immediate next

release; 2) developers with higher experience are mostly the ones

who introduce the self-admitted technical debt; 3) release pressure

does not play a major role in the introduction of self-admitted tech-

nical debt. In a follow-up study, Bavota and Russo [4] replicated the

study of SATD on a large set of projects and confirmed the findings

observed by Potdar and Shihab in their earlier work [42].

Other works investigate different aspects related to SATD, includ-

ing; automatically identify SATD from source code (e.g., [36, 43]),

examine the maintenance and the removal of SATD [37, 58], and

discuss how the existence of SATD may lead to the rejection of pull

requests by developers [49]. We refer the reader to a recent survey

by [48] for a more comprehensive list of studies on self-admitted

technical debt. Similar to the work mentioned above, our study uses

source code comments to detect self-admitted technical debts in

ML repositories.

Management of technical debt in machine learning applications. In

recent years, examining the characteristics of machine learning ap-

plications has gained momentum. One of the first studies related to

technical debt in ML applications introduced the concept of implicit

TD in ML software through experiences encountered during ML

projects at Google [45]. This workwas then furthered by [52], where

new ML-specific refactoring and TD categories were introduced,

accompanied by recommendations of best practices to facilitate

long-term ML software development. Similarly, the work by [11]

discusses a workflow to evaluate ML software development prac-

tices at the data, model, infrastructure, and monitoring levels that

was then performed across multiple ML projects at Google. Liu et al.

[34] examined the existence of TD in deep learning frameworks.

Their study showed that design debt, defect debt, documentation

debt are most presented TD in deep learning frameworks.

Several studies examine the development of ML repositories in

general. Humbatova et al. [28] and Islam et al. [30, 31] examined

deep learning systems to systematically build a taxonomy of bugs

that impact deep learning systems, and recent works propose tech-

niques to address these identified issues [55, 56]. Nguyen et al. [38]

proposes a technique to leverage repositories of models to assist ML

developers. Amershi et al. [3] investigates the unique challenges

faced by software developers when developing ML applications.

ML models can exhibit new qualities unfamiliar to traditional soft-

ware such as model fairness [8, 9]. Dilhara et al. [13] conducted an

empirical study to examine the evolution and usage of ML libraries.

7 CONCLUSION

Nowadays, ML solutions are being adopted by software develop-

ers to accomplish otherwise infeasible tasks. Similar to traditional

software, there are unique costs to impractical design decisions in

ML software that result in "technical debts". In this study, we have

analyzed self-admitted technical debts inML software through a sta-

tistically significant sample of SATD comments from open-source

repositories. Furthermore, we propose a classification scheme con-

sisting of Software SATD Types, ML SATD Types and 8 new ML

SATD Groups. This classification scheme can provide practitioners

and researchers a structure for discovering and managing their

SATD. Additionally, we provide an analysis of SATD characteristics

as they appear amidst pipeline stages and repository type as well

as an analysis of SATD removal effort. The results discussed can

assist developers and researchers to create more maintainable and

improvable ML software solutions.

ACKNOWLEDGMENTS

This work was supported in part by US NSF grants CNS-21-20448

and CCF-19-34884 We also thank the reviewers for their insightful

comments. All opinions are of the authors and do not reflect the

view of sponsors.

744

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

REFERENCES
[1] Reem Alfayez, Wesam Alwehaibi, Robert Winn, Elaine Venson, and Barry Boehm.

2020. A Systematic Literature Review of Technical Debt Prioritization. In Pro-
ceedings of the 3rd International Conference on Technical Debt (Seoul, Republic
of Korea) (TechDebt ’20). Association for Computing Machinery, New York, NY,
USA, 1ś10. https://doi.org/10.1145/3387906.3388630

[2] Nicolli S.R. Alves, Leilane F. Ribeiro, Vivyane Caires, Thiago S. Mendes, and
Rodrigo O. Spínola. 2014. Towards an Ontology of Terms on Technical Debt.
In 2014 Sixth International Workshop on Managing Technical Debt. 1ś7. https:
//doi.org/10.1109/MTD.2014.9

[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software Engineering for Machine Learning: A Case Study. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). 291ś300. https://doi.org/10.1109/ICSE-SEIP.2019.00042

[4] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on
self-admitted technical debt. In International Conference on Mining Software
Repositories. ACM, 315ś326.

