
Behavioral Automata Composition for Automatic Topology
Independent Verification of Parameterized Systems

Youssef Hanna Samik Basu Hridesh Rajan
Computer Science, Iowa State University

226 Atanasoff Hall, Ames, IA, USA
{ywhanna,sbasu,hridesh}@cs.iastate.edu

ABSTRACT
Verifying correctness properties of parameterized systems is a
long-standing problem. The challenge lies in the lack of guarantee
that the property is satisfied for all instances of the parameterized
system. Existing work on addressing this challenge aims to reduce
this problem to checking the properties on smaller systems with a
bound on the parameter referred to as thecut-off. A property sat-
isfied on the system with the cut-off ensures that it is satisfied for
systems with any larger parameter. The major problem with these
techniques is that they only work for certain classes of systems with
a specific communication topology such as ring topology, thus leav-
ing other interesting classes of systems unverified. We contribute
an automated technique for finding the cut-off of the parameterized
system that works for systems defined with any topology. Given the
specification and the topology of the system, our technique is able
to automatically generate the cut-off specific to this system. We
prove the soundness of our technique and demonstrate its effective-
ness and practicality by applying it to several canonical examples
where in some cases, our technique obtains smaller cut-off values
than those presented in the existing literature.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal Methods; D.2.4
[Software/Program Verification]: Model Checking

General Terms
Verification

Keywords
parameterized model checking

1. INTRODUCTION
Parameterized systems are systems consisting of homogeneous

processes, where the parameter indicates the number of suchpro-
cesses in the system. A parameterized system, therefore, describes
an infinite family of systems where instances of the family can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’09,August 23–28, 2009, Amsterdam, The Netherlands.
Copyright 2009 ACM 978-1-60558-001-2/09/08 ...$5.00.

obtained by fixing the parameter. Verification of correctness of such
systems amounts to verifying the correctness of every member of
the infinite family described by the system. For example, fordis-
tributed mutual exclusion protocols [31], the objective isto verify
that the critical section is accessed in a mutually exclusive fashion
regardless of the number of processes participating in the protocol.

Given a parameterized systemsys(n) containingn processes
and a safety or liveness LTL\X propertyϕ, verification of whether
sys(n) satisfiesϕ (denoted by∀n : sys(n) |= ϕ) is undecidable
in general [4]. A number of sound but incomplete verificationtech-
niques has been proposed and developed in the recent past, e.g.
those that rely on abstraction [13,15,23,29] and/or smart represen-
tation [1, 2, 6, 7, 10–12, 22, 26, 30] of the system behavior and the
property. In essence, these techniques depend on computingthe
invariant or the common global behavior ofsys(n) for all n and
identifying the smallestk < n such thatsys(k) exhibits that be-
havior. It can be shown thatsys(k) |= ϕ ⇔ ∀n ≥ k : sys(n) |=
ϕ, i.e., verification of an infinite family of systems is reduced to
verification of a single instance (thek-th instance) of the family;
wherek is referred to as thecut-off.

Our solution. We propose a new technique for identifying such a
cut-off k for a parameterized system. Unlike most existing work,
our technique is independent of the communication topologybe-
tween the processes in the parameterized system. Furthermore, our
technique does not depend on actual properties to be verifiedfor the
parameterized system; the results of our technique are applicable
to any properties of the formϕ(i) (involving any one process) and
ϕ(i, j) (involving any two processes dependent on each other). Our
technique is automatic and uses standard automata-representation
of the protocol behavior. There are two steps in our technique.
First, using the fact thatsys(n) = P‖P‖ . . . ‖P is the parallel
composition ofn processes each with behavioral specificationP ,
we introduce the notion of 1E-behavior capturing the behavior of
any oneprocess inany environment. In the second step, we enu-
merate the behavior ofsys(m) for m = 2, 3, . . . , n, and identify
the smallestsys(k) whose projected behavior on any one of the
participating processes simulates the 1E-behavior. We prove that
for all properties involving one or two processes,sys(k) satisfies
the properties if and only if∀n ≥ k : sys(n) satisfies the same
properties, i.e.,k is the cut-off for the parameterized system. Note
that such ak may not exist in general, which will result in non-
termination of our technique rendering it incomplete as expected.

Contributions. In summary, contributions of this work are:

1. We present an automated technique for verification of param-
eterized system which is independent of the communication
topology of the processes in the system. We prove the sound-
ness of our technique, i.e., if our method terminates then it
terminates with the smallest cut-offk.

2. Our technique is system specific and as such the computed
cut-off is also system specific. This allows us to obtain dif-
ferent bounds to different types of parameterized systems
even when the underlying communication topology of the
systems under consideration are identical. Emerson and
Namjoshi [19] proved that for parameterized systems with
ring topology where processes communicate through a to-
ken, the cut-offk is 4 for properties of the formϕ(i, j).
We show that tighter bounds can be obtained if the behavior
of the participating processes in the parameterized systemis
considered. For example, using our technique, simple pa-
rameterized token ring protocol has the cut-offk = 2, while
dining philosopher problem has the cut-offk = 3 for prop-
ertiesϕ(i, j) wherei andj are dependent on each other.

3. We present a number of case studies of parameterized sys-
tems with different communication topologies and show the
practical applicability of our technique.

Organization. The rest of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes our technique for
specifying a protocol using the Distributed Mutual Exclusion pro-
tocol as an illustrative example. Section 4 describes how the max-
imum behavior of a process in the context of any environment is
generated. Section 5 shows the procedure for generating thecut-off
size. Proof of soundness of our technique is presented in Section 6.
Section 7 describes our case studies and Section 8 concludes.

2. RELATED WORK
Techniques for verifying parameterized systems can be cate-

gorized as follows. One class of solutions [13, 15, 23, 29] re-
lies on reducing the problem of parameterized system verification
with infinite states to verification of its finite-state abstractions.
Another class of techniques analyze the behavior of parameter-
ized systems using smart representation and verification mecha-
nisms such as regular languages [1,2,10,22], petri-nets and graph-
grammars [6,7,11,12,26,30]. Others [5,28,31] apply automatic in-
duction to generate and verify invariants of the parameterized sys-
tems. Closest to our technique is the class of solutions thatfocus
on computing a cut-off of the system parameter [8,17–21,25].

Abstraction techniques include counter abstraction [23, 29] and
environmental abstraction [13, 15]. The idea behind counter ab-
straction is to abstract process identities, where every abstract state
contains an abstract counter denoting the number of processes in
the state. Environmental abstraction follows a similar approach;
however, the counting is done for the number of processes satis-
fying a given predicate. Typically these techniques eitherrequire
human guidance for obtaining the appropriate abstraction or are
applicable to a certain restricted class of systems and/or properties
(e.g., universal path properties).

Among the techniques that rely on smart representation mech-
anism are techniques based on regular language [1, 2, 10, 22]or
graph-based [6, 7, 26, 30] representations of the state-space of the
parameterized system. These approaches are typically applicable
for the verification of safety/reachability properties of parameter-
ized systems. Recently, petri net based representation hasbeen
proposed [12] where tokens in the petri net are used to denotethe
parameter of the system and a new logic, colored markings logic
(CML), is developed to reason about such petri nets. The work
provides a generic framework for representing parameterized sys-
tems and identifies a fragment of CML for which the satisfiability
problem is decidable.

