
Noname manuscript No.
(will be inserted by the editor)

What Kinds of Contracts Do ML APIs Need?

Samantha Syeda Khairunnesa · Shibbir
Ahmed · Sayem Mohammad Imtiaz ·
Hridesh Rajan · Gary T. Leavens

Received: date / Accepted: date

Abstract Recent work has shown that Machine Learning (ML) programs are
error-prone and called for contracts for ML code. Contracts, as in the design
by contract methodology, help document APIs and aid API users in writing
correct code.

The question is: what kinds of contracts would provide the most help to
API users? We are especially interested in what kinds of contracts help API
users catch errors at earlier stages in the ML pipeline. We describe an empirical
study of posts on Stack Overflow of the four most often-discussed ML libraries:
TensorFlow , Scikit-learn, Keras, and PyTorch. For these libraries, our study
extracted 413 informal (English) API specifications. We used these specifica-
tions to understand the following questions. What are the root causes and
effects behind ML contract violations? Are there common patterns of ML con-
tract violations?

When does understanding ML contracts require an advanced level of ML
software expertise? Could checking contracts at the API level help detect the
violations in early ML pipeline stages? Our key findings are that the most
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commonly needed contracts for ML APIs are either checking constraints on
single arguments of an API or on the order of API calls. The software engi-
neering community could employ existing contract mining approaches to mine
these contracts to promote an increased understanding of ML APIs. We also
noted a need to combine behavioral and temporal contract mining approaches.
We report on categories of required ML contracts, which may help designers
of contract languages.

Keywords Machine Learning · API contracts · Empirical software engineer-
ing · Software engineering for machine learning

1 Introduction

Software developers are increasingly integrating machine learning (ML) into
systems using ML libraries’ application programming interfaces (APIs). How-
ever, ML software is bug-prone Zhang et al. (2018b); Islam et al. (2019); Hum-
batova et al. (2020) and like traditional software could benefit from adopting
a design-by-contract methodology Islam et al. (2019). Contracts can specify
the expected behavior of an API and help client code use the API correctly,
e.g., a contract might require that the fit method be applied to a model
before calling the predict method. Another example can be given using the
MaxPooling2D method for retaining the most prominent features of the fea-
ture map in a convolutional neural network (CNN). There is a contract on the
MaxPooling2D method’s argument, data_format, based on the shape of the
input image. If the input image has the shape (N, C, H, W), then the value
for the argument data_format is set to channels_first. If the input has the
shape (N, H, W, C), then data_format must be set to channels_last. Here,
the letters N, H, W, and C represent the following: the number of images in
the batch, the height of the image, the width of the image, and the number of
channels of the image.

There is a rich body of prior work that can be grouped into two categories:
work on contracts for non-ML software and work on ML software.

The first category, contracts for non-ML software, can be further divided
into two types: behavioral and temporal. Behavioral contracts Hoare (1969);
Meyer (1988); Pradel and Gross (2009); Păsăreanu and Rungta (2010); Nguyen
et al. (2014); Khairunnesa et al. (2017) specify acceptable program states, typ-
ically for calls to individual methods in an API. For instance, in the Java De-
velopment Kit (JDK) String class, the precondition ‘beginIndex<=endIndex’
must be true before calling method subString(beginIndex,endIndex). The
contracts that belong to this category are preconditions (as in the example), or
postconditions (constraints ensured by the execution of the call) for a method
in question. There are also class invariants that capture the constraints for all
methods in a particular class. Temporal contracts Manna and Pnueli (1992);
Gruska et al. (2010); Nguyen et al. (2009); Wasylkowski et al. (2007) encode
the correct ordering of calls, possibly among multiple APIs. For example, in
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Python, after creating a threading.Lock object, once a thread makes a call
to Lock.acquire(), that thread should eventually call Lock.release().

The notion of contracts in this study is similar to the kinds of contracts
described just before this phrase. We have used the same definition of (behav-
ioral and temporal) contracts in this study. A contract specifies the correct
usage of an API and an incorrect usage is a contract violation.

