Behavioral Automata Composition for Automatic Topology
Independent Verification of Parameterized Systems

Youssef Hanna

Samik Basu

Hridesh Rajan

Computer Science, lowa State University
226 Atanasoff Hall, Ames, IA, USA
{ywhanna,sbasu,hridesh}@cs.iastate.edu

ABSTRACT

Verifying correctness properties of parameterized systésna
long-standing problem. The challenge lies in the lack ofrgntee
that the property is satisfied for all instances of the patarized
system. Existing work on addressing this challenge aimedage
this problem to checking the properties on smaller systeitts av
bound on the parameter referred to asc¢beoff A property sat-
isfied on the system with the cut-off ensures that it is satisfor
systems with any larger parameter. The major problem witkeh
techniques is that they only work for certain classes ofesyistwith
a specific communication topology such as ring topologys thav-
ing other interesting classes of systems unverified. Weritorne
an automated technique for finding the cut-off of the paranietd
system that works for systems defined with any topology. Gilie
specification and the topology of the system, our technigubie
to automatically generate the cut-off specific to this systeVe
prove the soundness of our technique and demonstratedtgied-
ness and practicality by applying it to several canonicaneples
where in some cases, our technique obtains smaller cutbfes
than those presented in the existing literature.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]: Formal Methods; D.2.4
[Software/Program Verification]: Model Checking

General Terms
Verification

Keywords

parameterized model checking

1. INTRODUCTION

Parameterized systems are systems consisting of homageneo
processes, where the parameter indicates the number opsoich
cesses in the system. A parameterized system, therefae;lukes
an infinite family of systems where instances of the family ba

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ESEC-FSE’'09August 23-28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$5.00.

obtained by fixing the parameter. Verification of correcngfssuch
systems amounts to verifying the correctness of every meofbe
the infinite family described by the system. For example disr
tributed mutual exclusion protocols [31], the objectivedsverify
that the critical section is accessed in a mutually exctufaghion
regardless of the number of processes participating inribiegol.

Given a parameterized systesps(n) containingn processes
and a safety or liveness LX propertyy, verification of whether
sys(n) satisfiesp (denoted byvn : sys(n) = ) is undecidable
in general [4]. A number of sound but incomplete verificatiech-
niques has been proposed and developed in the recent mast, e.
those that rely on abstraction [13, 15, 23,29] and/or snepresen-
tation [1, 2, 6,7,10-12, 22, 26, 30] of the system behavia the
property. In essence, these techniques depend on comphéng
invariant or the common global behavior &fys(n) for all n and
identifying the smallest < n such thatsys(k) exhibits that be-
havior. It can be shown thatys(k) = ¢ < Vn > k : sys(n) =
p, i.e., verification of an infinite family of systems is reddce
verification of a single instance (thHeth instance) of the family;
wherek is referred to as theut-off

Our solution. We propose a new technique for identifying such a
cut-off k£ for a parameterized system. Unlike most existing work,
our technique is independent of the communication topology
tween the processes in the parameterized system. Furtferow
technique does not depend on actual properties to be veofidte
parameterized system; the results of our technique arécapj#

to any properties of the forma(:) (involving any one process) and
»(3, 7) (involving any two processes dependent on each other). Our
technique is automatic and uses standard automata-rapagse

of the protocol behavior. There are two steps in our tectmiqu
First, using the fact thatys(n) = P||P||...||P is the parallel
composition ofn, processes each with behavioral specificatiyn
we introduce the notion ofetbehavior capturing the behavior of
any one process inany environment. In the second step, we enu-
merate the behavior ofys(m) for m = 2,3, ..., n, and identify
the smallestsys(k) whose projected behavior on any one of the
participating processes simulates thetiehavior. We prove that
for all properties involving one or two processegs(k) satisfies
the properties if and only i¥'n > k : sys(n) satisfies the same
properties, i.e.k is the cut-off for the parameterized system. Note
that such & may not exist in general, which will result in non-
termination of our technique rendering it incomplete aseexgd.

Contributions. In summary, contributions of this work are:

1. We present an automated technique for verification ofrpara
eterized system which is independent of the communication
topology of the processes in the system. We prove the sound-
ness of our technique, i.e., if our method terminates then it
terminates with the smallest cut-diff



2. Our technique is system specific and as such the computedmodel checking problem [14,31]. The idea behind these fgoks

cut-off is also system specific. This allows us to obtain dif-

is to find a network invarianf where the invariant is preserved

ferent bounds to different types of parameterized systems by all computation steps of the system. Therefore] gatisfies

even when the underlying communication topology of the
systems under consideration are identical.
Namjoshi [19] proved that for parameterized systems with
ring topology where processes communicate through a to-
ken, the cut-offk is 4 for properties of the formp(s, j).

We show that tighter bounds can be obtained if the behavior
of the participating processes in the parameterized syistem
considered. For example, using our technique, simple pa-
rameterized token ring protocol has the cutfof 2, while
dining philosopher problem has the cut-&ff= 3 for prop-
ertiesp(i, ) wherei and;j are dependent on each other.

tems with different communication topologies and show the
practical applicability of our technique.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes our iga@ifor
specifying a protocol using the Distributed Mutual Excbrspro-
tocol as an illustrative example. Section 4 describes hanthx-
imum behavior of a process in the context of any environment i
generated. Section 5 shows the procedure for generatiroyithof
size. Proof of soundness of our technique is presented 8t
Section 7 describes our case studies and Section 8 concludes

2. RELATED WORK

Techniques for verifying parameterized systems can be cate
gorized as follows. One class of solutions [13, 15, 23, 29] re
lies on reducing the problem of parameterized system vatidic
with infinite states to verification of its finite-state alagtiions.
Another class of techniques analyze the behavior of paemet
ized systems using smart representation and verificatiochae
nisms such as regular languages [1, 2, 10, 22], petri-netg@ph-
grammars [6,7,11,12,26,30]. Others [5,28,31] apply aatdsin-
duction to generate and verify invariants of the parametersys-
tems. Closest to our technique is the class of solutionsftiats
on computing a cut-off of the system parameter [8,17-21, 25]

Abstraction techniques include counter abstraction [2Baad
environmental abstraction [13, 15]. The idea behind cauake
straction is to abstract process identities, where evesiradt state
contains an abstract counter denoting the number of presdss
the state. Environmental abstraction follows a similarrapph;
however, the counting is done for the number of processés sat
fying a given predicate. Typically these techniques eitieguire
human guidance for obtaining the appropriate abstractioar®
applicable to a certain restricted class of systems andépepties
(e.g., universal path properties).

Among the techniques that rely on smart representation mech
anism are techniques based on regular language [1, 2, 10r22]
graph-based [6, 7, 26, 30] representations of the statespiathe
parameterized system. These approaches are typicallicalpiel
for the verification of safety/reachability properties aframeter-
ized systems. Recently, petri net based representatiortédes
proposed [12] where tokens in the petri net are used to de¢hete
parameter of the system and a new logic, colored markings log
(CML), is developed to reason about such petri nets. The work
provides a generic framework for representing parameteriy/s-
tems and identifies a fragment of CML for which the satisfigpil
problem is decidable.