Techniques based on induction use network invariants to reduce
the problem of parameterized system verification to a finite state

model checking problem [14,31]. The idea behind these techniques
is to find a network invariantI where the invariant is preserved
by all computation steps of the system. Therefore, ifI satisfies
the desired property specificationϕ then the parameterized system
also satisfiesϕ. While in most settings the invariant generation
requires manual guidance, Pnueliet al. [28] present a technique
where invariants are computed automatically once the appropriate
abstraction relation is provided.

Another interesting approach, which aims to reduce the param-
eterized system verification problem to an equivalent finite-state
one, is based on finding an appropriate cut-offk of the parameter
of the system. The objective is to establish that a property is satis-
fied by the system withk processes if and only if it is satisfied by
any number (≥ k) processes. Emerson and Namjoshi [19] provide
such cut-off values for different types of properties of parameter-
ized systems with ring topology.

In contrast to the above techniques, our approach is fully au-
tomatic, does not depend on a specific representation mechanism
of the system and/or property and is independent of the commu-
nication topology of the processes in the system. We presentan
algorithm (sound but incomplete) which takes as input the descrip-
tion of the parameterized system in terms of standard input/output
automata and establishes the cut-off of the parameter value. While
Emerson and Namjoshi [19] establish for the first time the cut-off
bound for any parameterized system with ring topology givena
specific type of property; we show that by considering the param-
eterized system being verified in the computation of the cut-off, a
tighter bound of the cut-off can be obtained. For instance, using
Emerson and Namjoshi’s approach [19], to verify the property that
in a parameterized system with ring topology two processes cannot
enter the critical section at the same, the cut-off size is 4;while the
cut-off value identified using our approach for a specific parame-
terized system with ring topology (token ring protocol) is only 2.
In short, while Emerson and Namjoshi [19] focus on obtaininga
generic cut-off for parameterized systems with a specific topology,
the central theme of our technique is to develop a generic approach
that can be applied to parameterized systems independent ofthe
communication topology.

3. PARAMETERIZED SYSTEM
A parameterized system can be described by the collective be-

havior of n homogeneousprocesses interacting with each other,
wheren is the system parameter. The key idea behind our approach
is to provide a mechanism for specifying the behavior of a process
in the parameterized system as a collection ofatomic steps, which
we callbehavioral automaton. An important property of our speci-
fication technique is that it enables automatic compositionof these
behavioral automata to obtain the full-behavior of a process in an
arbitrary environment.

The direct benefit of this property is that it helps us reduce the
problem of finding the cut-off valuek for the system parameter to
an equivalence detection problem between the full-behavior of a
process in an arbitrary environment and the parameterized system
of sizek. As we show in Section 5, by providing a sound (but
incomplete) algorithm, this problem can be easily automated.

To illustrate the terminology used in this paper, we will usethe
distributed mutual exclusion (DME) protocol [31] as the running
example. The goal of this protocol is to ensure that for a distributed
system ofn processes in a network with ring topology, only one
process in the system is in the critical section at a given point of
time. A token is passed between the different processes in the ring.
The process who holds the token is the only process able to enter
the critical section. Once it is out of the critical section,it can pass

Figure 1: Behavioral Automata for the DME Protocol

the token to its neighbor. The process may receive the token and
pass it directly to its neighbor without entering the critical section.

3.1 A Process as Behavioral Automata
A homogeneous process in our work is specified in terms of a

behavioral automaton, which describes an atomic side-effect free
action that the process can do. Each behavioral automaton isde-
fined in terms of the input/output behavior and the corresponding
observable events of the atomic action of the process as follows:

DEFINITION 3.1 (BEHAVIORAL AUTOMATON). A
behavioral automatonA = (Q, QI , QF , ∆, ∆I , ∆F , M), where

• Q is a nonempty set of states,

• QI ⊆ Q is a nonempty set of initial states,

• QF ⊆ Q is a nonempty set of final states,

• ∆ ⊆ Q×M ×Q is the transition relation,

• ∆I ⊆M ×QI is the initial transition relation,

• ∆F ⊆ QF ×M is the final transition relation,

• M is a nonempty set of events.

Notations. We write q
e
−→ q′ if (q, e, q′) ∈ ∆, •

e
−→ q if

(e, q) ∈ ∆I andq
e
−→ • if (q, e) ∈ ∆F .

To illustrate, consider the behavioral automata for the DMEpro-
tocol shown in Figure 1. In the figures, epsilon labels on transitions
are omitted. The first automatonSND in the figure models the pro-
tocol initiation, where a process generates and passes the token to
the next process. Typically the process that would generatethe to-
ken is decided using other distributed algorithms such as a leader-
election algorithm, which we do not model here. Upon receiving
a token (modeled as the automatonRCV) a process may choose
to exhibit the behavior described by either the automatonPASS
or ENTER, effectively passing the token forward (modeled as the
output eventtoken) or entering the critical section (modeled as
generating the output eventin that can only be consumed by a
process in the critical section). The last automatonLEAVE models
the behavior of a process leaving the critical section by consuming
eventin and passing forward the token.

Formally, the first automatonSND would be represented by the
set of statesQ = (Start,Idle). The transition relations for
SND are•

ǫ
−→ Start ∈ ∆I , where the leader process generates

a token without any input event,Start
ǫ
−→ Idle ∈ ∆, where

the process changes its stateStart of being the leader process
to Idle where it will wait for the token from its neighbor, and

finally Idle
token
−→ • ∈ ∆F , where the process sends the token to

its neighbor. Now the process is in stateIdle, it can do nothing
but wait for the token (represented by the automatonRCV).

Proceeding further, a protocol specification is defined as follows:

DEFINITION 3.2 (PROTOCOLSPECIFICATION). A Protocol
Specification is a setProt = {A1, A2, . . . , Am} such that∃i, 1 ≤
i ≤ m : •

ǫ
−→ q ∈ ∆Ii

3.2 A Parameterized System
Next, we describe the behavior of a parameterized system,

sys(n), containingn processes each executing according to a given
protocol Prot. Intuitively, in sys(n) we consider that at any in-
stance of the parameterized system the processes can be at any
state in any automaton inProt. The interaction between the two
processes occur when one of them is at a state ready to initiate an
output event and the other is at a state that can consume that event.
For example, if a process is at stateq1 of the automatonSND in Fig-
ure 1 and the other is at a stateq0 of the automatonRCV, they can
communicate via the eventtoken. However, to initiate the behav-
ior of the system, it is necessary to have at least one processto be in
a state of an automaton inProt which can move without any exter-
nal trigger, i.e., without being triggered by any input event provided
by the output of another process. The condition in Definition3.2
establishes that there exists such an automaton in the specification
which can make a move without any external trigger (absence of
input trigger being represented byǫ). Initially, at least one of the
processes insys(n) must follow this automaton behavior.

