Eos: Instance-Level Aspects for Integrated System Design

Hridesh Rajan
Dept. of Computer Science, University of Virginia
151 Engineer's Way, P.O. Box 400740
Charlottesville, Virginia 22904-4740, USA
+1 434 982 2296

hr2j@cs.virginia.edu

ABSTRACT

This paper makes two contributions: a generalization of AspectJ-
like languages with first-class aspect instances and instance-level
advising, and a mapping of the mediator style for integrated
system design into this space. We present Eos as a prototype
language design and implementation. It extends C# with
AspectJ-like constructs, first-class aspect instances and instance-
level advising. These features enable a direct mapping of
mediators to aspect instances, with modularity improved, insofar
as components need not declare, announce, or register for events.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and
Features — first-class aspect instances, instance-level advising;
D.2.2 [Software Engineering]: Design Tools and Techniques —
mediator design; D.2.11 [Software Engineering]: Software
Architectures — implicit invocation, patterns, mediator

General Terms
Design, Experimentation, Languages.

Keywords

Design, mediators, integration, aspects, C#, instances

1. INTRODUCTION

Component integration creates value by automating the costly
and error-prone task of imposing desired behavioral relationships
on components manually. A problem is that straightforward
software design techniques map integration requirements to
scattered and tangled code, compromising modularity in ways
that dramatically increase development and maintenance costs.

Sullivan and Notkin devised the mediator design approach to
address this problem [31][32][34]. It enables and promotes the
modular representation of behavioral relationships. By a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE’03, September 1-9, 2003, Helsinki, Finland.

Copyright 2003 ACM 1-58113-743-5/03/0009...$5.00.

Kevin Sullivan
Dept. of Computer Science, University of Virginia
151 Engineer's Way, P.O. Box 400740
Charlottesville, Virginia 22904-4740, USA
+1 434 982 2206

sullivan@cs.virginia.edu

behavioral relationship we mean a protocol for coordinating the
control, actions, and states of subsets of system components to
satisfy part of the integration requirements for the system.

The mediator style maps each kind of behavioral relationship in a
system to a corresponding, object-oriented mediator class. An
instance of such a class represents an instance of the relationship
that integrates particular instances of subject classes. Mediators
require that the objects to be integrated announce declared events
to signal actions or changes that the mediators have to handle.

Recent aspect-oriented (AO) [22] methods similarly seek
modular representation of requirements that otherwise map to
tangled and scattered code, and so to poorly modularized and
unnecessarily costly designs. An aspect in an AO language is a
modular representation of a crosscutting concern, while a
mediator is a modular representation of a behavioral relationship,
which can be seen as a particular kind of crosscutting concern.

AO methods thus suggest a both critique of, and an improvement
on, the mediator style. The mediator approach demands explicit
registration with explicitly declared and announced events. AO
languages, by contrast, provide join points as implicit, language-
defined events, and pointcuts, which enable implicit registration
with quantified subsets of join points.

The critique is that mediators do not fully modularize behavioral
relationships, for two reasons. First, they impose constraints on
the components to be integrated—that they must expose events
matching the needs of mediators—thus components classes
might have to change to accommodate new mediators. Second, a
mediator integrating a quantified set of components will have to
be changed to register with different events if that set changes.

The suggested enhancement is to use aspects as mediators, with
join points and pointcuts instead of explicit events. Because AO
components implicitly expose join points as events, no explicit
declarations are needed. Because pointcuts are predicates on join
points, changes in registration can occur automatically.

In an earlier paper [33], we reported our experience mapping the
mediator approach into the design space of Aspect/ [8]. The
results were encouraging but mixed and led to a corresponding
critique of the Aspect/ design. The language doesn’t provide
first-class aspect instances or instance-level advising, by which
we mean the instantiation of aspects using new, and selective
advising of the join points of individual object instances. Rather,
the model is one of aspects as constructs that modify classes, thus
all instances of a given class. Work-arounds are possible, but
incur unnecessary performance or design costs.



The problem that we address in this paper is our inability to map
mediators to aspects in a completely satisfactory way. We make
two contributions: an innovative extension of such languages
with first-class aspect instances and instance-level advising, with
Eos as a functioning prototype; and, second, proof that the
resulting model supports a fully fledged, aspect-oriented variant
of mediator-based design that relieves developers of the need for
explicit event declaration, announcement, and registration.

The rest of this paper is as follows. Section 2 reviews mediator-
based design. Section 3 reviews aspect-oriented programming.
Section 4 discusses mediators as aspects, and the work-arounds
needed today. Section 5 presents Eos, our new language design
and implementation, and the mapping of mediators to aspects in
Eos. Section 6 presents an evaluation of this research. Section 7
summarizes and discusses future work.

2. INTEGRATION BY MEDIATORS

Consider a system with instances, m, of class model, and v, of
class view, and a requirement that m and v remain consistent.
The requirement calls for a behavioral relationship, update(m,v),
on m and v: without recursion, if v changes, update m, and if m
changes, update v. Multiple views, vI and v2, imply multiple
relationships, update(m,vl), update(m,v2). An integrated system
is seen as a set of component behaviors integrated in a network
of behavioral relationships. In this case, changing a view would
cause a model update, and then an update to the second view.

2.1 Behavioral Relationships

The example reflects a key step in mediator design: separating
behavioral relationships and component behaviors.  Many
people, apparently unaware of the possibility, structure systems
as sets of components that interact directly and in complex ways.

If one makes the separation, the next question is how best to map
behavioral relationships to code. Many straightforward design
methods map relationships—whether separated in design concept
or not—to non-modular structures. Behavioral relationships end
up mapped not to their own modules but to code and data
scattered among and intermingled with modules implementing
component behaviors, complicating and coupling them.

For example, view classes are often designed not only to present
data, but to implement model-view relationships, which involve
data conversions and calls to model objects to set and get their
state. Separable view and update concerns are mapped to a view
class, merging concerns and coupling view to model by procedure
calls. Individual components and overall systems can quickly
become unmanageable as the level of integration increases.