Techniques based on induction use network invariants tacesd
the problem of parameterized system verification to a firties

. We present a number of case studies of parameterized sys

the desired property specificatignthen the parameterized system

Emerson and also satisfiesp. While in most settings the invariant generation

requires manual guidance, Pnuetial. [28] present a technique
where invariants are computed automatically once the gpiate
abstraction relation is provided.

Another interesting approach, which aims to reduce thenpara
eterized system verification problem to an equivalent fisitge
one, is based on finding an appropriate cutfofif the parameter
of the system. The objective is to establish that a propersatis-
fied by the system witlt processes if and only if it is satisfied by
any number ¢ k) processes. Emerson and Namjoshi [19] provide
such cut-off values for different types of properties ofgraeter-
ized systems with ring topology.

In contrast to the above techniques, our approach is fully au
tomatic, does not depend on a specific representation misainan
of the system and/or property and is independent of the commu
nication topology of the processes in the system. We presment
algorithm (sound but incomplete) which takes as input treedp-
tion of the parameterized system in terms of standard ioptglt
automata and establishes the cut-off of the parameter.véfhde
Emerson and Namjoshi [19] establish for the first time theadtit
bound for any parameterized system with ring topology gigen
specific type of property; we show that by considering thepar
eterized system being verified in the computation of theoffjta
tighter bound of the cut-off can be obtained. For instans@ngi
Emerson and Namjoshi’s approach [19], to verify the proptrat
in a parameterized system with ring topology two procesaaaat
enter the critical section at the same, the cut-off size ighite the
cut-off value identified using our approach for a specificapae-
terized system with ring topology (token ring protocol) igy?2.

In short, while Emerson and Namjoshi [19] focus on obtairdng
generic cut-off for parameterized systems with a specifiolmgy,
the central theme of our technique is to develop a generimagh
that can be applied to parameterized systems independehe of
communication topology.

3. PARAMETERIZED SYSTEM

A parameterized system can be described by the collective be
havior of n homogeneougrocesses interacting with each other,
wheren is the system parameter. The key idea behind our approach
is to provide a mechanism for specifying the behavior of agss
in the parameterized system as a collectioatoimic stepswhich
we callbehavioral automatonAn important property of our speci-
fication technique is that it enables automatic compositibthese
behavioral automata to obtain the full-behavior of a prez@san
arbitrary environment.

The direct benefit of this property is that it helps us redume t
problem of finding the cut-off valué for the system parameter to
an equivalence detection problem between the full-behafi@
process in an arbitrary environment and the parameteriggtdra
of sizek. As we show in Section 5, by providing a sound (but
incomplete) algorithm, this problem can be easily autorhate

To illustrate the terminology used in this paper, we will tise
distributed mutual exclusion (DME) protocol [31] as the miny
example. The goal of this protocol is to ensure that for aitiisted
system ofn processes in a network with ring topology, only one
process in the system is in the critical section at a givemtpafi
time. A token is passed between the different processeginrt.
The process who holds the token is the only process able ¢v ent
the critical section. Once it is out of the critical sectidrcan pass



SND

. token
token . . choose |
choose @ . token
choose . . in |

in > ‘ > . token >

Figure 1: Behavioral Automata for the DME Protocol

RCV
PASS
ENTER

LEAVE

the token to its neighbor. The process may receive the tokdn a
pass it directly to its neighbor without entering the catisection.

3.1 A Process as Behavioral Automata

A homogeneous process in our work is specified in terms of a
behavioral automatonwhich describes an atomic side-effect free
action that the process can do. Each behavioral automattber is
fined in terms of the input/output behavior and the corredpan
observable events of the atomic action of the process asvsl

DEFINITION 3.1 (BEHAVIORAL AUTOMATON). A
behavioral automatol = (Q, Qr,Qr, A, Ar, Ap, M), where

e () is a nonempty set of states,

e Q; C Qis anonempty set of initial states,
Qr C Q is a nonempty set of final states,

A C Q x M x @ is the transition relation,
A; € M x Qy is the initial transition relation,

e Ar C Qr x M isthe final transition relation,

e M is a nonempty set of events.

Notations. We writeq —— ¢’ if (g,e,¢') € A, ¢ = qif
(e,q) € Arandg — eif (¢,¢e) € AF.

To illustrate, consider the behavioral automata for the Diiee
tocol shown in Figure 1. In the figures, epsilon labels ongitéons
are omitted. The first automat@ND in the figure models the pro-
tocol initiation, where a process generates and passeskér to
the next process. Typically the process that would genéhatéo-
ken is decided using other distributed algorithms such aadelr-
election algorithm, which we do not model here. Upon recgjvi
a token (modeled as the automat@fV) a process may choose
to exhibit the behavior described by either the autom#®88S
or ENTER, effectively passing the token forward (modeled as the
output eventt oken) or entering the critical section (modeled as
generating the output evenn that can only be consumed by a
process in the critical section). The last automdt&AVE models
the behavior of a process leaving the critical section bysaaring
eventi n and passing forward the token.

Formally, the first automato8ND would be represented by the
set of stateg) = (Start,ldl e). The transition relations for
SNDaree —— Start € Ay, where the leader process generates
a token without any input even§t art —— ldl e € A, where
the process changes its st&eart of being the leader process

to | dl e where it will wait for the token from its neighbor, and

finally | dl e " o € Az, where the process sends the token to

its neighbor. Now the process is in statél e, it can do nothing
but wait for the token (represented by the automdG).
Proceeding further, a protocol specification is defined bsis:

DEFINITION 3.2 (PROTOCOLSPECIFICATION). A Protocol
Specification is a sdrot = { A1, Az, ..., A, } such that3i, 1 <
i<m:e —sqgeAp

3.2 A Parameterized System

Next, we describe the behavior of a parameterized system,
sys(n), containingn processes each executing according to a given
protocol Prot. Intuitively, in sys(n) we consider that at any in-
stance of the parameterized system the processes can bg at an
state in any automaton iRrot. The interaction between the two
processes occur when one of them is at a state ready toerdtiat
output event and the other is at a state that can consumevtt e
For example, if a process is at stateof the automatoi®NDin Fig-
ure 1 and the other is at a stageof the automatoiRCV, they can
communicate via the evehbken. However, to initiate the behav-
ior of the system, it is necessary to have at least one precéssin
a state of an automaton Rrot which can move without any exter-
nal trigger, i.e., without being triggered by any input everovided
by the output of another process. The condition in Definifioh
establishes that there exists such an automaton in thefispéon
which can make a move without any external trigger (absefice o
input trigger being represented by Initially, at least one of the
processes inys(n) must follow this automaton behavior.