DEFINITION 3.3 (TOPOLOGY). Given a protocol specifica-
tion Prot = {A1, A2, . . . , Am}, a topology is a set of tu-

ples, Topo ⊆ M × N × N such thatM =

m
[

i=1

{Mi :

Mi is set of events inAi ∈ Prot} and N is the set of processes
in a parameterized system. A tuple(e, i, j) ∈ Topo implies that
outpute from i-th process can be consumed by thej-th process.

A topology serves to restrict process communication patterns.
For example, in the DME protocol, when a processi sends the
eventtoken, only the process on its righti+1 is able to consume
this event, (token, i, i + 1). Forsys(2), the topology is trivially
simple; however, for other protocols (e.g. the dining philosophers
protocol described in Section 7.1) the topology plays a major role
in distinguishing between the processes.

DEFINITION 3.4 (CONFIGURATION OFi-TH PROCESS).
Given a protocol specificationProt = {A1, A2, . . . , Am}, a con-
figuration of thei-th processs = (Q× Prot×M), such that

Q =

m
[

i=1

{Qi : Qi is set of states inAi ∈ Prot}

M =
m
[

i=1

{Mi : Mi is set of events inAi ∈ Prot}

The configuration of a process determines what the process is
able to do at a certain point of time. For instance, the initial config-
uration for the process that is generating the token in the distributed
mutual exclusion protocol is (Start, SND, ∅), where∅ is the set
of output events produced by this process, and it is empty because
it has not produced the output event (token) to be consumed by
another process yet. The initial configuration of the rest ofthe pro-
cesses is (Idle, RCV, ∅), where the processes are idle and waiting
to receive the token.

In the following, we present the formal definition ofsys(n).

We use the following notation: for a set
n

Y

i=1

{(Q × Prot × M},

any members in the set containsn tuples where the first, second
and third elements of the tuple belong to the setsQ, Prot andM
respectively. We useqi(s), ai(s) andmi(s) to denote the value
q ∈ Q, A ∈ Prot ande ∈M respectively of thei-th tuple, i.e., the
i-th tuple ofs is (qi(s), ai(s), mi(s)).

DEFINITION 3.5 (PARAMETERIZED SYSTEM). Given a pro-
tocol specificationProt = {A1, A2, . . . , Am}, a parameterized
systemsys(n) with n processes, each of which behaves according
to Prot, is defined as(S, SI , T, Topo), wheres ∈ S containsn
tuples and thei-th element of the tuple represents the configura-
tion of thei-th process insys(n), sI ∈ SI represents the initial
configuration of the processes,T represents the transition relation
between one configuration of the processes to another and finally
Topo is the topology of the system. Here,S, SI , andT are defined
as:

• S ⊆
n

Y

i=1

(Q× Prot×M)

• SI ⊆ S, where∀s ∈ SI ,∀1 ≤ i ≤ n : mi(s) = ∅

• T ⊆ S ×M×M× S

We say thats
e/e′

−→ s′ ∈ T if one of the following holds:

1. ∃i ∈ [1, n] : ∃Ax :
2

6

4

e = ǫ ∧ •
e
−→ qi(s) ∈ ∆Ix ∧

qi(s
′) = q ∧ q

e′

−→ • ∈ ∆F x ∧ ai(s
′) = Ax ∧

mi(s
′) = mi(s) ∪ {e

′}

3

7

5

∧ ∀j ∈ [1, n], j 6= i :
qj(s) = qj(s

′) ∧ aj(s) = aj(s
′) ∧ mj(s) = mj(s

′)

2. ∃i, j ∈ [1, n] : ∃Ax :
2

6

6

6

6

4

e ∈ mj(s) ∧ •
e
−→ qi(s) ∈ ∆Ix ∧

qi(s
′) = q ∧ q

e′

−→ • ∈ ∆F x ∧ ai(s
′) = Ax ∧

mi(s
′) = mi(s) ∪ {e

′} ∧ mj(s
′) = mj(s)\{e}

∧ qj(s
′) = qj(s) ∧ aj(s

′) = aj(s) ∧
(e, j, i) ∈ Topo

3

7

7

7

7

5

∧ ∀k ∈ [1, n], k 6= i, k 6= j :
qk(s) = qk(s′) ∧ ak(s) = ak(s′) ∧mk(s) = mk(s′)

The transition relations in the above definition can be explained
as follows. The first condition represents an autonomous move of
the i-th process without any input event. Whatever event thei-th
process sends due to that autonomous move is kept in the set ofout-
put events to be consumed by processes (following the topology).
The configurations of the other processesj 6= i remain unaltered.
The second condition represents the case wherei-th process con-
sumes an output event in the list of outstanding events of thej-th
process, where it is stated inTopo that processi is the neighbor to
processj that can consume such an event. Processi puts in its set
of outputs the output event resulting from such an action.

To illustrate our definition of a parameterized system, let us con-
sider a system of two processes (sys(2)) that are running the DME
protocol. Figure 2 shows part of this system. For this system, the
topology is defined as follows.

Topo = {(token, 1, 2), (token, 2, 1), (in, 1, 1), (in, 2, 2),

(choose, 1, 1), (choose, 2, 2)}

The first transition in the figure is an example of a transitionfol-
lowing item 1 of the transition relation in Definition 3.5. The pro-
cess that is generating the token is at the initial stateStart, its

Figure 2: Part of sys(2) for DME. Full sys(2) is in our TR [24].

automaton isSND and its set of output events to be consumed by
others is empty. The other process is waiting for an output event,
so it is in stateIdle, in automatonRCV, also with an empty set of
output events. Without any input, the first process starts bysending
the output eventtoken. The set of output events for that process
now has the eventtoken. The configuration of the other process
configurations remains the same as this transition concernsonly the
first process.

The second transition in the figure is an example where a process
consumes an event sent by another process. Process1 has the event
token pending in the set of output events, so according to the
topology of the protocol, the process on its right (2) can consume
this event. Therefore, process2 takestoken as input, so now the
set of output events of process1 is ∅. Process2 does not need
to change its automaton since the current automaton is allowed to
receive atoken event while in stateIdle. After consuming this
event, process2 makes an autonomous transition that changes its
state fromIdle to Ncs and produces the output eventchoose
that allows to choose either to pass the token (top right state of the
figure) or enter the critical section (bottom right state).

DEFINITION 3.6 (PROJECTION). Given a parameterized sys-
temsys(n) = (S, SI , T, Topo), its projected behavior w.r.t. pro-
cesses inR is sys(n) ↓R = (S ↓R, SI ↓R, T ↓R, Topo), such
that

• S↓R ⊆
[

i∈R,s∈S

{qi(s)} ×
[

i∈R,s∈S

{ai(s)} ×
[

i∈R,s∈S

{mi(s)}

• SI↓R ⊆
[

i∈R,s∈SI

{qi(s)}×
[

i∈R,s∈SI

{ai(s)}×
[

i∈R,s∈SI

{mi(s)}

• s↓R
m/m′

−→ s′↓R ∈ T↓R⇐

s
m/m′

−→ s′ ∈ T ∧ qi(s) 6= qi(s
′) ∨ ai(s) 6= ai(s

′).