2.2 Mediators

The mediator approach averts this problem. The approach has
three parts. One structures an integrated system as a collection of
component behaviors integrated by behavioral relationships.
One then maps components and relationships to instances of
corresponding classes, with mediators as modular representations
of behavioral relationships. Finally, one uses implicit invocation
(event notification) [15] to create required invokes relations from
components to mediators without inducing names dependences.

In this style, in addition to providing methods that can be called,
components declare and announce events. Other components—
mediators—can register operations to be invoked by events. The
rationale for this approach is that visible actions of a component
are part of its interface, and interfaces should be explicit.

A mediator design of our model-view system would include
classes model, view and update (a mediator class), with instances
m, vl, v2, ul, and u2. The model and view interfaces would
provide methods setState and getState and an event, changed,
announcing changes. (We elide parameters for presentation.)
Each instance of update, say ul, would store references to m, and
to a view, vi. It would register ul.viewUpdate(...) with
m.changed(...) and ul.modelUpdate(...) with vi.changed(...).
When invoked by vi.changed(...), ul.modelUpdate would return
immediately on a recursive call, and otherwise convert the event
parameters and call vi.setState(...). The ul.viewUpdate method
would work similarly in the opposite direction.

The model and view components remain uncomplicated by
integration code and are name-independent of each other and of
the mediator class, and thus also independent as compilation and
link units. Meanwhile, the mediator classes modularize the code
and data and invokes and names relations implementing the
relationships. Systems designed this way are modular and easier
to develop and maintain than straightforward designs.

3. ASPECT-ORIENTED PROGRAMMING

In the decade since the mediator approach was devised, the idea
of aspect-oriented programming (AOP) has emerged [22]. The
mediator approach and AOP are related in important ways. First,
they both address the problem that traditional methods map key
requirements to non-modular designs. The mediator approach
addresses integration requirements, in particular. AOP addresses
a broader range of requirements. Second, both methods attack
the problem with novel modular program constructs and methods
for using them. In particular, both techniques work in large part
by enabling new kinds of modules to arrange for their methods to
be invoked implicitly by execution events of other objects.

A crucial difference between the approaches is in the underlying
event models. The mediator approach assumes that events are
explicitly declared, components explicitly announce events, and
mediators explicitly register with events. The aspect-oriented
model, by contrast, assumes that so many events—and subsets of
events—are of potential interest that it is unreasonable to name
them explicitly. AOP languages thus make classes of execution
events visible as join points in the language semantics, and they
provide pointcut expressions—predicates on the join points of a
program—as a means of registering methods with sets of events.

4. MEDIATORS AS ASPECTS

The aspect perspective suggests a critique of the mediator style, a
variant based on aspects, and a subsequent critique of current
aspect language designs. First, mediators impose constraints on
components—that they declare and announce events. It can thus
be argued that mediators do not fully modularize behavioral
relationships. Components have to expose events matched to the
needs of mediators. Thus, adding a new behavioral relationship
and corresponding mediator class can require changes to multiple
component classes—in the worst case, across a whole system.



Accepting this critique leads to an idea for improving mediators.
The idea is to implement them as aspects, using join points and
pointcuts in place of explicit events. Both styles modularize
behavioral relationships. Both preserve the name independence
of the components being integrated by providing a mechanism
that enables one component to invoke another without naming it.
However, mediators do this by using explicit events (implicit
invocation) while aspects use implicit events (join points).

This difference focuses on a distinguishing property of AOP: it
rejects an explicit interface principle for events. The rationale
rests on several crucial propositions. First, it is too hard for
designers to anticipate the events that components might need to
observe. Second, it is costly and error-prone to have to explicitly
declare, announce, and register with events. Third, it is
unnecessary to make events explicit; rather, a language can make
broad classes of events visible as join points. Fourth, the costs of
abandoning narrow, explicit event interfaces are less than the
benefits of broad, implicit event interfaces.

The validity of these propositions is disputable. There are real
benefits to explicit interfaces; nor do we have aspect-oriented
languages that make all potentially interesting execution events
visible as join points: It hard for a language designer to anticipate
all the events of potential interest, too. The explicit approach
has the benefit of enabling announcement of any declared event
whatsoever.

Moreover, the underlying AO assumptions might be valid for
some systems and not for others. In any case, their validity is an
unresolved empirical question, and is beyond the scope of this
work. We simply stipulate that they are valid, believing that
there are important classes of systems for which that is the case;
and we move on to investigate the use of aspects to implement
mediators for integrated system design.

4.1 Critique of the AspectJ Language Model
As already mentioned, we investigated the mapping of mediators
to aspects in an earlier work [33]. In this section we summarize
and extend the results presented there.

In a nutshell, mediators can be implemented as aspects in current
AspectJ-like languages, with one caveat. Most current, major
aspect languages, including AspectJ and HyperJ [35], suffer two
shortcomings with respect to the mediator style. First, aspects
are essentially global modules, rather than class-like constructs
supporting first-class instances under program control. Second,
aspects advise entire classes, not object instances. Thus there is,
for most practical purposes, effectively one instance of each
aspect type per system, and it essentially registers with events in
all instances of each advised class.

By contrast, the mediator style requires that each type of
behavioral relationship be represented as a mediator class, with
class instances representing relationship instances. Moreover,
the class instances register with the events of the instances to be
integrated. Recall, for example, that in our model-view system
we have two instances of the update mediator, one connecting
the model to the first instance of the view class, and the other, to
the second instance. Each update mediator instance registers
with the changed event of the shared model instance, and with
the changed event of its particular view instance.

Mediators cannot be mapped directly to aspects in AspectJ-like
languages because aspects cannot be instantiated in a general
way, nor can they selectively advise instances of other classes.
Some aspect languages do support aspect instances or instance-
level advising, but they generally have limited join point models
(just calls and returns) and limited or no pointcut constructs.
Most are in the decades-long tradition of message interception
mechanisms. Work-arounds are possible in Aspect/, but even
the best ones we know incur unnecessary, non-negligible costs in
performance or design complexity. The rest of this section
analyzes and extends our earlier analysis of this problem [33].
We conclude that straightforward mediator-based design
exploiting AOP requires generalizing AOP to the instance-level.