DEFINITION 3.3 (ToPOLOGY). Given a protocol specifica-
tion Prot = {Ai,As,..., A}, a topology is a set of tu-

Do

M; is set of events irl; € Prot} and N is the set of processes
in a parameterized system. A tudle ,j) € Topo implies that
outpute fromi-th process can be consumed by jhi process.

ples, Topo € M x N x N such thatM

A topology serves to restrict process communication pagter
For example, in the DME protocol, when a procéssends the
eventt oken, only the process on its right+ 1 is able to consume
this event, { oken, 7, ¢ 4+ 1). Forsys(2), the topology is trivially
simple; however, for other protocols (e.g. the dining piojphers
protocol described in Section 7.1) the topology plays a maje
in distinguishing between the processes.

DEFINITION 3.4 (CONFIGURATION OFi-TH PROCESS.
Given a protocol specificatioRrot = {A1, Az, ..., A}, @ con-
figuration of thei-th processs = (Q x Prot x M), such that

Q = | J{Qi : Qi is setof states ini; € Prot}

i=1

M = | J{M; : M; is set of events ivi; € Prot}

i=1

The configuration of a process determines what the process is
able to do at a certain point of time. For instance, the initafig-
uration for the process that is generating the token in thigibuted
mutual exclusion protocol isSt ar t, SND, (), where is the set
of output events produced by this process, and it is emptsusec
it has not produced the output evehbken) to be consumed by
another process yet. The initial configuration of the reshefpro-
cesses isl(dl e, RCV, 0), where the processes are idle and waiting
to receive the token.

In the following, we present the formal definition ef;s(n).

n

We use the following notation: for a sﬂ{(g x Prot x M},
=1



any membes in the set contains tuples where the first, second
and third elements of the tuple belong to the getdrot and M
respectively. We use;(s),ai(s) andm;(s) to denote the value
q € Q, A € Protande € M respectively of theé-th tuple, i.e., the
i-th tuple ofs is (qi(s), ai(s), mi(s)).

DEFINITION 3.5 (PMRAMETERIZED SYSTEM). Given a pro-
tocol specificatiorProt = {A1, As,..., A}, a parameterized
systemsys(n) with n processes, each of which behaves according
to Prot, is defined ag.S, Sr, T, Topo), wheres € S containsn
tuples and the-th element of the tuple represents the configura-
tion of thei-th process insys(n), s; € S represents the initial
configuration of the processeg, represents the transition relation
between one configuration of the processes to another anidlyfina
Topo is the topology of the system. Hefg, S, andT are defined
as:

o SCJJ(QxProtxm)

i=1
e S; C S,whereVs € S;,V1 <i<mn:m(s)=10
e TCSXMxMxS

We say that el s’ € T if one of the following holds:

1. 3i€[1,n]: 34,
e=¢€¢ A oLqi(s)GAIw/\

() =qhqg—==ec Ap, A ai(s') = Az A

mi(s’) =m;(s)U{e'}

AV e [Ln],j#i:

a;(s) = q;(s") A a;j(s) = a;(s") A m;(s) =m;(s')

2. 3ij €1,n]: 3A,

eemj(s) N\ e % qi(s) € A1z A
() =qNnqg = e0cC Ar, A ai(s') = Az A
mi(s’) =mi(s) U{e'} A my;(s') =my(s)\{e}
Agi(s') = q;i(s) A a;(s") = a;(s) A
(e,4,7) € Topo

AVE €[]k #£ik +j:

ar(s) = qr(s") A ax(s) = ax(s’) Ami(s) = mu(s")

The transition relations in the above definition can be érpth
as follows. The first condition represents an autonomousenabv
the i-th process without any input event. Whatever eventittie
process sends due to that autonomous move is kept in themt of
put events to be consumed by processes (following the tgghlo
The configurations of the other procesgeg i remain unaltered.
The second condition represents the case wheprocess con-
sumes an output event in the list of outstanding events of-the
process, where it is stated Topo that process is the neighbor to
processj that can consume such an event. Pro¢esss in its set
of outputs the output event resulting from such an action.

To illustrate our definition of a parameterized system, $eton-
sider a system of two processeg{(2)) that are running the DME
protocol. Figure 2 shows part of this system. For this systbe
topology is defined as follows.

Topo = {(t oken, 1,2), (t oken,2,1),(i n,1,1), (i n,2,2),

(choose, 1,1),(choose, 2,2)}

The first transition in the figure is an example of a transifin
lowing item 1 of the transition relation in Definition 3.5. @lpro-
cess that is generating the token is at the initial sBiter t , its

choose /
token

Start
SND
(%)

Idle
SND
{token}
Idle Idle
RCV RCV
] 2]

€ / token

Figure 2: Part of sys(2) for DME. Full sys(2) is in our TR [24].

automaton isSND and its set of output events to be consumed by
others is empty. The other process is waiting for an outpehgv
soitisin statd dl e, in automatorRCV, also with an empty set of
output events. Without any input, the first process startsengling
the output event oken. The set of output events for that process
now has the everitoken. The configuration of the other process
configurations remains the same as this transition concelgthe
first process.

The second transition in the figure is an example where a psoce
consumes an event sent by another process. Prot¢essthe event
t oken pending in the set of output events, so according to the
topology of the protocol, the process on its right ¢an consume
this event. Therefore, proceggsakest oken as input, so now the
set of output events of processis (). Proces2 does not need
to change its automaton since the current automaton is edidao
receive a oken event while in staté dl e. After consuming this
event, proces® makes an autonomous transition that changes its
state froml dl e to Ncs and produces the output evertioose
that allows to choose either to pass the token (top righe stithe
figure) or enter the critical section (bottom right state).

DEFINITION 3.6 (PROJECTION. Given a parameterized sys-
temsys(n) = (5, S, T, Topo), its projected behavior w.r.t. pro-
cesses iR is sys(n) | R = (S| R,Sr| R, T | R,Topo), such
that

e SIRC | {a)xl fa)}x {mi(s)}

i€ER,sES i€ER,s€S i€ER,s€S

e SiIRC | Aa@xlJ A{a)kxJ {mi(s)}

i€ER,s€S] i€R,s€ST i€ER,s€ST

m/m’

e s|R *— §'|ReT|R <=
/

™M g eT A qi(s) # qi(s') V ai(s) # ai(s').
In Figure 2, the projection against the 1st procegs(2)[{1} will

. . . € k
include the first transitiong( “-2%"

(g "2*°"/°1°%® 11y in the figure because these transitions affect the
state and/or automaton of the first process (the effect otdpe
right transitions is not shown in the figure, where the firstceiss
receives the token and changes its automaton Bhito RCV and

its state from dl e to Ncs). Projection against the second process
sys(2) {2} will include all the transitions in the figure except for

the first one and the top right one (***2%2°°°® 4}, since these 2
transitions do not affect the state and/or automaton ofgasit

4. PROCESS WITH ANY ENVIRONMENT

At its core, our approach depends on the computation of the be
havior of one process in the parameterized system in theexont
of anyenvironment. Ifsys(n) = Pi||Pz||Ps]| ... || P. is a param-
eterized system containing number of processes, each of which

¢') and the top right transition



e /token T

choose /
in

in / token

Figure 3: The Behavior of a Process in any Environment for theDistributed Mutual Exclusion Protocol [31]

behaves according to a given proto&ubt, then any environment
of a process; (i € [1,n]) is represented by any number of other
processesg {P; : j € [1,n] A j # i}) in any state ofProt.
Intuitively, this captures the maximal behavior Bf in any envi-
ronment as per the protocol specificatiBrot. We will refer to
such behavior of any process in the context of any environfioen

a parameterized systesys(n) as Ie-behavior ofsys(n). We in-
troduce the notiorw-composition (Definition 4.1) of automata in
Prot and subsequently compute the-thehavior (Definition 4.2).