In Figure 2, the projection against the 1st processsys(2)↓{1} will

include the first transition (q
ǫ/token
−→ q′) and the top right transition

(q
token/choose
−→ q′) in the figure because these transitions affect the

state and/or automaton of the first process (the effect of thetop
right transitions is not shown in the figure, where the first process
receives the token and changes its automaton fromSND toRCV and
its state fromIdle to Ncs). Projection against the second process
sys(2)↓{2} will include all the transitions in the figure except for

the first one and the top right one (q
token/choose
−→ q′), since these 2

transitions do not affect the state and/or automaton of process2.

4. PROCESS WITH ANY ENVIRONMENT
At its core, our approach depends on the computation of the be-

havior of one process in the parameterized system in the context
of anyenvironment. Ifsys(n) = P1‖P2‖P3‖ . . . ‖Pn is a param-
eterized system containingn number of processes, each of which

Figure 3: The Behavior of a Process in any Environment for theDistributed Mutual Exclusion Protocol [31]

behaves according to a given protocolProt, then any environment
of a processPi (i ∈ [1, n]) is represented by any number of other
processes (∈ {Pj : j ∈ [1, n] ∧ j 6= i}) in any state ofProt.
Intuitively, this captures the maximal behavior ofPi in any envi-
ronment as per the protocol specificationProt. We will refer to
such behavior of any process in the context of any environment for
a parameterized systemsys(n) as 1E-behavior ofsys(n). We in-
troduce the notion⊗-composition (Definition 4.1) of automata in
Prot and subsequently compute the 1E-behavior (Definition 4.2).

DEFINITION 4.1 (⊗-COMPOSITION). GivenAx, Ay ∈ Prot,
we define Ax ⊗ Ay as a tuple
(Qxy, QIxy , QFxy , ∆xy , ∆Ixy , ∆Fxy , Mxy), where

• Qxy = [Qx × {Ax}] ∪ [Qy × {Ay}]

• QIxy = [QIx × {Ax}] ∪ [QIy × {Ay}]

• QFxy = [QFx × {Ax}] ∪ [QFy × {Ay}]

• ∆xy =

2

6

6

6

6

4

{(q, Ai)
e
−→ (q′, Ai) : i ∈ {x, y}∧

q
e
−→ q′ ∈ ∆i}

S

{(q, Ai)
e
−→ (q′, Aj) : i, j ∈ {x, y}∧

q
e
−→ • ∈ ∆Fi

∧ •
e
−→ q′ ∈ ∆Ij

}

3

7

7

7

7

5

• ∆Ixy = {•
e
−→ (q, Ai) : i ∈ {x, y} ∧ •

e
−→ q ∈ ∆i}

• ∆Fxy = {(q, Ai)
e
−→ • : i ∈ {x, y} ∧ q

e
−→ • ∈ ∆i}

• Mxy = Mx ∪My

In this definition, the states ofAx⊗Ay include the states ofAx and
Ay coupled with the corresponding automaton. The initial and final
state-sets are similarly defined. The transition relation∆xy denot-
ing autonomous transitions of the automatonAx ⊗ Ay includes
the autonomous transitions of the individual transitions (first argu-
ment of the union operation) and also the transitions resulting from
chaining the output of one automaton to the input of the other. A
key property of this definition is that it is general enough toallow
loops via input/output chaining of the participating automata. The
input and output transitions ofAx ⊗ Ay contain the input and the
output transitions of individual automaton. Intuitively,this implies
that⊗-composition keeps the resulting automatonAx⊗Ay opento
communicate with other automaton in subsequent⊗-composition
via the input/output events ofAx andAy. The event set ofAx⊗Ay

is the union of the event set ofAx andAy.

DEFINITION 4.2 (1E-BEHAVIOR). Given a protocol specifi-
cation Prot = {A1, A2, . . . , Am}, 1E-behavior is obtained from
⊗m

i=1Ai and is defined as a tuple(Q1E, QI1E, ∆1E), where

• Q1E ⊆ of set of states in⊗m
i=1Ai

• QI1E, the set of start states,⊆ of set of start states in⊗m
i=1Ai

• ∆1E ⊆ Q1E×IO-Events×Q1E such thatIO-Events =
{τ} ∪ (M×M), and

– q
e/e′

−→ q′ ∈ ∆1E ⇐

∃Ax : q′
e′

−→ • ∈ ∆Fx ∧ •
e
−→ q ∈ ∆Ix

– q
τ
−→ q′ ∈ ∆1E ⇐
∃Ax, Ay, x 6= y : q

e
−→ • ∈ ∆Fx ∧ •

e
−→ q′ ∈ ∆Iy

The 1E-behavior of a protocol captures the maximum behavior
of a processi in the context of any environment for the parame-
terized systemsys(n). As per Definition 4.2, for every transition

q
e/e′

−→ q′, e is the input event forq ande′ is the output event forq′.
Figure 3 shows the 1E-behavior of the distributed mutual exclusion
protocol. The first state in the figure (Start, SND) takesǫ as in-
put event and state (Idle,SND) produces the output eventtoken,

therefore there is a transitionq
ǫ/token
−→ q′ between these 2 states

(which models the behavior of the automatonSND in Figure 1).
Theτ transition between the states (Idle, SND) and (Idle, RCV)
means that the output of the former is the same as the input of the
latter. This modelschaining the output event of automatonSND
with input event of automatonRCV in Figure 1. The key property
of the 1E-behavior is captured by the following theorem.

THEOREM 1. Given a protocol specificationProt = {A1, A2,
. . . , Am} and a parameterized systemsys(n) containingn pro-
cesses behaving as perProt, 1E-behavior captures the behavior of
any process insys(n) in the context of any environment.

Proof Sketch:We prove that every sequence of behavior insys(n)↓
{i} in terms of input/output events is a subsequence of events from
some start state in 1E-behavior. Let the first event insys(n)↓{i} be
e/e′ (e 6= ǫ). This must be present in 1E-behavior for the follow-
ing reason.sys(n)↓{i} is able to make a move on inpute because
there exists some other process that can provide the evente as out-
put. I.e., there exists some behavioral automataAx ∈ Prot, with a
transitionq

e
−→ • ∈ ∆F x. Furthermore, ase/e′ is the input/output

event-pair performed by thei-th process, there exists an automaton

Ay ∈ Prot such that•
e
−→ q′ ∈ ∆Iy andq′′

e′

−→ • ∈ ∆F y

(see item 2 in Definition 3.5). Therefore, from the transition rela-
tion of 1E-behavior (Definition 4.2), there exists the samee/e′ in
1E-behavior. Proceeding further, let the next event insys(n)↓{i}
beb/b′. The 1E-behavior will also provide this input/output event-
pair. As the inputb to the i-th process will be provided by some
other process, following the same reasoning as above, a chaining
of behavioral automata inProt can be realized to obtain the same
input/output event-pair in 1E-behavior.

5. FINDING THE CUT-OFF
In this section, we describe the procedure to compute the cut-

off k of a parameterized systemsys(n) executing a given protocol
Prot. Informally, the cut-offk is such that satisfiability of prop-
erties bysys(n) for any n ≥ k can be inferred from the results

of verifying the properties againstsys(k). We focus on properties
that involve one parameterized process or two parameterized pro-
cesses that are dependent on each other. Properties of concern are
safety (something bad does not happen) and liveness (something
good will eventually happen).