4.2 The Work-Arounds and their Costs

There are two basic work-arounds. In both cases, behavioral
relationships types are mapped to aspect modules programmed to
simulate first-class aspect instances and instance-level advising.
To simulate instances, the aspect provides methods to create,
delete, and manipulate instances implemented as records.

The difference is in the simulation of instance-level advising. In
the first approach, the aspect advises relevant join points of the
classes whose instances are to be integrated. All instances
invoke the aspect at each such join point. The aspect maintains
tables recording the identities of objects to be treated as advised
instances. When the aspect is invoked, it looks up the invoker
see if it is such an instance. If so, the aspect delegates control to
a simulated advice method, or otherwise returns immediately.

This work-around works in the sense that it both modularizes the
behavioral relationship code, data, and invokes relations, and
relieves the developer of having to work with explicit events.
However, the approach is less than ideal for several reasons.

First, it is awkward to have to simulate an object-oriented style
in an otherwise object-oriented language. Second, such programs
are ironic in the sense that they mean something other than what
they literally say, making programs harder to understand: the
aspects read as literally advising classes, when, in fact the intent
is to advise instances. Third, the approach adds complexity and
thus cost and undependability with simulation implementations.
Fourth, it adds runtime overhead in two dimensions.

In particular, at each join point, each instance of an advised class
has to invoke each advising aspect, if only to have it return upon
failing the check for a simulated advised instance. Figure 1
presents data [33] showing that the time to call an empty method
increases linearly with the number of aspects that advise calls to
the method: any call to the method requires underlying calls to
each advising aspect. The overhead of the mediator approach, in
contrast, remains constant: a single if statement to check to see if
any mediators are registered to be invoked. A larger cost is paid
only for mediators registered with specific object instances.

There are situations in which the cost of this work-around would
be unacceptable. An example would be the case of a mediator
implemented as an aspect that has to respond to insertions on
just one instance of a widely used, basic HashTable class. It
would be unreasonable, and is unscalable, for all clients of all
instances of HashTable to have to pay a price for that one,
isolated client.



- % Aspect]

—-Hyper]  —— Mediator

0 1 2 3 4 5 6 7 8 9 10

Number of Relationship Type
Figure 1. Performance curves for Aspect],

Hvper.] and Mediator based Design.

The second work-around uses AspectJ introduction to extend the
classes to be integrated with explicit event interfaces and code.
The aspect also advises the join point at which the event is to be
announced. The advice announces the event. The objects
registered are not themselves aspects but ordinary mediators.
The effect is to implement a traditional mediator design, but with
explicit events modularized with the mediators that need them.

This work-around works, too, achieving integration without loss
of modularity. It also avoids the performance overhead of the
first work-around by using the same event mechanisms that
mediators use. Finally, it relieves the component developer of
having to anticipate the events that mediators might need. In that
sense, it arguably improves on the original mediator style.

Yet the approach has some problems. First, it doesn’t really
implement mediators as aspects at all, but only modularizes the
explicit events that mediators need. It misses the point: we want
to use join points rather than explicit events to invoke mediators.
Having join points invoke advice that announces events that
invoke mediators is at best a complex, relatively costly approach,
using redundant mechanisms (events, join points). Second, if
several mediators need to respond to the same event, each
introduces its own event code and interface—bloating the code—
rather than using the same event or join point.

S. ANEW ASPECT LANGUAGE DESIGN

The aspect-inspired critique of mediators, the idea of mediators
as aspects, and the subsequent mediator-based critique of
AspectJ-like languages, leads to our main contributions. We
generalize AspectJ-like languages to the instance-level, and show
that doing so enables (among other things) a clean and direct
mapping of mediators to aspects. We exhibit the ideas in a novel
AspectJ-like language called Eos, which is based on C# [28].

From the programmer’s view the key difference between Aspect/
and Eos (ignoring host language differences) is in added support
for first-class aspect instances and instance-level advising.
These aspects can be instantiated and instances can advise
objects selectively. The underlying mechanism weaves implicit
invocation structures into advised code at join points identified
by pointcut expressions, enabling selective, runtime registration
of individual aspect instances. The use of an event mechanism is
abstracted from the programming model and is entirely invisible
to the language user.

Object
Model
Generator Code
Source- Parser - - Document
Code Aspect Model
Model ode
Generator .
\ Aspect
.NET Supported Languages Weaver
Assembly C#, VB.NET, C++ etc.
Weaved Weaved
CCOd,el Source Code - Code
ompier
p Code Generator Document

Model

Figure 2. Architechture and Working of Eos

5.1 Compiler Architecture

We implemented a prototype Eos compiler using a custom
version of the Code Document Object Model (CodeDOM) [30],
part of the base class library of Microsoft’s .NET framework.
CodeDOM provides a language independent object model for
representing and rendering source code in supported languages.
A CodeDOM model is essentially an abstract syntax tree (AST).
CodeDOM allows programs to be dynamically created, compiled,
and executed at runtime.

Figure 2 shows the components of our prototype Eos compiler. A
tokenizer (not shown) extracts tokens from the source code and
passes them to the parser. The parser generates a CodeDOM
AST for the source code and aspect code. The aspect weaver
takes the AST and weaves aspects into it. Type-level aspects are
woven statically. Instance-level aspects result in the weaving of
event stubs for runtime registration of advice. If the source code
generation is specified, the code generator generates woven
source code; otherwise the AST is compiled directly into an
assembly—an executable program in the.NET framework.

An element not entirely unique to our approach is that weaving is
done on a language independent structure. FEos and AspectC#
[23] use CodeDOM. CLAW [26] uses Microsoft Intermediate
Language (MSIL), which is analogous to byte code in Java [18].
This decision enables weaving of aspects written in one language
(e.g. C#) into code written in another (e.g. Visual Basic). We
have not yet explored this possibility in any detail.