The second category is about ML software and its bugs Zhang et al.
(2018b); Islam et al. (2019); Humbatova et al. (2020) and bug fixes Sun et al.
(2017); Islam et al. (2020). These works study either the implementation of
ML library APIs or usage information about those APIs. Zhang et al. (2018b)
and Humbatova et al. (2020) focused on understanding the defects in differ-
ent ML libraries. The authors (Zhang et al. (2018b)) noted that the defect
might come from various sources, e.g., program code, execution environment,
library framework itself, etc. In contrast, the focus of this study is to gain
an understanding of ML API contracts. Islam et al. (2019) reported on API
misuse. API misuse can be detected if contract obligations are specified. Sun
et al. (2017) investigated the issues in various ML libraries to understand the
bug-fix patterns in these libraries, whereas Islam et al. (2020) studied the
deep neural network (DNN) models to understand the bug-fix patterns. In our
study, we focused on ML API contracts and corresponding breaches. Suppose
a user maintains a contract obligation for an ML API. In that case, if the API
demonstrates exceptional behavior upon exiting, the issue may be present in
the implementation of the API.

Our work focuses on investigating the kinds of contracts required to estab-
lish the correct usage of ML APIs. The main question is: what are the kinds of
contracts required to establish the correct usage of ML APIs? We observe that
ML software is different from traditional software in several ways. In ML soft-
ware, problem-solving is largely dependent on training data and subject to
precise settings of hyper-parameters Zhang et al. (2018b). A prior work by
Humbatova et al. (2020) suggested that choice of loss function/optimizer, miss-
ing/redundant/wrong layers, etc. are distinctive bugs in ML software. Also,
incorrect use of ML APIs may not always lead to crashes, but may instead
lead to slower performance or statistically invalid results. In this study, we did
not aim to check the reliability of the ML systems. Instead, we looked at the
errors occurring in ML programs due to the incorrect usage of ML APIs.

We studied four popular ML libraries: TensorFlow , Scikit-learn, Keras
and PyTorch and studied posts from the Q&A forum Stack Overflow (SO) that
contain one of these libraries in a tag. The dataset (labeled SO posts, queries,
source codes, etc.) generated during our study are available in the figshare
repository, https://figshare.com/s/c288c02598a417a434df. This dataset
includes a total of 1565 posts, from which we manually curated posts that hold
413 contracts for relevant ML APIs. We use this data to answer the following
research questions:
RQ1 (Root Cause and Effect): What are the root causes and effects behind
ML contract violations?
RQ2 (Patterns): Are there common patterns of ML contract violations?

https://figshare.com/s/c288c02598a417a434df
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RQ3 (Contract Comprehension Challenges): When does understanding
ML contracts require an advanced level of ML software expertise?
RQ4 (Contract Violation Detection): Can checking contracts at the API
level help detect the violation in early ML pipeline stages?

These questions, and the data that support their answers, help to answer
the main question, i.e., they enable researchers and practitioners to pinpoint
where immediate support is required in terms of contracts for ML APIs. The
key findings from our study are summarized in Table 1.

Table 1: Findings and Insights

RQ Findings Actionable Insight
RQ1 Most frequent contracts for ML APIs:

(§3.1.1 )

1. Constraint check on single arguments of
an API.

2. Order of API calls that become a re-
quirement eventually.

This is a good news because the software
engineering (SE) community can employ
some existing contract mining approaches
to also mine contracts for ML APIs; but
there might be a need to combine behav-
ioral and temporal contract mining ap-
proaches that have been independently de-
veloped thus far.

RQ4 ML API contracts that are commonly vi-
olated occur in earlier ML pipeline stages
(§3.4).

A verification system with ML contract
knowledge can explain whether a bug in
the ML system that used those APIs
stemmed from an API contract breach.

RQ3 The absence of precise error messages
(§3.1.2) due to system failures makes con-
tract comprehension and violation detec-
tion more challenging.

As domain experts can understand the
challenging ML contracts (§3.3), this
knowledge encoded as contracts can enable
improved debugging mechanisms.