DEFINITION 5.1 (CUT-OFF). Given a protocol specification
Prot = {A1, A2, . . . , Am} and a parameterized systemsys(k)
containingk processes behaving as perProt, k is said to be the
cut-off if and only if the following holds:

∀i, 1 ≤ i ≤ k : sys(k) |= ϕ(i)⇔
∀n ≥ k,∀i, 1 ≤ i ≤ n : sys(n) |= ϕ(i)

∀i, j, 1 ≤ i, j ≤ k, i 6= j : sys(k) |= ϕ(i, j)⇔
∀n ≥ k, ∀i, j, 1 ≤ i, j ≤ n, i 6= j : sys(n) |= ϕ(i, j)

whereϕ(i) and ϕ(i, j) represent properties involving one (thei-
th process) and two (i-th and j-th processes) in the parameter-
ized system respectively, and in case ofϕ(i, j), the i-th and j-th
processes are dependent on each other or communicate through a
non-parameterized process.

In the next section, we will prove thatk is a cut-off if and only if
sys(k) can replicate all possible behavior captured by 1E-behavior
obtained from theProt specification. Specifically, ifsys(k) “sim-
ulates” 1E-behavior, thenk is a cut-off. The simulation relation
between two states is defined as follows.

DEFINITION 5.2 (SIMULATION [27]). Given a labeled tran-
sition system (a system where transitions are labeled with events),
states is said to be simulated by a statet, denoted bys ≺ t, if and
only if

∀e, s′ : s
e
−→ s′ ⇒ ∃t′ : t

e
−→ t′ ∧ s′ ≺ t′ (1)

We say that a labeled transition systemLTS1 is simulated by a
labeled transition systemLTS2, denoted byLTS1 ≺ LTS2, if
and only if for all start statess of LTS1, there exists a start statet
in LTS2, such thats ≺ t.

Proceeding further, our algorithm for computing the cut-off
based on the above simulation relation is implemented in Proce-
dureCutOff.

ProcedureCutOff (Prot)
Compute 1E-behavior fromProt
k ← 2
while truedo

if ∃ states in sys(k) : 1E-behavior≺ s then
return k;

else
k++;

end if
end while

ProcedureCutOff enumerates for different values ofk the be-
havior ofsys(k), where each process behaves according to proto-
col specificationProt, and checks whethersys(k) contains a state
that simulates 1E-behavior for the givenProt. If for a specific value
of k such a state is present, then that value ofk is the cut-off. Recall
from Definition 4.2 that 1E-behavior containsτ transitions repre-
senting chaining of output from one automaton to the input ofan-
other. However, such transitions are not present in thesys(k) def-
inition (Definition 3.5). Furthermore, for some parameterized sys-
tems, there can be one process that is not parameterized. In other

words, there is only one process of that type in all instancesof the
parameterized system. For instance, ifn processes have access to
a shared memory, then the shared memory is a non-parameterized
process in the system. Therefore, since we only care for properties

related to parameterized processes, any transitionq
e/e′

−→ q′ in the
1E-behavior and thesys(k) of these systems such that

∃Ax : q′
e′

−→ • ∈ ∆Fx ∧ •
e
−→ q ∈ ∆Ix

whereAx is a behavioral automaton for the non-parameterized pro-
cess is substituted with aτ transition. An example of a parameter-
ized system with a non-parameterized process is presented in Sec-
tion 7.2. We use the following variation of Equation 1 in our defi-
nition of simulation.

∀e, s′ : s
τ∗e
−→ s′ ∈ 1E-behavior⇒ ∃t′ : t

τ∗e
−→ t′ ∈ sys(k)∧s′ ≺ t′

In the above,τ∗e represents moves of zero or moreτ transitions
followed by ane transition.

As the verification of parameterized system is undecidable [4],
our procedure may not terminate; however, if it terminates,it will
return the smallest cut-off valuek for the corresponding protocol
specificationProt. We will prove the soundness of the procedure
in Section 6.

Figure 2 shows part of thesys(2), two processes executing DME
protocol as specified by Figure 1. The systemsys(2) simulates the
corresponding 1E-behavior (see Figure 3) of the protocol. There-
fore, for the DME protocol in a ring topology,k = 2 is the cut-off.
It is worth mentioning that [19] provided a general cut-off valuation
of 4 for verifying mutual exclusion property of any parameterized
system with ring topology (e.g., DME protocol). However, aswe
consider the system description (sys(k)) in our technique, we are
able to identify a tighter cut-off value for the DME protocol.

6. PROOF OF SOUNDNESS
We prove that given a protocol specificationProt and a parame-

terized systemsys(n), the outputk of ProcedureCutOff described
in Section 5 is the cut-off for protocolProt as per the Definition 5.1.
The following lemmas will form the basis of our proof.

LEMMA 1. For any parameterized systemsys(k),

∀i, 1 ≤ i ≤ k : sys(k) |= ϕ(i)⇔ sys(k)↓{i} |= ϕ(i)

Proof: The proof is immediate from the nature of the propertyϕ(i)
and the projection operation (Definition 3.6). The propertyis only
concerned with the configurations and the events related to thei-th
process and as such, configurations and the events related solely
to the processesj 6= i are irrelevant for the satisfiability of the
property bysys(k).

LEMMA 2. ∀k, 1 ≤ k ≤ n, ∀i, 1 ≤ i ≤ k : sys(k)↓{i} ≺
sys(n)↓{i}

Proof: The proof is realized by contradiction. Assume that there
exists a states↓{i} in sys(k)↓{i} reachable from its start state
after a sequence of events (of thei-th process) such thats↓{i} is
not simulated by any of the states insys(n)↓{i} reachable from its
start state via the same sequence of events.

As the same event sequence is considered from the respective
start states, there exists somet↓{i} in sys(n)↓{i} reachable via
this event sequence, such that the configuration of thei-th process
in t↓{i} is the same as that of thei-th process ins↓{i}. However,

ass↓{i} is not simulated byt↓{i}, there exists at least one action
of thei-th process froms↓{i} that is not present fromt↓{i}.

This action cannot solely be output event (of the formǫ/e) of
the i-th process; these types of events do not depend on the envi-
ronment of the process and can always occur as long as the process
is in a suitable configuration. Therefore, the action must involve
an input event where thei-th process relies on its environment to
provide such an input.

In other words, at states↓{i} of sys(k)↓{i}, thei-th process can
move on an input event while at statet↓{i} of sys(n)↓{i}, thei-th
process cannot make a move on the same input event. This implies
that the environment of thei-th process at states in sys(k) pro-
vides the required input, while the environment of thei-th process
at any statet in sys(n) is unable to provide the same input. Let
the neighbor of thei-th process, as per the topology of the system,
responsible for providing this input bej1-th process. Therefore,
in sys(k), thej1-th process is able to provide the input at states,
while thej1-th process insys(n) is unable to do so as it is waiting
for its own neighbor, sayj2-th process.