We chose to weave source code, instead of using MSIL, to ease
prototype development. CodeDOM provides a rich applications
programming interface (API) to represent code as an object graph
and for compiling such a graph into a supported language.
Implementing the prototype using these libraries was relatively
easy. Some constructs of C#, including namespaces, aliasing,
operator overloading, and others—are not supported by the
current CodeDOM, limiting the Eos prototype to a useful but not
exhaustive subset of C#.



5.2 Eos: Syntax and Semantics

Like Aspect] for Java, Eos adds to C# join points, pointcuts,
advice, introductions and aspects. The Eos syntax extends the
C# syntax as defined in the ECMA C# language specification
[28]. Eos adds the following key words:

advice after any args  around aspect
before call execution fget [set instancelevel
pointcut  returning throwing

Most of these keywords are similar to their AspectJ counterparts.
Keywords fget and fset are equivalent to get and set of Aspect] to
avoid conflict with C# get and set. Keyword any is equivalent to
AspectJ’s “*” to avoid conflict with the C# pointer “*” operator.

In C#, a reference type is a class type, interface type, array type,
or delegate type [28]. Eos extends this set to include aspect
types. An aspect type defines a data structure containing data
members (constants and fields), function members (methods,
properties, events, indexers, operators, instance constructors,
destructors, and static constructors), crosscutting members
(pointcuts, advices and introductions) and nested types. Aspect
types support inheritance, whereby derived aspects can extend
abstract aspects or classes. A class may not extend an aspect.
Instance-level aspects in Eos support first class objects. They can
be instantiated, passed as arguments, returned as results, etc.
Instances are created using C# object-creation-expressions [28].
Type-level aspects cannot be instantiated.

An aspect-modifier is either of the permissible class-modifiers or
the keyword instancelevel, which specifies instance-level aspect
weaving. As in C#, it is a compile-time error for a modifier to
appear multiple times. The instancelevel modifier can be applied
to the aspects and advices as illustrated in the following code:

1 public aspect A { /* Some Members */ } /// Type-level aspect in Eos

2 public instancelevel aspect B { // Instance-level aspect in Eos

3 pointcut callfoo():call(public void any.foo());

4}

5 public aspect C { // Aspect in Eos containing both type and instance-level advices

6  pointcut fval(): fget(public int any.val);

7  instancelevel after(): execution (public void any.bar());

8 after():fval() { // Do something }

9 }

Here, aspect A has no weaving modifier so its advice is woven at
the class level: aspect A advice, woven into a class P, affects all
instances of P. The instancelevel modifier delays advice weaving
until runtime. Aspect B above is an example. At compile time,
the weaver attaches event stubs at the join points matched by the
pointcut declaration, to enable instance-level, dynamic weaving.
One might want to weave some advice at the class level and
other advice at the instance level. Eos allows this kind of mixing.
For example, aspect C has no weaving modifier so its advice is
woven at type level except for that designated as instancelevel.

In Eos, like Aspect], pointcuts are used to identify sets of join
points. For example, the pointcut call(public any.bar()) identifies
any call to the method bar defined by any class. Eos also
provides operators and (&&), or (II) and not (!) to compose
pointcuts. The pointcut call( public void any.bar()) || call(public
void any.foo()) thus identifies any call to either the bar or the foo
methods defined by any classes. Similarly, pointcut call( public
void any.bar()) && call(public void any.foo()) identifies any call
to the bar and the foo methods, which is an empty set.

Our Eos prototype design provides a rudimentary mechanism for
stating which objects are subject to instance-level adving. An
aspect declared as instancelevel or containing instancelevel
advice provides implicit methods addObject and removeObject
for specifying instances to be advised. These methods basically
implement (un)registration with the underlying event structures.

Advice code can access reflective information at join points using
the implicit argument thisJoinPoint. Depending on the join point,
the methods getThis, getTarget, getReturnValue, getArgs returns
this object, the target object, the return value (only for method
call and execution join points), and method arguments (for
method call and execution join points) respectively.

To illustrate these ideas we describe a simple Eos system, no
longer distinguishing models and views. Suppose you are asked
to build a system of n model instances, ml, m2, ..., each an
instance of a Model class.

1 public class Model {

2 bool value;

3 public Model() { value = false; }

4 public void Set() { value = true; }

5 public bool Get (){ return value; }

6 public void Clear() {value= false; }

7}

There are several types of relationships on models, and a given

model instance can be in zero or more relationship instances.
One relationship is Consistency. It requires that if a client Sets or
Clears either model, the other must be Ser or Cleared, too. The
following implements Consistency as an instance-level aspect.

public instancelevel aspect Consistency {

1

2 Model m1, m2;

3 bool busy;

4 public Consistency(Model m1, Model m2) {
5 addObject(m1); addObject(m?2);

6 this.ml =ml; this.m2 =m2;

7 busy = false;

8}

9 after():execution(public void Model.Set ()) {
10 if('busy) {

11 busy = true;

12 Model m = (Model) thisJoinPoint.getTarget();
13 if(m == m1)m2.Set(); else m1.Set();

14 busy = false;

15 }

16 }
17 after():execution(public void Model.Clear ()) {
18 if(!busy) {

19 busy = true;

20 Model m = (Model) thisJoinPoint.getTarget();
21 if(m == m1)m2.Set(); else m1.Set();

22 busy = false;

23 }

24}

25}

Line 1 declares the aspect as instancelevel. The implicit method
addObject is used on line 5 to register advice with objects m/
and m2. The aspect declares two advices (lines 9-16 and 17-24).
The first executes after the method Ser in class Model; the
second, after Clear. Lines 12 and 20 use reflective information,
via thisJoinPoint, to find out which model is being set or cleared.

Now consider a relationship on models, Trigger(ml, m2), where
ml and m2 play different roles: when m1 or m2 is Set, m2 or ml,
respectively, must be Set; and—here’s the asymmetry--if ml is
Cleared, m2 must be cleared. Thus ml.Clear acts as a trigger
with m2 as its target. But m2.Clear has no effect on m1.