DEFINITION 4.1 (®-COMPOSITION. GivenA,, A, € Prot,
we define Ay ® Ay as a tuple
(wa7 sz;p Qme7 Aw% Afmy 5 Ame 5 M@y): where

o Quy = [Qu x {A:}]U[Qy x {Ay}]

* Qr,, =[Qr, x {A:}JU[Qr, x {Ay}]

® Qr,, = [Qr, x {A}]U[Qr, x {Ay}]
{(q, 4) = (¢, Ai) i € {z,y}A
q—q €A}
e Apy=1| U

{(Q7Ai) — (qlvAJ') 11, € {m,y}/\
qL).eAFi/\.L)q/GA]j}

Ar,, ={e —= (g Ai) :ie{z,y} N e ——ge A}
AFﬂcy :{(qvAZ) LOIiE{x,y} N qL.GAi}
o M., = M, UM,

In this definition, the states of, ® A, include the states of, and
A, coupled with the corresponding automaton. The initial anal fi
state-sets are similarly defined. The transition relatlgy denot-
ing autonomous transitions of the automatdn ® A, includes
the autonomous transitions of the individual transitidirst(argu-
ment of the union operation) and also the transitions rieguitom
chainingthe output of one automaton to the input of the other. A
key property of this definition is that it is general enougtatiow
loops via input/output chaining of the participating autden The
input and output transitions of, ® A, contain the input and the
output transitions of individual automaton. Intuitivellgjs implies
that®-composition keeps the resulting automatbn A, opento
communicate with other automaton in subsequertomposition
via the input/output events of, andA,. The eventsetafl, ® A,

is the union of the event set of, and A,.

DEFINITION 4.2 (1E-BEHAVIOR). Given a protocol specifi-
cationProt = {41, Ao, ..., A}, 1E-behavior is obtained from
®i~, A; and is defined as a tuplgie, Qr1e, A1e), where

e Q1 C of set of states i®~, A;

e ()11e, the set of start states, of set of start states iw;~; A;

e A C Qie x| O Event s x Qe such thalt O Event s =
{r} U (M x M), and

e/e’

—q—q €D <=

ElAz:qle—/>.€AFz ANe—sqgcAp
—q—q €l =

Az, Ay, x #y:q—e€Ap, No—q €A

The Ie-behavior of a protocol captures the maximum behavior
of a process in the context of any environment for the parame-
terized systensys(n). As per Definition 4.2, for every transition

e/e

q — ¢, eis the input event foy ande’ is the output event fof'.
Figure 3 shows theetbehavior of the distributed mutual exclusion
protocol. The first state in the figur&t(ar t , SND) takese as in-
put event and staté ¢/l e,SND) produces the output evenbken,

therefore there is a transitian /L oken ¢’ between these 2 states
(which models the behavior of the automatSND in Figure 1).
The transition between the statdsd] e, SND) and ( dI e, RCV)
means that the output of the former is the same as the inpheof t
latter. This modelshaining the output event of automatd®ND
with input event of automatoRCV in Figure 1. The key property
of the 1e-behavior is captured by the following theorem.

THEOREM 1. Given a protocol specificatioRrot = {41, As,
.., A} and a parameterized systesps(n) containingn pro-
cesses behaving as perot, 1e-behavior captures the behavior of
any process iys(n) in the context of any environment.

Proof Sketch:We prove that every sequence of behaviorga(n)|

{7} in terms of input/output events is a subsequence of events fr
some start state inetbehavior. Let the first event isys(n)|{i} be
e/e’ (e # €). This must be present inetbehavior for the follow-
ing reasonsys(n)|{:} is able to make a move on inpetbecause
there exists some other process that can provide the eanbut-
put. l.e., there exists some behavioral autométac Prot, with a
transitiong —— e € Ap,. Furthermore, as/¢’ is the input/output
event-pair performed by thieth process, there exists an automaton

A, € Prot such thate - ¢’ € Ay, andq” < e Ar,
(see item 2 in Definition 3.5). Therefore, from the transitiela-
tion of 1e-behavior (Definition 4.2), there exists the saaje’ in
1e-behavior. Proceeding further, let the next eventgn(n)|{i}
beb/t’. The Ie-behavior will also provide this input/output event-
pair. As the inputh to thei-th process will be provided by some
other process, following the same reasoning as above, aigai
of behavioral automata iRrot can be realized to obtain the same
input/output event-pair ing-behaviorll

5. FINDING THE CUT-OFF

In this section, we describe the procedure to compute the cut
off k of a parameterized systesgs(n) executing a given protocol
Prot. Informally, the cut-offk is such that satisfiability of prop-
erties bysys(n) for anyn > k can be inferred from the results



of verifying the properties againsys(k). We focus on properties
that involve one parameterized process or two parametepee
cesses that are dependent on each other. Properties ofica@mee
safety (something bad does not happen) and liveness (smgeth
good will eventually happen).

DEFINITION 5.1 (QuT-OFF). Given a protocol specification
Prot = {41, As,..., A} and a parameterized systesys(k)
containingk processes behaving as perot, k is said to be the
cut-off if and only if the following holds:

Vi, 1 <i<k:sys(k) = (i) <
Vn > k,Vi, 1 <i<n:sys(n) = (i)

Vi, 5,1 <i,j <k,i#j:sys(k)E @, j) <
Vn > k,Vi,5,1 <4,5 <n,i#j:sys(n) E (i, j)

where (i) and ¢ (i, j) represent properties involving one (the
th process) and twoi{th and j-th processes) in the parameter-
ized system respectively, and in casep(f, j), thei-th and j-th
processes are dependent on each other or communicate theoug
non-parameterized process.

In the next section, we will prove thatis a cut-off if and only if
sys(k) can replicate all possible behavior captured bBybEhavior
obtained from thé°rot specification. Specifically, ifys(k) “sim-
ulates” IE-behavior, therk is a cut-off. The simulation relation
between two states is defined as follows.