Proceeding further, the input to thei-th process at all statest
(s.t. t↓{i} = s↓{i}) in sys(n) is disabled as it is waiting for
j1, j2, j3, . . . processes to move to their respective configurations
such thatj1-th process can provide the input. However, that is not
the case at states in sys(k). As processes in bothsys(k) and
sys(n) behave according to the same protocol specificationProt,
the above can only happen whenn < k. This leads to contradiction
proving that our initial assumption is incorrect.

THEOREM 2. Given a protocol specificationProt and a param-
eterized systemsys(n) where each process behaves as described in
Prot,

∃ states in sys(k) : 1E-behavior≺ s⇔
(∀i, 1 ≤ i ≤ k : sys(k) |= ϕ(i)⇔

∀n ≥ k,∀i, 1 ≤ i ≤ n : sys(n) |= ϕ(i))

In the above,1E-behavior is computed from the specificationProt.
Proof: Let s = (c1, c2, . . . , ck) be the state insys(k) that simu-
lates 1E-behavior andcj (1 ≤ j ≤ k) be the configuration (Def-
inition 3.4) of thej-th process ats. Therefore, using Theorem 1,
s captures all possible behavior of some process insys(k) and its
environment. For thel-th process with configurationcl in s, let El

denote its environment, i.e.,

El =
k

[

p=1

{cp : p 6= l}. (2)

As all processes in the parameterized systemsys(k) behave
according to the same protocol specificationProt, for a specific
process, thei-th process, there exists at mostk different states
s1, s2, . . . , sk in sys(k) such that for eachl (1 ≤ l ≤ k), thei-th
process is in the configurationcl with the environmentEl (Equa-
tion 2) at statesl. Therefore, all possible behavior of some process
and its environment as captured by 1E-behavior of theProt, is ex-
hibited by thei-th process insys(k). I.e.,

sys(k)↓{i} exhibits all possible behavior ofi-th process insys(k)

⇔ (∀i, 1 ≤ i ≤ k : sys(k)↓{i} |= ϕ(i)⇔ sys(k) |= ϕ(i)
(From Lemma 1)

⇔ (∀i, 1 ≤ i ≤ k : sys(k)↓{i} |= ϕ(i)⇔
∀n, n ≥ k, ∀i, 1 ≤ i ≤ k : sys(n)↓{i} |= ϕ(i))

(From Lemma 2)

⇔ (∀i, 1 ≤ i ≤ k : sys(k) |= ϕ(i)⇔
∀n, n ≥ k, ∀i, 1 ≤ i ≤ k : sys(n) |= ϕ(i))

(From Lemma 1)

Next we prove the following theorem

THEOREM 3. Given a protocol specificationProt and a param-
eterized systemsys(n) where each process behaves as described in
Prot,

∃ states in sys(k) : 1E-behavior≺ s⇔
(∀i, j, 1 ≤ i, j ≤ k, i 6= j : sys(k) |= ϕ(i, j)⇔

∀n ≥ k,∀i, j, 1 ≤ i, j ≤ n, i 6= j : sys(n) |= ϕ(i, j))

where the behavior of one process (say thej-th process) is depen-
dent on the other (say thei-th process) or both processesi and j
communicate through a non-parameterized process.

Proof: The proof of the theorem relies on the following observa-
tions. For brevity, we omit the proofs of the statements; theproofs
being similar to Lemmas 1 and 2.

∀i, j, 1 ≤ i,≤ k, i 6= j : sys(k) |= ϕ(i, j)⇔
sys(k)↓{i, j} |= ϕ(i, j)

∀k, 1 ≤ k ≤ n, ∀i, j, 1 ≤ i, j ≤ k, i 6= j :
sys(k)↓{i, j} ≺ sys(n)↓{i, j}

(3)
Recall that 1E-behavior captures the behavior of any processi and
its environment. It does not distinguish between the processes in
the environment, i.e., the environment comprises of all thepro-
cesses with which the processi interacts directly or indirectly.
Therefore, a states in sys(k) simulating 1E-behavior implies that
the state captures all possible behavior of a processi and its envi-
ronment containing another processj dependent oni. As in The-
orem 2, we consider environments of pairs of processes in state s.
Proceeding further, we fix the pairi, j and state that there exists at
mostk different states for this pair of processes which collectively
captures all possible behavior of pair of processes as per the 1E-
behavior. Finally, the proof follows from the statements inEqua-
tion 3.

THEOREM 4 (SOUNDNESS). If Procedure CutOff termi-
nates, the return valuek is the cut-off as per the Definition 5.1.

Proof: The proof follows from Theorems 2 and 3.

REMARK 1. The proposed algorithm addresses the problem of
verifying properties of the formϕ(i, j) wherei andj are parame-
terized processes and the behavior of process (say thej-th process)
is dependent on the other process (say thei-th process). In other
words, actions byj-th process are done as a direct result (or in
response) to actions done by thei-th process, or they communi-
cate with each other through a non-parameterized process (exam-
ple in Section 7.2). Note that processesi andj need not be neigh-
bors. For instance, in the DME protocol, processj cannot start any
behavior until receiving a token generated by processi, therefore
the behavior of processj is dependent on processi; however pro-
cessj need not be directly connected to processi where the token
can be passed byn− 2 processes before reaching processj.

7. CASE STUDIES
We have worked several nontrivial examples to validate our ap-

proach: the dining philosopher protocol [16] and Spin lock,a lock-
ing protocol for mutual exclusive access to an object [3]. Wecom-
pared our results with that obtained using existing work. Wefound
that the cut-off obtained by our technique is either smalleror equal
to the cut-off produced by existing techniques. Furthermore, in
contrast to existing techniques which are either applicable to pa-
rameterized systems with specific topology or rely on smart repre-
sentation and/or abstraction of the system behavior, our technique

(a) (b)

Figure 4: (a) The Behavioral Automata for the Dining Philosophers Protocol. (b) Part of the Behavior of a Philosopher Process

uniformly handles systems with different topologies and isbased
on a standard transition system based representation.

7.1 Dining Philosophers Protocol
Dining philosophers protocol [16] models a classic multi-

process synchronization problem. Among others, Emerson and
Kahlon [17] have used it as a candidate parameterized system. For
this protocol, the number of philosophers is the system parameter.
The standard definition models processes as philosophers sitting in
a circle (a ring topology) with a fork between each 2 philosophers.
The main objective of a philosopher process is to acquire thefork
to its left and right and start eating. We model this protocolusing
the behavioral automata shown in Figure 4 (a).

The first automatonLFT in this figure represents the behavior of
a philosopher when it decides that it wants the left fork and asks its
neighbor for it. The automaton containsQ = (q0, q1) whereq0 =
NotEating, andq1 = WaitLeft. The transition relations are
•

ǫ
−→ q0 ∈ ∆I , where the philosopher initiates this behavior with-

out any input event,q0

ǫ
−→ q1 ∈ ∆, where the philosopher decides

that it wants the left fork so it changes its state fromNotEating

to WaitLeft, and finallyq1

ask_left
−→ • ∈ ∆F , where the philoso-

pher sends the request for the left fork to its neighbor. Other au-
tomata are similar in nature.