To implement such a relationship, we need to attach advice for
different roles to different objects. Eos provides the role
construct for this purpose. The following code implements the
Trigger relationship using roles:

1 public instancelevel aspect Trigger {

2 Model m1, m2;

3 bool busy;

4 public Trigger(Model m1, Model m2){
5 this.m1 = m1; this.m2 = m2;

6 AddRoleTrigger(ml); AddRoleTarget(m2);
7 }

8 role Trigger {

9 after():execution(public void Model.Set()) {

10 if(!busy){ busy = true; m2.Set(); busy = false; }
11 }

12 after():execution(public void Model.Clear()) {

13 if(!busy){ busy = true; m2.Clear(); busy = false; }
14 }

15 1}

16 role Target {

17 after():execution(public void Model.Set()) {

18 if(!busy){ busy = true; m2.Set(); busy = false; }
}

20}
21}

This instance-level aspect defines two roles, Trigger and Target.
An object is put in a role X using the generated implicit method,
AddRoleX, which essentially registers the role advice with the
given instance. Here, whenever Ser is called on m/, the advice in
the role Trigger will execute, whereas when these methods are
called on instance m2, advice in the role Targer will execute.

5.3 The Eos Aspect Weaver

To explain how the Eos weaver works, we start by reviewing the
Aspect] weaver (version 1.0.6 [8]). Suppose a Model class in
AspectJ is advised by Consistency and Trigger aspects. The
woven Model code would appear as follows:

1 /* Generated by Aspect] version 1.0.6 */
2 public class Model {

3 static org.aspectj.runtime.reflect.Factory ajc$JPF;

4 private static org.aspectj.lang.JoinPoint.StaticPart Set$ajcjpl;

5 private static org.aspectj.lang.JoinPoint.StaticPart Clear$ajcjp2;
6 boolean value;

7 public Model() { super(); this.value = false; }

8 public void Set() {

9  final org.aspectj.lang.JoinPoint thisJoinPoint =

10 org.aspectj.runtime.reflect.Factory.makeJP(

11 Model.SetS$ajcjpl, null, this, new java.lang.Object[] {});
12 try { this.value = true; } finally {

13 Consistency.aspectInstance .afterO$ajc(thisJoinPoint);

14 Trigger.aspectInstance.afterO$ajc(thisJoinPoint);

15 }

17 public void Clear() {

. // Similar to Set

25 1}

26 public boolean Get() { return this.value; }

27 static {

28 Model.ajc$JPF = new org.aspectj.runtime.reflect. Factory("Bit.java", Bit.class);
29 Model.Set$ajcjpl = Model.ajc$JPF.makeSJP("method-call",

30 Model.ajc$JPF.makeMethodSig("1-Set-Model----void-"), null);
31 Model.Clear$ajcjp2 = Model.ajc$JPF.makeSJP("method-call",

32 Model.ajc$JPF.makeMethodSig("1-Clear-Model----void-"), null);
33}

34}

AspectJ achieves implicit invocation at the type-level by inserting
calls to the after advice of Consistency and Trigger into the

Model Code. The points at which invocation code is inserted are
determined by the pointcut expressions.

Eos, by contrast, statically determines what join points might be
advised by instance-level constructs and instruments them not
with calls to the aspect advice but with events supporting
dynamic registration and event announcement. The Eos woven
code for Model follows:

/*  Generated by Eos version 0.1 */
public class Model {
bool value;
public Model() { value = false; }
public void Set() {
eos.Joinpoint thisJoinPoint =
new eos.Joinpoint(null,this, null, new System.Object([] { });
try { value = true; } finally {
if(ADP_EOS_After EXECUTION_Set!=null)
10 ADP_EOS_After_ EXECUTION_Set(thisJoinPoint);
11 }
12
13 public bool Get() { return value; }
14 public void Clear() {
. // Similar to Set
21 }
22 public event eos. ADP ADP_EOS_After EXECUTION_Set;
23 public event eos. ADP ADP_EOS_After EXECUTION_Clear;
24}

00NN B W=

=]

Here, Eos determines that two join points might be advised: after
Set and Clear. Two events, ADP_EOS_After EXECUTION_Set
and ADP_EOS_After EXECUTION_Clear, are introduced, and
are announced after execution of the Set and Clear method
bodies. The implicit addObject and removeObject methods of the
Consistency and Trigger aspects (un)register advice with these
events to achieve instance-level weaving. The generated code for
the Consistency aspect follows:
/¥ Generated by Eos version 0.1 */
public class Consistency {
Model m1, m2;
bool busy;
public Consistency(Model m1, Model m2) {
addObject(m1); addObject(m2);
this.ml =ml; this.m2=m2;
busy = false;

O 0NN B W~

10 public void EOS_Advice_AfterO(eos.Joinpoint thisJoinPoint)
11 if(!busy) {

12 busy = true;

13 Model m = (Model) thisJoinPoint.getTarget();
14 if(m == m1)m2.Set(); else m1.Set();

15 busy = false;

16 }

17 }

18 public void EOS_Advice_Afterl(eos.Joinpoint thisJoinPoint)
// Similar to the first advice

25 }

26 public void addObject(object obj) {
27  if(obj == null)return ;

28  if(obj is Model) {

29 Model casted_obj = ((Model)(obj));

30 casted_obj.ADPart_EOS_After EXECUTION_Set +=
31 new eos.ADP ( EOS_Advice_After0);

32 casted_obj.ADP_EOS_After EXECUTION_Clear +=
33 new eos.ADP ( EOS_Advice_Afterl);

34 }

35 )

36 public void removeObject(object obj) {
37  if(obj == null)return ;
38  if(obj is Model){

39 Model casted_obj = ((Model)(obj));

40 casted_obj.ADP_EOS_After EXECUTION_Set -=
41 new eos.ADP( EOS_Advice_After();

42 casted_obj.ADP_EOS_After EXECUTION_Clear =
43 new eos.ADP( EOS_Advice_Afterl);

44 }

45 )



6. EVALUATION OF CONTRIBUTIONS

In this section we evaluate our work, answering the following
questions. Does the compiler work? Does this research advance
our ability to design integrated systems using mediators, with
join points and pointcuts in place of explicit events, but without
the performance and complexity penalties imposed by available
work-arounds in AspectJ-like languages? Does the work advance
our understanding of the design of AspectJ-like languages?