DEFINITION 5.2 (SMULATION [27]). Given a labeled tran-
sition system (a system where transitions are labeled wignts),
states is said to be simulated by a statedenoted by < t, if and
only if

Ve,s' :s s =t -t A <t 1)
We say that a labeled transition systdifi’S; is simulated by a
labeled transition systemT'Ss, denoted byLT'S1 < LTS, if
and only if for all start states of LTS, there exists a start state
in LTSs, such thats < ¢.

Proceeding further, our algorithm for computing the cut-of
based on the above simulation relation is implemented icd?ro
dure CutOff.

Procedure CutOff (Prot)

Compute E-behavior fromProt
k+—2
while truedo
if 3 states in sys(k) : 1E-behavior< s then
return k;
else
k++;
end if
end while

ProcedureCutOff enumerates for different values bfthe be-
havior of sys(k), where each process behaves according to proto-
col specificatiorProt, and checks whethetys(k) contains a state
that simulates g-behavior for the giveRrot. If for a specific value
of k such a state is present, then that valug sfthe cut-off. Recall
from Definition 4.2 that E-behavior contains transitions repre-
senting chaining of output from one automaton to the inparof
other. However, such transitions are not present irsifs¢k) def-
inition (Definition 3.5). Furthermore, for some parameted sys-
tems, there can be one process that is not parameterizedhdn o

words, there is only one process of that type in all instanédse
parameterized system. For instance) ffrocesses have access to
a shared memory, then the shared memory is a non-paraneeteriz
process in the system. Therefore, since we only care forepties

related to parameterized processes, any transjtiéﬁi q inthe
1e-behavior and theys(k) of these systems such that

JA,: ¢ SsecAp, Noe—gc Ay,

whereA, is a behavioral automaton for the non-parameterized pro-
cess is substituted withzatransition. An example of a parameter-
ized system with a non-parameterized process is presenteelc
tion 7.2. We use the following variation of Equation 1 in oefiel
nition of simulation.

Ve,s' 1 s =5 ' € 1e-behavior= 3t' : t 75 ¢’ € sys(k)As’ <t

In the above;r*e represents moves of zero or mardransitions
followed by ane transition.

As the verification of parameterized system is undecidadje [
our procedure may not terminate; however, if it terminaitesjll
return the smallest cut-off value for the corresponding protocol
specificationProt. We will prove the soundness of the procedure
in Section 6.

Figure 2 shows part of theys(2), two processes executing DME
protocol as specified by Figure 1. The systey(2) simulates the
corresponding #&-behavior (see Figure 3) of the protocol. There-
fore, for the DME protocol in a ring topolog¥, = 2 is the cut-off.

It is worth mentioning that [19] provided a general cut-cifwation
of 4 for verifying mutual exclusion property of any parametedz
system with ring topology (e.g., DME protocol). However,ves
consider the system descriptiosy(k)) in our technique, we are
able to identify a tighter cut-off value for the DME protocol

6. PROOF OF SOUNDNESS

We prove that given a protocol specificatiBrot and a parame-
terized systemys(n), the outputt of ProcedureCutOff described
in Section 5 is the cut-off for protocélrot as per the Definition 5.1.
The following lemmas will form the basis of our proof.

LEMMA 1. For any parameterized systesps(k),
Vi1 <i <k sys(k) | (i) & sys(k){i} E (i)

Proof: The proof is immediate from the nature of the propesty)
and the projection operation (Definition 3.6). The propéstgnly
concerned with the configurations and the events relatdtetoth
process and as such, configurations and the events reldedg so
to the processeg # i are irrelevant for the satisfiability of the

property bysys(k).

LEMMA 2. Vk,1 < k < n,Vi,1 <i <k :sys(k)|{i} <
sys(n){i}

Proof: The proof is realized by contradiction. Assume that there
exists a state | {i} in sys(k) | {i} reachable from its start state
after a sequence of events (of théh process) such that| {i} is

not simulated by any of the statessns(n)|{i} reachable from its
start state via the same sequence of events.

As the same event sequence is considered from the respective
start states, there exists somg{i} in sys(n)|{i} reachable via
this event sequence, such that the configuration of-theprocess
int|{i} is the same as that of thieh process irs|{i}. However,



ass|{i} is not simulated by |{i}, there exists at least one action
of thei-th process frons|{i} that is not present from|{:}.

This action cannot solely be output event (of the farfa) of
the i-th process; these types of events do not depend on the envi-
ronment of the process and can always occur as long as thegsroc
is in a suitable configuration. Therefore, the action mugblie
an input event where theth process relies on its environment to
provide such an input.

In other words, at state]{:} of sys(k)|{i}, thei-th process can
move on an input event while at statg:} of sys(n)|{i}, thei-th
process cannot make a move on the same input event. Thiesnpli
that the environment of theth process at statein sys(k) pro-
vides the required input, while the environment of tkta process
at any state in sys(n) is unable to provide the same input. Let
the neighbor of the-th process, as per the topology of the system,
responsible for providing this input hg-th process. Therefore,
in sys(k), the ji1-th process is able to provide the input at state
while thej;-th process isys(n) is unable to do so as it is waiting
for its own neighbor, say--th process.

Proceeding further, the input to theh process at all states
(s.t. t1{i} = s|{i}) in sys(n) is disabled as it is waiting for
Ji,J2,J3,- .. processes to move to their respective configurations
such thatj; -th process can provide the input. However, that is not
the case at state in sys(k). As processes in bothys(k) and
sys(n) behave according to the same protocol specificaiot,
the above can only happen whenr< k. This leads to contradiction
proving that our initial assumption is incorrelt.

THEOREM 2. Given a protocol specificatiofrot and a param-
eterized systemsys(n) where each process behaves as described in
Prot,

J states in sys(k) : 1E-behavior< s <
(Vi,1 <i<k:sys(k) = ¢(i) <
Vn > k,Vi, 1 <i<n:sys(n) £ eli)

In the above lE-behavior is computed from the specificati®rot.
Proof: Lets = (c1,c¢2,...,ck) be the state iBys(k) that simu-
lates E-behavior and:; (1 < 5 < k) be the configuration (Def-
inition 3.4) of thej-th process at. Therefore, using Theorem 1,
s captures all possible behavior of some processyis{k) and its
environment. For théth process with configuration in s, let E;
denote its environment, i.e.,

k
E = U{cp ip#£ 1}
p=1
As all processes in the parameterized systeya(k) behave
according to the same protocol specificatirot, for a specific
process, the-th process, there exists at mostdifferent states
S1,82,..., Sk in sys(k) such that for each (1 < I < k), thei-th
process is in the configuratian with the environmenty; (Equa-
tion 2) at states;. Therefore, all possible behavior of some process
and its environment as captured bg-tiehavior of theProt, is ex-
hibited by thei-th process isys(k). l.e.,

@)

sys(k)|[{i} exhibits all possible behavior @fth process isys(k)

< (Vi, 1 <i < k:sys(k){i} = @) & sys(k) (i)
(From Lemma }
& (Vi1 <i<k:sysk){i} (i) &

Vn,n >k, Vi, 1 < <k sys(n)l{i} = (i)
(From Lemma 2
& Vi, 1 <i<k:sys(k) E (i) &

Vn,n > k,Vi,1 <i < k:sys(n) | (i)
(From Lemma 11

Next we prove the following theorem

THEOREM 3. Given a protocol specificatioRrot and a param-
eterized systensys(n) where each process behaves as described in
Prot

J states in sys(k) : 1E-behavior< s <
(Vi, 5,1 <4,5 < k,i#j:sys(k) (i, j) <
Vn > k,Vi,j,1 <i,j <n,i#j:sys(n) | e(i, 1))
where the behavior of one process (say fka process) is depen-

dent on the other (say theth process) or both processésnd j
communicate through a non-parameterized process.