[5] Houssem Ben Braiek, Foutse Khomh, and Bram Adams. 2018. The Open-Closed
Principle of Modern Machine Learning Frameworks. In 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR). 353ś363.

[6] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German,
and Prem Devanbu. 2009. The promises and perils of mining git. In 2009 6th
IEEE International Working Conference on Mining Software Repositories. 1ś10.
https://doi.org/10.1109/MSR.2009.5069475

[7] Sumon Biswas, Md Johirul Islam, Yijia Huang, and Hridesh Rajan. 2019. Boa
Meets Python: A Boa Dataset of Data Science Software in Python Language. In
Proceedings of the 16th International Conference on Mining Software Repositories
(Montreal, Quebec, Canada) (MSR ’19). IEEE Press, 577ś581. https://doi.org/10.
1109/MSR.2019.00086

[8] Sumon Biswas and Hridesh Rajan. 2020. Do the Machine Learning Models on a
Crowd Sourced Platform Exhibit Bias? An Empirical Study on Model Fairness.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Virtual
Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York,
NY, USA, 642ś653. https://doi.org/10.1145/3368089.3409704

[9] Sumon Biswas and Hridesh Rajan. 2021. Fair Preprocessing: Towards Understand-
ing Compositional Fairness of Data Transformers in Machine Learning Pipeline.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 981ś993. https://doi.org/10.1145/3468264.3468536

[10] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The Art and Prac-
tice of Data Science Pipelines: A Comprehensive Study of Data Science Pipelines
In Theory, In-The-Small, and In-The-Large. In ICSE’22: The 44th International
Conference on Software Engineering (Pittsburgh, PA, USA).

[11] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D. Sculley. 2017. TheML
Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction.
In Proceedings of IEEE Big Data.

[12] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack,
R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and N. Zazworka. 2010.
Managing Technical Debt in Software-reliant Systems. In FSE/SDP Workshop on
Future of Software Engineering Research. ACM, 47ś52.

[13] Malinda Dilhara, Ameya Ketkar, and Danny Dig. 2021. Understanding Software-
2.0: A Study of Machine Learning Library Usage and Evolution. ACM Trans.
Softw. Eng. Methodol. 30, 4, Article 55 (2021), 42 pages.

[14] Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig. 2022. Dis-
covering Repetitive Code Changes in Python ML Systems. In 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE). 736ś748. https:
//doi.org/10.1145/3510003.3510225

[15] Robert Dyer, Hoan AnhNguyen, Hridesh Rajan, and Tien N. Nguyen. 2013. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
In 2013 35th International Conference on Software Engineering (ICSE). 422ś431.
https://doi.org/10.1109/ICSE.2013.6606588

[16] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2015. Boa:
Ultra-Large-Scale Software Repository and Source-Code Mining. ACM Trans.
Softw. Eng. Methodol. 25, 1, Article 7 (2015), 7:1ś7:34 pages.

[17] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. 2014.
Mining Billions of AST Nodes to Study Actual and Potential Usage of Java
Language Features. In Proceedings of the 36th International Conference on Software
Engineering (Hyderabad, India) (ICSE’14). 779ś790.

[18] Robert Dyer, Hridesh Rajan, and Tien N. Nguyen. 2013. Declarative Visitors to
Ease Fine-grained Source CodeMiningwith Full History on Billions of ASTNodes.
In Proceedings of the 12th International Conference on Generative Programming:
Concepts & Experiences (Indianapolis, IN) (GPCE). 23ś32.

[19] Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian Gorton.
2015. Measure It? Manage It? Ignore It? Software Practitioners and Technical
Debt. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2015). 50ś60.
[20] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-

tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014. 313ś324. https://doi.org/10.1145/
2642937.2642982

[21] Joseph L Fleiss, Bruce Levin, Myunghee Cho Paik, et al. 1981. The measurement
of interrater agreement. Statistical methods for rates and proportions 2, 212-236
(1981), 22ś23.