Given this protocol specification, using our technique, we would
like to find the smallest number of processes (k) for this param-
eterized system such that verifying any correctness property on
a system withk processes is necessary and sufficient to say that
the property is true for any system involvingn processes for any
n > k.
Behavior of a Process in Any Environment. To that end, the
first step in our technique is to find the behavior of a process in
any environment (see Section 4). To compute this, one would start
by composing the automata described in Figure 4(a) in accordance
with the definition of the composition operator (⊗). This will be
repeated until all the automata in Figure 4(a) are composed and the
composition satisfies the Definition 4.2 for 1E-behavior.

Figure 4(b) shows part of this 1E-behavior. The transition be-
tween state (NotEating, LFT_FREE_NE) on the bottom left of
the figure and state (NotEating, LFT_FREE_NE) on the bottom
right models an internal transition in automatonLFT_FREE_NE
in Figure 4(a)). Theτ transition between the states (WaitLeft,
LFT) and (NotEating, LFT_FREE_NE) models thechaining
between automataLFT and LFT_FREE_NE, where the output
event of the former is equal to the input event of the latter.

Cut-off Value for the System Parameter. Once the 1E-behavior
describing the behavior of one philosopher in the context ofany en-

vironment is generated, the next step is to find the smallest network
that a philosopher can actually exhibit this behavior. The size of
such network is the cut-off. In order to find this cut-off, we follow
ProcedureCutOff described in Section 5, where we start building
a system of 2 philosophers (sys(2)) and check if there is a state
in this system that simulates 1E-behavior. Until we find a system
with a state that simulates 1E-behavior, we increase the number of
philosophers of the system.

Figure 5: Part of sys(2). Full sys(2) is in our TR [24].

Part of the systemsys(2) for 2 philosophers is displayed in Fig-
ure 5. The first state in the figure is the initial configurationwhere
all philosophers are not eating. The first transition is an example
where the second philosopher sends a request for the left fork. The
changes in the state configurations are highlighted in bold.

Unlike the DME protocol, 1E-behavior for dining philosophers
is not simulated bysys(2). The reason is that for 2 philosophers,
some states in 1E-behavior are not simulated insys(2). For in-
stance, in 1E-behavior in Figure 4(b), from state (WaitLeft,
LFT) both the states (NotEating, LFT_FREE_NE) and (Eat,
LFT_BUSY_EAT) are reachable throughτ transitions where tran-

sitions(NotEating,LFT_FREE_NE)
ask_left/left_free

−→ q′ and

(Eat, LFT_BUSY_EAT)
ask_left/left_taken

−→ q′′ are then possible.
Therefore, forsys(2) to simulate 1E-behavior, there should be a

states in sys(2) with both output transitionss
ask_left/left_free

−→

s′ ands
ask_left/left_taken

−→ s′′. No state insys(2) can have both
these output transitions. Since only 2 philosophers and 2 forks ex-
ist in the system, the reply for a request of the left fork willeither
be that the fork is busy or free, but no one state can have both
replies as output transitions. In case there are 3 philosophers, this
is possible because of the asynchronous nature of our modeling;
so 2 philosophers can receive 2 requests for left fork from their
neighbors, where one of the recipients is eating and the other is
not eating. Therefore, there will be one state insys(3) where it is
possible to have both output transitions: one corresponding to the
philosopher eating that replies that the fork is busy and theother to
the one that is not eating that replies that the fork is free.

Sys(3) can simulate 1E-behavior, therefore the cut-off for this
protocol is3 (sys(3) is presented in our report [24]).

Topology of the System.For the parameterized systemsys(k) to
exhibit the intended behavior of the protocol, the protocoltopology
needs to be stated while building the system. Consider in theDin-
ing philosopher protocol if we have 3 philosophers and no topol-
ogy was stated, then a philosopher can ask its same neighbor for
left and right forks, while this is not possible. The reason is that
the behavioral automata does not enforce any kind of topology in
order to ensure that the composition of automata will present the
behavior of one process in the context ofanyenvironment. There-
fore, the topology of the system needs to be stated when building
the parameterized systemsys(k). For example, when philosopher
i sends the eventask_left, only the philosopher on its lefti− 1
is able to consume this event, where (ask_left, i, i−1) ∈ Topo.
As for eventask_right, the philosopher on the right of philoso-
pheri, the(i + 1)-th philosopher, is the one who can receive this
event from philosopheri, denoted as (ask_right, i, i + 1).

Comparison with other work. Emerson and Kahlon [17] present
the first fully automated verification for the dining philosophers
protocol. A system in their technique is defined using two sets,
one for processes (philosophers) and one for tokens (forks). They
prove that reasoning about deadlock characteristics, safety and live-
ness properties for a pair ofadjacent processesfor arbitrary rings
can be reduced to a ring of size at most5. However, we obtain a
tighter cut-off value3 due to the fact that the behavior of the par-
ticipating processes is considered in our technique. WhileEmer-
son and Namjoshi [19] found that the cut-off for systems withring
topologies for propertiesϕ(i, i+1) (properties of neighboring pairs
of processes) is3, the technique in [19] requires a token passing
model, where a single token is transmitted in a clockwise direction,
thus it is not applicable to the dining philosophers that does not
follow such a model.

7.2 Spin Lock
Spin locks [3] offer a simple mechanism to realize mutually ex-

clusive access of objects by threads. The object can have twostates:
not-busy (when is not accessed by any thread, stateNB) and busy
(when it accessed by some thread, stateB). A not-busy object, upon
receiving areq from a thread, replies back with anack message
and behaves like a busy object. A busy object, on the other hand,
denies all requests from threads using anack message or goes to
a not-busy state on receiving arel (release) signal from the lock
releasing thread. Each thread process can lock an object if it re-
ceivesack in response to areq signal. This system follows a star
topology, where all processes are connected to the object.

The behavioral automata for threads and the objects in the Spin
Lock are displayed in Figure 6(a) and (b) respectively.

Behavior of a Process in Any Environment. Unlike the DME
and Dining Philosophers protocol, the behavior of the system in
Spin Lock is dependent on an object that is not a parameter of the
system. In other words, there can ben processes in the system, but
only one object can be present in the system. Since the behavior of
the processes is dependent on the behavior of the object, building
the 1E-behavior of the system requires the presence of the object.
Therefore, building the 1E-behavior of such system with processes
that are not parameters is done in 2 steps. First, the 1E-behavior of
the system that includes the object is built. Then, for any transition
that belongs to the object consuming an event and producing an-
other event, these object transitions are replaced by aτ transition.

Figure 7 displays part of the 1E-behavior of Spin Lock with the
object behavior included. The transitions highlighted by the box
belong to the actions where the object receives a request andsends
either an acknowledgement that it is not-busy or anack saying it
is busy. Since we only care about the behavior of parameterized

(a)

(b)

Figure 6: Automata for Spin Lock: (a) Process. (b) Object.

processes, these 2 transitions are going to be substituted by a τ
transition. The full 1E-behavior of this system is presented in our
technical report [24].