Proof: The proof of the theorem relies on the following observa-
tions. For brevity, we omit the proofs of the statements;ptuofs
being similar to Lemmas 1 and 2.

Vi, j,1 <0, < ki # 5 : sys(k) | (i, 5) &
sys(k){i, 5} E (i, 5)
Yk, 1<k <nVij,1<ij<ki#j:
sys(k){i,j} < syS(n)l{m}(S)

Recall that E-behavior captures the behavior of any proceasd
its environment. It does not distinguish between the praeen
the environment, i.e., the environment comprises of allghe
cesses with which the processinteracts directly or indirectly.
Therefore, a state in sys(k) simulating E-behavior implies that
the state captures all possible behavior of a pro¢essl its envi-
ronment containing another procesdependent on. As in The-
orem 2, we consider environments of pairs of processes tea sta
Proceeding further, we fix the pairj and state that there exists at
mostk different states for this pair of processes which collesyiv
captures all possible behavior of pair of processes as peteh
behavior. Finally, the proof follows from the statement<Eigqua-
tion 3.1

THEOREM4 (SOUNDNESS. If Procedure CutOff termi-
nates, the return valug is the cut-off as per the Definition 5.1.

Proof: The proof follows from Theorems 2 andB.

REMARK 1. The proposed algorithm addresses the problem of
verifying properties of the formp(i, j) wherei and j are parame-
terized processes and the behavior of process (saj-th@rocess)
is dependent on the other process (say:ttle process). In other
words, actions byj-th process are done as a direct result (or in
response) to actions done by tk¢h process, or they communi-
cate with each other through a non-parameterized procesante
ple in Section 7.2). Note that procesgeand j need not be neigh-
bors. For instance, in the DME protocol, processannot start any
behavior until receiving a token generated by procegherefore
the behavior of procesgis dependent on processhowever pro-
cessj need not be directly connected to procésghere the token
can be passed hy — 2 processes before reaching procgss

CASE STUDIES

We have worked several nontrivial examples to validate pur a
proach: the dining philosopher protocol [16] and Spin Ialgck-
ing protocol for mutual exclusive access to an object [3]. dbkn-
pared our results with that obtained using existing work.foved
that the cut-off obtained by our technique is either smaltexqual
to the cut-off produced by existing techniques. Furtheeman
contrast to existing techniques which are either appleablpa-
rameterized systems with specific topology or rely on snepte-
sentation and/or abstraction of the system behavior, @hnique

7.



LFT RIGHT_FREE_NE

|_> ask_left |
LFT_FREE_NE |ﬁ> & left_free
LFT_FREE_WL lﬁ» left_free
LFT_BUSY WR |ﬂ> @ left_taken
LFT_BUSY_EAT |ﬂ> left_taken
LFT_REASK M‘». askﬁleft
M ask_right EAT DONE
(a

)

RIGHT_BUSY_WR

RIGHT_BUSY_EAT

RIGHT_REASK

EAT

RIGHT

ask_right right_free
——>ating §——>]
RIGHT_FREE_WL |_35k—”9h,t right freg |
ask_right right_taken
—(: Walt)\ 2=
right_taken ask_right
—>»(, o —>|
rightjres rel_forks |
rel_forks

——> g >

NotEating
LFT

NotEating
LFT_FREE_NE

ask_left /
left_free

NotEating
LFT_FREE_NE

(b)

Figure 4: (a) The Behavioral Automata for the Dining Philosghers Protocol. (b) Part of the Behavior of a Philosopher Proess

uniformly handles systems with different topologies antbased
on a standard transition system based representation.

7.1 Dining Philosophers Protocol

Dining philosophers protocol [16] models a classic multi-
process synchronization problem. Among others, Emersan an
Kahlon [17] have used it as a candidate parameterized sy$tem
this protocol, the number of philosophers is the systemrpater.
The standard definition models processes as philosoplting &n
a circle (a ring topology) with a fork between each 2 phildsas.
The main objective of a philosopher process is to acquirddte
to its left and right and start eating. We model this protacsihg
the behavioral automata shown in Figure 4 (a).

The first automatoh FT in this figure represents the behavior of
a philosopher when it decides that it wants the left fork asidsdts
neighbor for it. The automaton contai@s= (qo, ¢1) Whereqo =
Not Eat i ng, andg: = Wai t Lef t. The transition relations are
e —— g0 € A1, where the philosopher initiates this behavior with-
out any input evenigy — ¢1 € A, where the philosopher decides
that it wants the left fork so it changes its state frbiot Eat i ng

toWai t Lef t, and finallyg, ***~5"" o € A, where the philoso-
pher sends the request for the left fork to its neighbor. O#ue
tomata are similar in nature.

Given this protocol specification, using our technique, voeid
like to find the smallest number of processés for this param-
eterized system such that verifying any correctness prypmmer

vironment is generated, the next step is to find the smal&tstark
that a philosopher can actually exhibit this behavior. Tize sf
such network is the cut-off. In order to find this cut-off, wléw
ProcedureCutOff described in Section 5, where we start building
a system of 2 philosophersys(2)) and check if there is a state
in this system that simulatesdbehavior. Until we find a system
with a state that simulatesibehavior, we increase the number of
philosophers of the system.

otEatin

NotEating
LFT € / ask_left LFT
7] %)

NotEating WaitLeft

LFT
LFT
2] {ask_left}

ask_left /
left_free

FT_FREE_N|
{left_free}

WaitLeft
LFT
9

Figure 5: Part of sys(2). Full sys(2) is in our TR [24].

Part of the systerays(2) for 2 philosophers is displayed in Fig-
ure 5. The first state in the figure is the initial configuratamere
all philosophers are not eating. The first transition is aangale
where the second philosopher sends a request for the IkftToe
changes in the state configurations are highlighted in bold.