[22] Samuel W. Flint, Jigyasa Chauhan, and Robert Dyer. 2021. Escaping the Time Pit:
Pitfalls and Guidelines for Using Time-Based Git Data. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). 85ś96. https:
//doi.org/10.1109/MSR52588.2021.00022

[23] H. Foidl, M. Felderer, and R. Ramler. 2022. Data Smells: Categories, Causes and
Consequences, and Detection of Suspicious Data in AI-based Systems. In 2022
IEEE/ACM 1st International Conference on AI Engineering ś Software Engineering
for AI (CAIN). IEEE Computer Society, Los Alamitos, CA, USA, 229ś239. https:
//doi.ieeecomputersociety.org/

[24] F. A. Fontana, V. Ferme, and S. Spinelli. 2012. Investigating the impact of code
smells debt on quality code evaluation. In International Workshop on Managing
Technical Debt. IEEE, 15ś22.

[25] Gianmarco Fucci, Nathan Cassee, Fiorella Zampetti, Nicole Novielli, Alexander
Serebrenik, and Massimiliano Di Penta. 2021. Waiting around or job half-done?
Sentiment in self-admitted technical debt. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). 403ś414. https://doi.org/10.
1109/MSR52588.2021.00052

[26] Danielle Gonzalez, T. Zimmermann, and N. Nagappan. 2020. The State of the
ML-universe: 10 Years of Artificial Intelligence & Machine Learning Software
Development on GitHub. Proceedings of the 17th International Conference on
Mining Software Repositories (2020).

[27] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2018. Identify-
ing Self-Admitted Technical Debt in Open Source Projects Using Text Mining.
Empirical Softw. Engg. 23, 1 (feb 2018), 418ś451. https://doi.org/10.1007/s10664-
017-9522-4

[28] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning
Systems. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (ICSE ’20). 1110ś1121.

[29] Nick Hynes, D. Sculley, and Michael Terry. 2017. The Data Linter: Lightweight
Automated Sanity Checking for ML Data Sets. http://learningsys.org/nips17/
assets/papers/paper_19.pdf

[30] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
510ś520. https://doi.org/10.1145/3338906.3338955

[31] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repair-
ing Deep Neural Networks: Fix Patterns and Challenges. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
1135ś1146. https://doi.org/10.1145/3377811.3380378

[32] Philippe Kruchten, Robert L. Nord, Ipek Ozkaya, and Davide Falessi. 2013. Techni-
cal debt: towards a Crisper Definition. Report on the 4th International Workshop
on Managing Technical Debt. ACM SIGSOFT Software Engineering Notes 38, 5
(2013), 51ś54.

[33] Valentina Lenarduzzi, Terese Besker, Davide Taibi, Antonio Martini, and
Francesca Arcelli Fontana. 2021. A systematic literature review on Technical
Debt prioritization: Strategies, processes, factors, and tools. Journal of Systems
and Software 171 (2021), 110827. https://doi.org/10.1016/j.jss.2020.110827

[34] Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li. 2020.
Is Using Deep Learning Frameworks Free? Characterizing Technical Debt in
Deep Learning Frameworks (ICSE-SEIS ’20). 1ś10.

[35] Rungroj Maipradit, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto.
2019. Wait For It: Identifying "On-Hold" Self-Admitted Technical Debt. CoRR
abs/1901.09511 (2019). arXiv:1901.09511 http://arxiv.org/abs/1901.09511

[36] Everton Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using Natural
Language Processing to Automatically Detect Self-Admitted Technical Debt. IEEE
Transactions on Software Engineering (2017), to appear.