Figure 7: Part of the Behavior of a Process in Spin Lock

Figure 8: Part of sys(2) for Spin Lock

Cut-off Value for the System Parameter. Building sys(k) for
systems with one or more processes that are not parameters tothe
system is similar to building the 1E-behavior of these systems.
First, thesys(k) of the system with the object is built. Second,
the transitions that belong to actions done by the process that is not
a parameter are replaced withτ transitions.

Part ofsys(2) for the Spin Lock protocol with 2 threads and the

object is displayed in Figure 8, where the transitionq
req/ack
−→ q′

is to be substituted by aτ transition since it belongs to the non-
parameterized process (the object). Our technique found that the
cut-off value for this system is2, while Basu and Ramakrishnan [9]
tackling the same problem found the cut-off to be3. In contrast to
our technique, the method proposed in [9] is based on fixed point
computation and abstraction-based acceleration of properties of en-
vironment. As such, results obtained using Basu and Ramakrish-
nan’s technique [9] depend on the quality of the abstractionand
may not always terminate with smallest cut-off value.

8. CONCLUSION AND FUTURE WORK
Verification of correctness properties for parameterized systems

is an important problem [13,15,18,19,21,23,29]. Considering that
this problem is undecidable in general [4], techniques and heuris-
tics for solving it for a subset of scenarios is an equally important
problem. To that end, computing the cut-off of the system parame-
ter is shown to be an effective technique for solving the parameter-
ized verification problem [18,19,21].

In contrast to the existing techniques, our approach, basedon
behavioral-automata composition, can be applied to any param-
eterized systems independent of the communication topology. It
provides a fully-automatic method for obtaining system cut-off for
a parameterized system expressed using a standard automata-based
modeling approach. Furthermore, effectively utilizing system de-
scriptions allows us to obtain a system-specific cut-off, which in at
least 3 cases is found to be lower than previously discoveredbounds
(DME protocol, Dining Philosophers Protocol and Spin Lock). A
system cut-off, to a large extent, dictates the state space that needs
to be explored by a formal verification technique. The systematic
approach of finding this cut-off that our approach provides is thus
an important and foundational advance towards improved scalabil-
ity of formal verification techniques.

Future work includes extending the theoretical and practical
treatment of behavioral-automata composition in several directions.
We plan to explore more expressive representation of protocols that
can capture synchronous communication between processes and
parameterized systems with infinite-domain data.

9. ACKNOWLEDGEMENTS
This work was supported in part by the US National Sci-

ence Foundation under grants CNS-06-27354, CNS-07-09217,and
CAREER-08-46059. Thanks to David Samuelson and anonymous
ESEC/FSE ’09 reviewers for critical feedback on the draft.

10. REFERENCES

[1] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine.
Regular model checking without transducers (on efficient
verification of parameterized systems). InTACAS, pages
721–736, 2007.

[2] P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso.
Regular model checking made simple and efficient. In
CONCUR, pages 116–130, 2002.

[3] T. E. Anderson. The performance of spin lock alternatives
for shared-memory multiprocessors.IEEE Trans. Parallel
Distrib. Syst., 1(1):6–16, 1990.

[4] K. R. Apt and D. C. Kozen. Limits for automatic verification
of finite-state concurrent systems.Inf. Process. Lett.,
22(6):307–309, 1986.

[5] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck.
Parameterized verification with automatically computed
inductive assertions. InCAV, pages 221–234, 2001.

[6] P. Baldan, A. Corradini, and B. König. A framework for the
verification of infinite-state graph transformation systems.
Inf. Comput., 206(7):869–907, 2008.

[7] P. Baldan, B. König, and A. Rensink. Graph grammar
verification through abstraction. InDagstuhl Seminar
Proceedings 04241, 2005.

[8] T. Ball, S. Chaki, and S. K. Rajamani. Parameterized
verification of multithreaded software libraries. InTACAS,
pages 158–173, 2001.

[9] S. Basu and C. R. Ramakrishnan. Compositional analysis for
verification of parameterized systems.Theor. Comput. Sci.,
354(2):211–229, 2006.

[10] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular
model checking. InCAV, pages 403–418, 2000.

[11] A. Bouajjani, Y. Jurski, and M. Sighireanu. Reasoning about
dynamic networks of infinite-state processes with global
synchronization. HAL - CCSD, 2006.

[12] A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic
framework for reasoning about dynamic networks of
infinite-state processes. InTACAS, pages 690–705, 2007.

[13] E. Clarke, M. Talupur, and H. Veith. Environment abstraction
for parameterized verification. InVMCAI, 126–141, 2006.

[14] E. M. Clarke, O. Grumberg, and S. Jha. Verifying
parameterized networks using abstraction and regular
languages. InCONCUR, pages 395–407, 1995.

[15] E. M. Clarke, M. Talupur, and H. Veith. Proving ptolemy
right: The environment abstraction framework for model
checking concurrent systems. InTACAS, pages 33–47, 2008.

[16] E. Dijkstra. Two starvation free solutions to a general
exclusion problem. EWD 625, Plataanstraat 5, 5671 AL
Neunen, The Netherlands.

[17] E. A. Emerson and V. Kahlon. Model checking large-scale
and parameterized resource allocation systems. InTACAS,
pages 251–265, 2002.

[18] E. A. Emerson and V. Kahlon. Exact and efficient
verification of parameterized cache coherence protocols. In
CHARME, pages 247–262, 2003.

[19] E. A. Emerson and K. S. Namjoshi. Reasoning about rings.
In POPL, pages 85–94, 1995.

[20] E. A. Emerson and K. S. Namjoshi. Automatic verification
of parameterized synchronous systems (extended abstract).
In CAV, pages 87–98, 1996.

[21] E. A. Emerson, R. J. Trefler, and T. Wahl. Reducing model
checking of the few to the one. InICFEM, pp. 94–113, 2006.

[22] D. Fisman, O. Kupferman, and Y. Lustig. On verifying fault
tolerance of distributed protocols. InTACAS, 315-331, 2008.

[23] S. M. German and A. P. Sistla. Reasoning about systems
with many processes.J. ACM, 39(3):675–735, 1992.

[24] Y. Hanna, S. Basu, and H. Rajan. Behavioral automata
composition for automatic topology independent verification
of parameterized systems. Technical Report 09-17,
Computer Sc., Iowa State U., 2009.

[25] C. N. Ip and D. L. Dill. Verifying systems with replicated
components in murphi. InCAV, pages 147–158, 1996.

[26] M. Llorens and J. Oliver. Introducing structural dynamic
changes in petri nets: Marked-controlled reconfigurable nets.
In ATVA, pages 310–323, 2004.

[27] R. Milner. A Calculus of Communicating Systems.
Springer-Verlag New York, Inc., 1982.

[28] A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive
verification with invisible invariants. InTACAS ’01, 92–97.

[29] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1,
infty)-counter abstraction. InCAV, pp. 107–122, 2002.

[30] M. Saksena, O. Wibling, and B. Jonsson. Graph grammar
modeling and verification of ad hoc routing protocols. In
TACAS, pages 18–32, 2008.

[31] P. Wolper and V. Lovinfosse. Verifying properties of large
sets of processes with network invariants. Inthe
International Workshop on Automatic Verification Methods
for Finite State Systems, pages 68–80, 1990.