Unlike the DME protocol, E-behavior for dining philosophers
is not simulated byys(2). The reason is that for 2 philosophers,
some states in &:behavior are not simulated isys(2). For in-
stance, in E-behavior in Figure 4(b), from staté\fi t Left,
LFT) both the statesNot Eat i ng, LFT_FREE_NE) and Eat ,

a system withk processes is necessary and sufficient to say that LFT_BUSY_EAT) are reachable throughtransitions where tran-

the property is true for any system involvimgprocesses for any
n > k.

Behavior of a Process in Any Environment. To that end, the
first step in our technique is to find the behavior of a process i
any environment (see Section 4). To compute this, one wdaltl s
by composing the automata described in Figure 4(a) in aaooml
with the definition of the composition operatap). This will be
repeated until all the automata in Figure 4(a) are composddte
composition satisfies the Definition 4.2 foe-behavior.

Figure 4(b) shows part of thisetbehavior. The transition be-
tween stateNot Eat i ng, LFT_FREE_NE) on the bottom left of
the figure and statéNot Eat i ng, LFT_FREE_NE) on the bottom
right models an internal transition in automatoRT_FREE_NE
in Figure 4(a)). Ther transition between the stategAj t Lef t,
LFT) and (\Not Eat i ng, LFT_FREE_NE) models thechaining
between automatad FT and LFT_FREE_NE, where the output
event of the former is equal to the input event of the latter.

Cut-off Value for the System Parameter. Once the E-behavior
describing the behavior of one philosopher in the conteangfen-

ask_left/left _free
—

sitions(Not Eat i ng, LFT_FREE_NE) ¢ and

(Eat , LFT_BUSY_EAT) ask_left /1 eft taken q" are then possible.

Therefore, forsys(2) to simulate E-behavior, there should be a

states in sys(2) with both output transitions askteft/lgrt free

k_left/lef k .
s ands 2 LELAEN N state insys(2) can have both

these output transitions. Since only 2 philosophers anaka fex-
ist in the system, the reply for a request of the left fork wither
be that the fork is busy or free, but no one state can have both
replies as output transitions. In case there are 3 philassplthis
is possible because of the asynchronous nature of our mggeli
so 2 philosophers can receive 2 requests for left fork frogirth
neighbors, where one of the recipients is eating and the ashe
not eating. Therefore, there will be one stateis(3) where it is
possible to have both output transitions: one correspgnttirthe
philosopher eating that replies that the fork is busy andther to
the one that is not eating that replies that the fork is free.

Sys(3) can simulate &-behavior, therefore the cut-off for this
protocol is3 (sys(3) is presented in our report [24]).



Topology of the System. For the parameterized systems(k) to REQUEST |4,’

exhibit the intended behavior of the protocol, the protdopblogy

needs to be stated while building the system. Consider iDthe REJECTED }ld;.—>‘ rca

ing philosopher protocol if we have 3 philosophers and nokop ack

ogy was stated, then a philosopher can ask its same neigbbor f ACCEPTED }—"—>‘—>|
left and right forks, while this is not possible. The reassihat

the behavioral automata does not enforce any kind of topoailog (a) RELEASING }—’._"_’|

order to ensure that the composition of automata will preten
behavior of one process in the contexiamfy environment. There-

fore, the topology of the system needs to be stated whenihgild req ack
the parameterized systesps(k). For example, when philosopher REQ_FREE @ c > |

i sends the everatsk_| ef t , only the philosopher on its left— 1 req nack
is able to consume this event, wheask_| ef t ,4,7— 1) € Topo. REQ_BUSY ° ° |
As for eventask_r i ght , the philosopher on the right of philoso- Rov REL |l ° @ |
phers, the (i + 1)-th philosopher, is the one who can receive this (b)

event from philosophet, denoted asask_ri ght, 7,7 + 1).

Comparison with other work. Emerson and Kahlon [17] present
the first fully automated verification for the dining philgdeers
protocol. A system in their technique is defined using twe,set processes, these 2 transitions are going to be substitytedrb

Figure 6: Automata for Spin Lock: (a) Process. (b) Object.

one for processes (philosophers) and one for tokens (folksy transition. The full E-behavior of this system is presented in our
prove that reasoning about deadlock characteristicstysafel live- technical report [24].

ness properties for a pair afljacent processe®r arbitrary rings

can be reduced to a ring of size at mdstHowever, we obtain a Object Behavior
tighter cut-off value3 due to the fact that the behavior of the par- N
ticipating processes is considered in our technique. \Hriteer- @m/ac w
son and Namjoshi [19] found that the cut-off for systems wiitly p

topologies for propertieg (i, i+1) (properties of neighboring pairs

of processes) i8, the technique in [19] requires a token passing A IR
model, where a single token is transmitted in a clockwiseation, @ @
thus it is not applicable to the dining philosophers thatsdoet

follow such a model.

7.2 Spin Lock Figure 7: Part of the Behavior of a Process in Spin Lock
Spin locks [3] offer a simple mechanism to realize mutuakly e object
clusive access of objects by threads. The object can havetaies: Transition

not-busy (when is not accessed by any thread, $Bjeand busy Start Waiting Waiting Waiting

(when it accessed by some thread, sBjté\ not-busy object, upon REQUEST predd REGEST REQyEsT
receiving ar eq from a threaq, replies back ywth atk message RESSSEST e/req | RESJSEST req /ack RE%S,EST )ﬂ»{ Q"éZ'G'E"S"’T
and behaves like a busy object. A busy object, on the othet,han {req}

denies all requests from threads usingaeck message or goes to REQ. FREE REQ. FREE REQ.FREE REQ.FREE
a not-busy state on receiving@| (release) signal from the lock facky {ack}
releasing thread. Each thread process can lock an objectef i

ceivesack in response to aeq signal. This system follows a star
topology, where all processes are connected to the object.

The behavioral automata for threads and the objects in tire Sp
Lock are displayed in Figure 6(a) and (b) respectively.

Behavior of a Process in Any Environment. Unlike the DME

and Dining Philosophers protocol, the behavior of the sysie
Spin Lock is dependent on an object that is not a parametéreof t
system. In other words, there cantbprocesses in the system, but
only one object can be present in the system. Since the lwhafvi
the processes is dependent on the behavior of the objetdirigui
the 1e-behavior of the system requires the presence of the object.

Figure 8: Part of sys(2) for Spin Lock

Cut-off Value for the System Parameter. Building sys(k) for
systems with one or more processes that are not parametiies to
system is similar to building the Etbehavior of these systems.
First, thesys(k) of the system with the object is built. Second,
the transitions that belong to actions done by the procedsstimot
a parameter are replaced withransitions.