[37] Everton Da S. Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexander
Serebrenik. 2017. An Empirical Study on the Removal of Self-Admitted Technical
Debt. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 238ś248. https://doi.org/10.1109/ICSME.2017.8

[38] Giang Nguyen, Md Johirul Islam, Rangeet Pan, and Hridesh Rajan. 2022. Manas:
Mining Software Repositories to Assist AutoML. In Proceedings of the 44th In-
ternational Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 1368ś1380.
https://doi.org/10.1145/3510003.3510052

745

https://doi.org/10.1145/3387906.3388630
https://doi.org/10.1109/MTD.2014.9
https://doi.org/10.1109/MTD.2014.9
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/MSR.2019.00086
https://doi.org/10.1109/MSR.2019.00086
https://doi.org/10.1145/3368089.3409704
https://doi.org/10.1145/3468264.3468536
https://doi.org/10.1145/3510003.3510225
https://doi.org/10.1145/3510003.3510225
https://doi.org/10.1109/ICSE.2013.6606588
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/MSR52588.2021.00022
https://doi.org/10.1109/MSR52588.2021.00022
https://doi.ieeecomputersociety.org/
https://doi.ieeecomputersociety.org/
https://doi.org/10.1109/MSR52588.2021.00052
https://doi.org/10.1109/MSR52588.2021.00052
https://doi.org/10.1007/s10664-017-9522-4
https://doi.org/10.1007/s10664-017-9522-4
http://learningsys.org/nips17/assets/papers/paper_19.pdf
http://learningsys.org/nips17/assets/papers/paper_19.pdf
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1145/3377811.3380378
https://doi.org/10.1016/j.jss.2020.110827
https://arxiv.org/abs/1901.09511
http://arxiv.org/abs/1901.09511
https://doi.org/10.1109/ICSME.2017.8
https://doi.org/10.1145/3510003.3510052

23 Shades of Self-Admitted Technical Debt: An Empirical Study on Machine Learning Software ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

[39] Rangeet Pan and Hridesh Rajan. 2020. On Decomposing a Deep Neural Network
into Modules. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,
New York, NY, USA, 889ś900. https://doi.org/10.1145/3368089.3409668

[40] Rangeet Pan and Hridesh Rajan. 2022. Decomposing Convolutional Neural
Networks into Reusable and Replaceable Modules. In Proceedings of the 44th
International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 524ś535. https:
//doi.org/10.1145/3510003.3510051

[41] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2019. A Large-Scale Study About Quality and Reproducibility of Jupyter Note-
books. In 2019 IEEE/ACM 16th International Conference on Mining Software Repos-
itories (MSR). 507ś517. https://doi.org/10.1109/MSR.2019.00077

[42] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. In International Conference on SoftwareMaintenance and Evolution.
IEEE Computer Society, 91ś100.

[43] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, XinyuWang, and John Grundy.
2019. Neural Network-Based Detection of Self-Admitted Technical Debt: From
Performance to Explainability. ACM Trans. Softw. Eng. Methodol. 28, 3, Article 15
(2019), 45 pages.

[44] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine Learning: The
High Interest Credit Card of Technical Debt. In SE4ML: Software Engineering for
Machine Learning (NIPS 2014 Workshop).

[45] D. Sculley, Gary Holt, D. Golovin, Eugene Davydov, Todd Phillips, D. Ebner,
Vinay Chaudhary, Michael Young, J. Crespo, and Dan Dennison. 2015. Hidden
Technical Debt in Machine Learning Systems. In NIPS.

[46] C.B. Seaman. 1999. Qualitative methods in empirical studies of software en-
gineering. IEEE Transactions on Software Engineering 25, 4 (1999), 557ś572.
https://doi.org/10.1109/32.799955

[47] C. Seaman and Y. Guo. 2011. Measuring andMonitoring Technical Debt. Advances
in Computers 82 (2011), 25ś46.

[48] Giancarlo Sierra, Emad Shihab, and Yasutaka Kamei. 2019. A survey of self-
admitted technical debt. Journal of Systems and Software 152 (2019), 70ś82.

[49] Marcelino Campos Oliveira Silva, Marco Tulio Valente, and Ricardo Terra. 2016.
Does technical debt lead to the rejection of pull requests? arXiv preprint
arXiv:1604.01450 (2016).