In a nutshell, the compiler works. Eos supports first-class aspect
instances and instance-level weaving, enabling a clean mapping
of mediators to instance-advising aspect instances. There is no
need for simulation of instance-level constructs or explicit event
code. The performance of instance-level aspects is comparable to
that of the mediator style. Our work does therefore advance the
mediator approach. This work also shows that there is at least
one good reason to generalize AspectJ-like languages to the
instance level, and it provides a clean proof-of-concept language
design, implementation, and demonstration.

6.1 Runtime Performance

1600 1
)
F100
'=
3200 -
%]
£
£1000
=
-S800
=
&
2600
=

400

= Type * Instance

200 A

0
0 1 2 3 4 5 6 7 8 9 10
Number of Relationship Types

Figure 3. Performance curves for type-level and
instance-level constructs of Eos.

We measured the performance of instance-level aspects using the
same benchmarks as used above to evaluate AspectJ, HyperJ and
mediator-based designs. The comparison is complicated by the
differences in host languages (Java, C#). We substitute type-
level Eos aspects for AspectJ aspects for this comparison. Figure
3 shows that Eos type-level aspects replicate the degrading
performance of AspectJ aspects, while Eos instance-level aspects
indeed exhibit the constant overhead of mediator-based designs.

6.2 Implementing Complex Mediator Designs
To test the hypothesis that Eos supports the design of realistic
systems using aspect instances as mediators, we implemented, in
Eos, two key mediator structures used in the design of Prism, an
integrated environment for radiation treatment planning—itself a
major test of the mediator approach [19][34]. The first mediator
maintains a bijection between two sets; the second, a cross-
product between two sets. These fragments played important
roles in Prism, and are representative of the kinds of mediators
that arise when the approach is used to design real systems.

Menu

|_,
+—I_+

Set of Subset of
Buttons Selected
Buttons

Bijection
Objects
Button

Set of
Objects

Figure 4. A mediator-based model-view system [34]

A common requirement is to maintain consistency between sets
of GUI objects (buttons, menu items, shapes) and sets of model
objects (in Prism, models of internal organs of cancer patients).
In Prism, one or more menu items can be selected to open panels
for editing the designated model objects. We analyze this system
as a set of model objects, a set of menu items, a selected subset
of menu items, a relationship that keeps the set of model objects
and the set of menu items in one-to-one correspondence, and a
relationship that keeps the subset of selected menu items
consistent with a set of individual model editing panels.

Figure 3 presents a schematic showing the first relationship. Sets
and menus are implemented as instances of Ser and Menu types
with operations to insert, delete and iterate over elements. In the
original mediator implementation, these classes had explicit
events. Fos eliminates this requirement. The key parts of the Eos
Set and Bijection mediator implementation are as follows.

public class Set : System.Collections.CollectionBase {
public bool Insert(Element element){ ... }
public bool Remove(Element element){ ... }
public Element Retrieve(string Name){ ... }
}
public instancelevel aspect Bijection {
bool busy; Set A; Set B;
public void Bijection(Set A, Set B){
9 addObject(A); addObject(B);
10 this.A = A; this.B = B;
11 }
12 after():execution(public bool Set.Insert()){

0NN B W=

13 if(1busy && (bool) thisJoinPoint.getReturnValue()) {

14 busy = true;

15 . /// Bijection Logic: Ensures bijection between the sets.
16 busy = false;

17 }

18 }
19 after():execution(public bool Set.Remove()){

20 if(!busy && (bool) thisJoinPoint.getReturnValue()) {

21 busy = true;

22 ... /] Bijection Logic: Ensures bijection between the sets.
23 busy = false;

24 }

25 }

26}

The Set class exposes no explicit events. The Bijection mediator,
implemented as an instance-level aspect, provides a method
Relate to relate two instances of the Set type. It uses the implicit
addObject methods to “register” the advice with these instances.
The aspect uses pointcuts execution(public bool Set.Insert()) and
execution(public bool Set.Remove()) to identify the Insert and
Remove events. The join points are instrumented with the
required events. When the events occur, the advice is invoked to
keep the sets consistent (and to update a mediator-maintained
table recording associations between model and view objects).



The cross product mediator is similar to the bijection mediator
but it maintains a cross product of two sets. Prism uses such a
mediator to ensure that each model in a set of models is depicted
in each view in a set of views. As views or objects are added and
deleted, the cross product is maintained in a consistent state.
Moreover, Prism keeps corresponding pairs of objects consistent
by creating a “sub-mediator” for each pair. The following code
is an Eos implementation, with the Set type as defined above.

1 public instancelevel aspect CProduct : System.Collections.CollectionBase {
2 bool busy; Set A; Set B;

3 public void CProduct(Set A, Set B){
4 addObject(A); addObject(B);
5 this.A = A; this.B =B;
6 }

7 after():execution(public bool Set.Insert()){

8 if('busy& &thisJoinPoint.getReturnValue()){

9 ... // Ensure Cross product Logic

10 OrderedPair op = new OrderedPair(.. , .. ); //Dispatch the sub

11 // mediator with corresponding elements in ordered pair.
12 }

13 after():execution(public bool Set.Remove()){

14 if('busy & &thisJoinPoint.getReturnValue()){

15 ... //Ensure Cross Product Logic

16 // Remove the elements from the sub mediator ordered pair and then
17 // remove the submediator itself.

18 }

19 }

20 public void Add(OrderedPair op){

21 /* Add the ordered pair to collection*/

22}

23 public bool Remove(Element A, Element B){

24 /* Remove the ordered pair (A,B) from the collection */
25}

26 }

27 public instancelevel aspect OrderedPair {

28 public String Name; bool busy; Element A; Element B;
29 pointcut fieldSet():fset(System.String Element.Name);
30 public void Order(Element A, Element B){

31 addObject(A); addObject(B); this.A = A; this.B = B;
32 }

33 public void RemoveOrder(){

34 removeObject(A); removeObject(B);

35}

36 after():fieldSet(){

37 if(lbusy){

38 /// Ensure consistency of the elements.