Part of sys(2) for the Spin Lock protocol with 2 threads and the

Therefore, building the B-behavior of such system with processes object is displayed in Figure 8, where the transmpn sa/ack q
that are not parameters is done in 2 steps. First, tibehavior of is to be substituted by a transition since it belongs to the non-
the system that includes the object is built. Then, for aaggition parameterized process (the object). Our technique fousictiie
that belongs to the object consuming an event and producing a cut-off value for this system i3, while Basu and Ramakrishnan [9]
other event, these object transitions are replaced-bfransition. tackling the same problem found the cut-off tohen contrast to
Figure 7 displays part of theetbehavior of Spin Lock with the our technique, the method proposed in [9] is based on fixewt poi
object behavior included. The transitions highlighted by box computation and abstraction-based acceleration of piiepaf en-
belong to the actions where the object receives a requesteants vironment. As such, results obtained using Basu and Rastekri
either an acknowledgement that it is not-busy orazk saying it nan’s technique [9] depend on the quality of the abstractiod

is busy. Since we only care about the behavior of paramettriz  may not always terminate with smallest cut-off value.



8. CONCLUSION AND FUTURE WORK

Verification of correctness properties for parameterizedesns
is an important problem [13,15,18,19,21,23,29]. Congidgethat
this problem is undecidable in general [4], techniques andik-
tics for solving it for a subset of scenarios is an equally ont@nt
problem. To that end, computing the cut-off of the systenapea-
ter is shown to be an effective technique for solving the pater-
ized verification problem [18, 19, 21].

In contrast to the existing techniques, our approach, based
behavioral-automata composition, can be applied to angnpar
eterized systems independent of the communication togolttg
provides a fully-automatic method for obtaining systemaffifor
a parameterized system expressed using a standard auioaseth
modeling approach. Furthermore, effectively utilizingt®m de-
scriptions allows us to obtain a system-specific cut-officlvtin at
least 3 cases is found to be lower than previously discovesadds
(DME protocol, Dining Philosophers Protocol and Spin Lock)
system cut-off, to a large extent, dictates the state speteneeds
to be explored by a formal verification technique. The sysiin
approach of finding this cut-off that our approach providethius
an important and foundational advance towards improveldisita
ity of formal verification techniques.

Future work includes extending the theoretical and prakttic
treatment of behavioral-automata composition in sevérattions.
We plan to explore more expressive representation of potgdlat
can capture synchronous communication between processes a
parameterized systems with infinite-domain data.

9. ACKNOWLEDGEMENTS

This work was supported in part by the US National Sci-
ence Foundation under grants CNS-06-27354, CNS-07-092i7,

CAREER-08-46059. Thanks to David Samuelson and anonymous

ESEC/FSE '09 reviewers for critical feedback on the draft.

10. REFERENCES

[1] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine.

Regular model checking without transducers (on efficient

verification of parameterized systems).TIACAS pages

721-736, 2007.

P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso.

Regular model checking made simple and efficient. In

CONCUR pages 116-130, 2002.

[3] T. E. Anderson. The performance of spin lock alternative

for shared-memory multiprocessol&EE Trans. Parallel

Distrib. Syst, 1(1):6-16, 1990.

K. R. Aptand D. C. Kozen. Limits for automatic verificatio

of finite-state concurrent systenisf. Process. Lett.

22(6):307-309, 1986.

[5] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck.

Parameterized verification with automatically computed

inductive assertions. IBAV, pages 221-234, 2001.

P. Baldan, A. Corradini, and B. Kdnig. A framework for the

verification of infinite-state graph transformation system

Inf. Comput, 206(7):869-907, 2008.

P. Baldan, B. Kénig, and A. Rensink. Graph grammar

verification through abstraction. Dagstuhl Seminar

Proceedings 04241005.

[8] T. Ball, S. Chaki, and S. K. Rajamani. Parameterized
verification of multithreaded software libraries. TACAS
pages 158-173, 2001.

(2]

[4]

(6]

[7]

[9] S. Basu and C. R. Ramakrishnan. Compositional analgsis f
verification of parameterized systenisieor. Comput. Sgi.
354(2):211-229, 2006.

[10] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regy
model checking. IICAV, pages 403-418, 2000.

[11] A. Bouajjani, Y. Jurski, and M. Sighireanu. Reasonithguat
dynamic networks of infinite-state processes with global
synchronization. HAL - CCSD, 2006.

[12] A.Bouajjani, Y. Jurski, and M. Sighireanu. A generic
framework for reasoning about dynamic networks of
infinite-state processes. TACAS pages 690-705, 2007.

[13] E. Clarke, M. Talupur, and H. Veith. Environment abstian
for parameterized verification. MMCAI, 126-141, 2006

[14] E. M. Clarke, O. Grumberg, and S. Jha. Verifying
parameterized networks using abstraction and regular
languages. ICONCUR pages 395-407, 1995.

[15] E. M. Clarke, M. Talupur, and H. Veith. Proving ptolemy
right: The environment abstraction framework for model
checking concurrent systems. TACAS pages 33—-47, 2008.

[16] E. Dijkstra. Two starvation free solutions to a general
exclusion problem. EWD 625, Plataanstraat 5, 5671 AL
Neunen, The Netherlands.

[17] E. A. Emerson and V. Kahlon. Model checking large-scale
and parameterized resource allocation systemBADAS
pages 251-265, 2002.

[18] E. A. Emerson and V. Kahlon. Exact and efficient
verification of parameterized cache coherence protoaols. |
CHARME pages 247-262, 2003.

[19] E. A. Emerson and K. S. Namjoshi. Reasoning about rings.
In POPL, pages 85-94, 1995.

[20] E. A. Emerson and K. S. Namjoshi. Automatic verification
of parameterized synchronous systems (extended abstract)
In CAV, pages 87-98, 1996.

[21] E. A. Emerson, R. J. Trefler, and T. Wahl. Reducing model
checking of the few to the one. ICFEM, pp. 94-113, 2006.

[22] D. Fisman, O. Kupferman, and Y. Lustig. On verifying fiau
tolerance of distributed protocols. TACAS 315-331, 2008.

[23] S. M. German and A. P. Sistla. Reasoning about systems
with many processes. ACM 39(3):675-735, 1992.

[24] Y. Hanna, S. Basu, and H. Rajan. Behavioral automata
composition for automatic topology independent verifimati
of parameterized systems. Technical Report 09-17,
Computer Sc., lowa State U., 2009.

[25] C. N. Ip and D. L. Dill. Verifying systems with replicade
components in murphi. IGAV, pages 147-158, 1996.

[26] M. Llorens and J. Oliver. Introducing structural dynam
changes in petri nets: Marked-controlled reconfigurabts.ne
In ATVA pages 310-323, 2004.

[27] R. Milner. A Calculus of Communicating Systems
Springer-Verlag New York, Inc., 1982.

[28] A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive
verification with invisible invariants. ITACAS '01, 92-97

[29] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1,

infty)-counter abstraction. ICAV, pp. 107-122, 2002

M. Saksena, O. Wibling, and B. Jonsson. Graph grammar

modeling and verification of ad hoc routing protocols. In

TACAS pages 18-32, 2008.

P. Wolper and V. Lovinfosse. Verifying properties ofde

sets of processes with network invariantstia

International Workshop on Automatic Verification Methods

for Finite State Systempages 68-80, 1990.

[30]

[31]