[50] Sebastian Sztwiertnia, Maximilian Grübel, Amine Chouchane, Daniel Sokolowski,
Krishna Narasimhan, and Mira Mezini. 2021. Impact of Programming Languages
on Machine Learning Bugs. In Proceedings of the 1st ACM International Workshop
on AI and Software Testing/Analysis (Virtual, Denmark) (AISTA 2021). Association

for Computing Machinery, New York, NY, USA, 9ś12. https://doi.org/10.1145/
3464968.3468408

[51] Jie Tan, Daniel Feitosa, and Paris Avgeriou. 2022. Does It Matter Who Pays Back
Technical Debt? An Empirical Study of Self-Fixed TD. Inf. Softw. Technol. 143, C
(mar 2022), 15 pages. https://doi.org/10.1016/j.infsof.2021.106738

[52] Yiming Tang, Raffi Khatchadourian, Mehdi Bagherzadeh, Rhia Singh, Ajani Stew-
art, and Anita Raja. 2021. An Empirical Study of Refactorings and Technical Debt
in Machine Learning Systems. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 238ś250. https://doi.org/10.1109/ICSE43902.2021.
00033

[53] Dimitrios Tsoukalas, Miltiadis Siavvas, Marija Jankovic, Dionysios Kehagias,
Alexander Chatzigeorgiou, and Dimitrios Tzovaras. 2018. Methods and Tools for
TD Estimation and Forecasting: A State-of-the-art Survey. In 2018 International
Conference on Intelligent Systems (IS). 698ś705. https://doi.org/10.1109/IS.2018.
8710521

[54] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Anni-
bale Panichella, Massimiliano Di Penta, and Andy Zaidman. 2016. Continu-
ous Delivery Practices in a Large Financial Organization. In 2016 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). 519ś528.
https://doi.org/10.1109/ICSME.2016.72

[55] Mohammad Wardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan. 2022.
DeepDiagnosis: Automatically Diagnosing Faults and Recommending Action-
able Fixes in Deep Learning Programs. In Proceedings of the 44th International
Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). As-
sociation for Computing Machinery, New York, NY, USA, 561ś572. https:
//doi.org/10.1145/3510003.3510071

[56] Mohammad Wardat, Wei Le, and Hridesh Rajan. 2021. DeepLocalize: Fault
Localization for Deep Neural Networks. In Proceedings of the 43rd International
Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 251ś262.
https://doi.org/10.1109/ICSE43902.2021.00034

[57] Laerte Xavier, Fabio Ferreira, Rodrigo Brito, and Marco Tulio Valente. 2020.
Beyond the Code: Mining Self-Admitted Technical Debt in Issue Tracker Systems.
In Proceedings of the 17th International Conference on Mining Software Repositories
(Seoul, Republic of Korea) (MSR ’20). Association for Computing Machinery, New
York, NY, USA, 137ś146. https://doi.org/10.1145/3379597.3387459

[58] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2018. Was
Self-Admitted Technical Debt Removal a Real Removal? An In-Depth Perspective.
In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR). 526ś536.

[59] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the Impact of Design Debt on Software Quality. In International
Workshop on Managing Technical Debt. ACM, 17ś23.

746

https://doi.org/10.1145/3368089.3409668
https://doi.org/10.1145/3510003.3510051
https://doi.org/10.1145/3510003.3510051
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/32.799955
https://doi.org/10.1145/3464968.3468408
https://doi.org/10.1145/3464968.3468408
https://doi.org/10.1016/j.infsof.2021.106738
https://doi.org/10.1109/ICSE43902.2021.00033
https://doi.org/10.1109/ICSE43902.2021.00033
https://doi.org/10.1109/IS.2018.8710521
https://doi.org/10.1109/IS.2018.8710521
https://doi.org/10.1109/ICSME.2016.72
https://doi.org/10.1145/3510003.3510071
https://doi.org/10.1145/3510003.3510071
https://doi.org/10.1109/ICSE43902.2021.00034
https://doi.org/10.1145/3379597.3387459

	Abstract
	1 Introduction
	2 Methodology
	2.1 Dataset
	2.2 Identifying SATD Comments
	2.3 Building SATD Classification Scheme
	2.4 Classifying SATD Related Comments

	3 Results
	3.1 RQ1: What types of SATD are found in our studied ML software?
	3.2 RQ2: What is the distribution of SATD types in the different ML pipeline stages?
	3.3 RQ3: Is there a difference in SATD types between ML applications vs ML tools?
	3.4 RQ4: How much effort is needed to remove SATD types in ML software?

	4 Discussion
	4.1 Implications

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