39 }

40 }

Networks of objects integrated by mediators are also supported.
Consider a network in which two Sets A and B are integrated by
a Bijection, with B and C are integrated by a CrossProduct. This
can now be accomplished by the following Eos program. We are
satisfied that Eos provides essentially full support for mediator-
based design.

1 public class TestHarness {

2 public static void Main (string[] argument) {

Set A =new Set(); Set B =new Set(); Set C = new Set();

Bijection bj = new Bijection(A, B); // Integrate A and B

CrossProduct cp = new CrossProduct(B, C); // Integrate B and C
}

~N N B W

6.3 An Advance in Aspect Language Design
We have identified a need to generalize AspectJ-like languages
to the instance level. The use of aspects in practice is still so
limited that few confirmatory data are available. Griswold et al.
reported (personal communication) that in AspectBrowser [7], of
54 aspects appearing in 15,000 lines of AspectJ code, 11 (20%)
employed the simulation work-around strategy described above.

The work-arounds do work, but at a cost of conceptual integrity,
code complexity, and runtime performance. Moreover, there are
cases where the simulation approach is not acceptable: those in
which a small number of instances of widely used classes need to
be advised. Imposing simulation costs on all instances is less
than ideal, at best. One can invoke a magic compiler to take care
of the problem, but it’s not clear how it would actually work.

We have shown that work-arounds are not necessary, and that a
solution—in first-class aspect instances and instance-level
advising—can be integrated into AspectJ-like languages, with a
principled implementation based on an underlying implicit
invocation system. We know of no other Eos-like languages.

7. RELATED WORK

Instance-level advising is not a new idea. Many examples take a
wrapper-based approach: AspectS [17], Composition Filters [10],
the Aspect Moderator Framework [11], the Object Infrastructure
Framework [14], and EAOP [13], in which messages sent to and
from components are intercepted for processing by aspect
wrapper objects. The idea has appeared in many forms over the
decades: from Common Lisp, to tool integration frameworks. It
has been picked up and given an AOSD interpretation by efforts
such as Sina/st[24][5] and ility-insertion [14].

Many such languages are called aspect-oriented. However, they
are not in the class we call Aspect/-like. In particular, they
generally have very limited join point models (mostly message
interception) and limited or non-existent pointcut languages.
Other AspectJ-like languages, such as AspectC++ [3] and
AspectR [4], on the other hand, do not support first-class aspect
instances and instance-level advising. Languages such as HyperJ
[35] and DJ [27], in which the pointcut concept does not apply,
also lack the instance-level capabilities of Eos.

The idea of having one component modify the behavior of
another based on its role in a system is not new, either. A recent
incarnation appears in work on roles and role models [6][16][25].
Kendall [20][21] saw that aspect instances might be used to
modify object instances based on their roles, and demonstrated
the idea using a constrained forms of aspect instances available
in various versions of AspectJ: the current per this and per target
constructs, and the version 0.6 addObject method, which allowed
one to attach an aspect to an instance as opposed to type.

For our purposes, these constructs are or were inadequate. First,
per this and per target aspect instances are not under program
control but are associated automatically with all instances of
advised types; and each instance is associated with just one other
object. Mediators, in general, have to advise several objects, and
represent relationships that can be imposed and retracted.

Aspect] supported addObject and removeObject through version
0.5. The Aspect] mailing list [9] records discussions on the need
for addObject, with examples presented by De Luca, van Gurp,
and others. Thus the idea of instance-level advising in an
AspectJ-like language is not new. However, AspectJ, to our
knowledge, never supported both instance-level advising and
first-class aspect instances. This is the combination needed for a
complete generalization to the instance level. Our mediator-
based critique shows the need, and Eos demonstrates a novel
solution.



Coordination contracts [1] are related to both aspect oriented
languages and mediators. A coordination contract represents a
behavioral relationship, and can intercept method calls and
introduce new behavior at the instance level. However, the join
point model is, again, basically limited to the method calls.

Nor is the idea of an aspect version of C# new. AspectC# [23]
supports class advising. Cross Language Aspect Weaving
(CLAW) [26] borrows from AspectJ and supports dynamic class
advising. AOP# [2], developed at Siemens, aims to support class
level advising without language extensions. Other approaches are
Aspect.Net [29] and Aspect-Oriented Infrastructure for a Typed,
Stack-based Intermediate Assembly Language [12]. We chose C#
mostly for ease of prototype language development.

Finally, we note that events (implicit invocation, publish-
subscribe) are not new. We make no advances here, but do show
that events can provide a useful runtime mechanism, abstracted
by higher-level join point and pointcut language constructs.

8. CONCLUSION

Integrated systems provide value but are often costly to develop
and maintain because common design methods map integration
requirements to non-modular designs. The mediator approach
largely modularizes behavioral relationships, but with scattered
event declaration, registration, and announcement code. AspectJ-
like languages promise to reduce this cost by mapping mediators
to aspects and using join points in place of events. The problem
is that these languages do not support two key features needed
for a clean mapping of mediators, first-class aspect instances and
instance-level advising. We generalized AspectJ-like languages
to include these features, presented Eos, and showed that it does
enable mediator-based design without costly work-arounds.

A disadvantage of Eos is that, although its join point model is
rich relative to many languages said to be aspect-oriented, it is
nevertheless limited. A benefit of explicit events is that they can
be declared at will and can be given arbitrary semantics. For
example, a mediator might have to respond if one branch of an if
statement is taken but not the other (e.g., representing successful
insertion of an element into a collection). In Prism, such events
were routine. AspectJ-like languages do not expose such events
as join points. More generally, the designer of an aspect
language effectively anticipates what classes of events might be
relevant. Here the aspect critique of mediators returns to haunt
the aspect language designer: it’s hard to anticipate.

Our next task is therefore to generalize AspectJ-like languages to
expose a far wider set of execution phenomena as join points. In
the extreme, every significant event in the operational semantics
of the language becomes visible as a join point. A challenge will
be to find reasonable ways to name them using pointcuts.

9. ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under grant ITR-0086003. We thank Bill Griswold,
for data on AspectBrowser; Gregor Kiczales, for discussions on
the aspect critique of the mediator style; and Michael Jackson,
for the idea that aspect languages might usefully expose
essentially all semantically meaningful execution phenomena as
join points.

10. REFERENCES

[1] Andrade, L., and Fiadeiro, J.,"Coordination Technologies
for Managing Information System Evolution", Proceedings
of CAIiSE01, K.Dittrich, A.Geppert and M.Norrie (eds),
LNCS 2068, Springer-Verlag 2001, 374-387.

[2] AOP#: under development at Siemens Corporation.
Egon.Wuchner @mchp.siemens.de.

[3] AspectC++, http://www.aspectc.org.

[4] AspectR: “Simple Aspect Oriented Programming in Ruby,”
http://aspectr.sourceforge.net/

[5] Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa,
A., “Abstracting Object Interactions Using Composition
Filters,” Proceedings of the ECOOP'93 Workshop on
Object-Based Distributed Programming, 1993.

[6] Andersen, E. (Egil), Conceptual Modelling of Objects: A
Role Modelling Approach, PhD Thesis, University of Oslo,
1997.

[7] AspectBrowser: http://www-
cse.ucsd.edu/users/wgg/swevolution.html

[8] Aspect): www.eclipse.org/Aspect]

[9] Aspect) mailing list archives:
http://www.eclipse.org/Aspect]

[10]Bergmans, L., “The Composition Filters Object Model,”
Dept. of Computer Science, University of Twente, 1994.

[11]Constantinides, C., A., and Elrad, T., “Composing Concerns
with a Framework Approach,” Proc. 2nd Int'l Workshop on
Aspect Oriented Programming for Distributed Computing
Systems (ICDCS-2002), Vol. 2, July, 2002, Vienna pp.
133-140.

[12] Dechow, D., Ph.D Dissertation Proposal,
http://cs.oregonstate.edu/~dechow

[13] Douence, R., and Siidholt, M., "A model and a tool for
Event-based Aspect-Oriented Programming (EAOP)", TR
02/11/INFO, Ecole des Mines de Nantes, french version
accepted at LMO'03, 2nd edition, Dec. 2002.

[14]Filman, R. E., Barrett, S., Lee, D. D. and Linden,
T., “Inserting llities by Controlling Communications ” ,
Communications of ACM, vol. 45, number 1, Jan, 2002,
pp- 116-122.

[15] Garlan, D., and Notkin, D., “Formalizing Design Spaces:
Implicit Invocation Mechanisms”. VDM '91: Formal
Software Development Methods, pp. 31--44 (October 1991).

[16] Gottlob, G., Schrefl, M., and Rock, B., "Extending Object
Oriented Systems with Roles," ACM Trans on Info. Sys.,
Vol. 14, No. 3, July, 1996, pp. 268 - 296.

[17]Hirschfeld, R., "AspectS -- Aspects in Squeak",
ECOOP2002 Workshop on Generative Programming, Jun
2002.

[18]Java: www.java.sun.com

[19]Kalet, 1J., J.P. Jacky, M.M Austin-Seymour, S.M. Hummel,
K.J. Sullivan and J.M. Unger, “*Prism: a New Approach to



Radiotherapy Planning Software," International Journal of

Radiation Oncology, Biology and Physics, 36, 2, 1996, pp.
451--461.

[20] Kendall, E. A., "Aspect Oriented Programming for Role
Models," International Workshop on Aspect Oriented
Programming, European Conference on Object Oriented
Programming (ECOOP'99), Lisbon, June, 1999.

[21]Kendall, E. A., "Aspect-oriented Programming in Aspect],"
Evolve 2000, Sydney, March, 2000.

[22]Kiczales, G.., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J., “Aspect-oriented
programming,” in Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Springer-
Verlang, Lecture Notes on Computer Science 1241, June
1997.

[23] Kim, H., “AspectC#: An AOSD implementation for C#,”
Technical Report TCD-CS-2002-55, Department of
Computer Science, Trinity College, Dublin, 2002.

[24] Koopmans, P.S., “Sina/St: User’s Guide and Reference
Manual,” TRESE project, University of Twente, 1996.

[25] Kristensen, B. B., “Object-oriented Modelling with Roles,”
0O0IS95, Proceedings of the 2nd International Conference
on Object-oriented Information Systems, Dublin, Ireland,
1996.

[26]Lam, J., “CLAW” URL: www.iunknown.com.

[27]Marshall, J., Orleans, D., and Lieberherr, K., “DJ: Dynamic
Structure-Shy Traversal in Pure JAVA,” Technical Report,
Northeastern University, May 1999.

[28]Microsoft. C# Specification Homepage.
http://msdn.microsoft.com/net/ecma/.

[29] Microsoft Aspect.Net project description.
http://research.microsoft.com/programs/europe/rotor/Project

s.asp.

[30]Microsoft .Net Framework Developers Guide available at
http://msdn.microsoft.com

[31]Sullivan, K., “Mediators: Easing the Design and Evolution
of Integrated Systems”, Ph.D. dissertation, University of
Washington, 1994.

[32] Sullivan, K. and Notkin, D., “Reconciling environment
integration and software evolution,” ACM Transactions on
Software Engineering and Methodology 1, 3, July 1992, pp.
229-268 (short form: Proceedings of the 4th SIGSOFT
Symposium on Software Development Environments, 1990,
pp- 22-33).

[33] Sullivan, K., Gu, L., Cai, Y., “Non-modularity in Aspect-
Oriented Languages: Integration as a Crosscutting Concern

for Aspect],” Proceedings of Aspect-Oriented Software
Design, 2002

[34] Sullivan, K., Kalet, 1., Notkin, D., ¢ Evaluating the mediator
method: Prism as a case study,” IEEE Transactions on
Software Engineering, Vol. 22, No. 8, August 1996.

[35] Tarr, P. and Ossher, H., “Hyper/J™ User and Installation
Manual”, IBM Corporation