RQ1 ML APIs require several type checking con-
tracts specific to ML (§3.1.1) and inter-
dependency (Table 6) between behavioral
and temporal contracts.

Programming methodology and tools for
design by contract should include sufficient
expressiveness for these additional types of
contracts seen in ML APIs.

The contributions of our paper are the following. We provide a taxonomy
for ML API contracts and corresponding root causes. This taxonomy (§2.3)
added five new leaf node categories of contracts (with respect to the leaf cate-
gories observed in traditional behavioral and temporal contracts) observed in
our study. The work also identified the stages of ML pipelines in which the
violations occur (API contract violation locations) or affect the software and
presented a dedicated classification (§2.4). To our knowledge, this is the first
work that attempts to understand the types of required contracts needed to
prevent problems that may arise when using these ML APIs in software sys-
tems. In §3, in addition to answering the research questions, we analyze the
outcomes related to contract breaches. Finally, we provide recommendations
to researchers, consumers, and producers of ML APIs based on the findings.
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Fig. 1: Overview of the adopted methodology

2 Methodology

2.1 Overview

A In this study, we used Stack Overflow (SO) to investigate API contracts’ re-
quirements for the most-asked about and widely-used ML libraries and frame-
works. SO is a forum for software development professionals and enthusiasts.
In recent years SO has served as an open repository for conducting studies on
software engineering topics Zhang et al. (2018a); Cai et al. (2019); Aghajani
et al. (2019); Beyer and Pinzger (2014); Barua et al. (2012); Rosen and Shihab
(2015); Cummaudo et al. (2020). SO , as a forum, maintains a strict modera-
tion policy, promotes a peer-reviewing mechanism, and incorporates a reward
system for encouraging quality answers from the software developers Stack-
Overflow Reputation (2023). Moreover, it has a vibrant user community and
includes software developers from all walks of life, experiences, etc. StackOver-
flow Survey (2017). As a result, it offers a wealth of well-vetted information on
numerous software development topics. As such, SO makes an excellent source
for our study, as the primary goal of this study is to derive ML contracts from
peer-reviewed and well-vetted content for the reliability of the findings. To
capture the contracts, analyzing the large code corpus of API usages Wa-
sylkowski et al. (2007); Nguyen et al. (2009); Khairunnesa et al. (2017) or the
implementation of the software itself Cousot et al. (2013) are both well-known
techniques. Our chosen methodology is closer to the former.

B We used the SO forum’s tags to identify the relevancy of a post to an ML
library; if the question’s tag contained an ML library name, it was considered
a post related to that library and was thus a candidate to be studied in this
work.

We ranked the top ML libraries using the frequency of these tags, resulting
in these four as the object of our study: TensorFlow , Scikit-learn, Keras, and
PyTorch.
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C Next we filtered these posts based on a set of defined criteria that are
described in detail in §2.2.

D The second and third authors (labelers), both with a strong background
in ML, were given background information on contract literature. Then they
were given hands-on training with sample SO posts as described in §2.6.

E After the training process, 10% of the filtered dataset is used by the
first three authors to develop the taxonomies used to label the filtered posts.
Two iterations were needed to propose the final taxonomy presented here. The
process is described in detail in §2.5.

F Next, these labelers identified contracts implicitly present in SO posts.
We obtained 162, 122, 103, and 26 contracts, respectively, from the previously
curated posts. Table 2 shows a summary of the dataset for each library in our
study. For each SO question, we used the taxonomy of contracts (including
proposed categories) from §2.3 to investigate the available information from
the question and accepted answer to decide the type of contract obligation
missing in the question and marked in the response. Hence, if the SO response
describes the correct way of using an API of interest violated in the question,
we identify that as a contract for the API that was implicitly present in SO
posts. We have also used the taxonomies presented in §2.4 and §2.5 to complete
the labeling in this stage. In §2.3, we describe the process of identifying the
contract violation and potential contract for ML APIs with example SO posts
from our study. Then, the first author, with expertise (of approx. 6 years)
in contracts, reviewed the identified contracts and the SO post the contracts
were extracted from. This served two purposes: it ensured that the identified
contracts were correct and helped to reduce the threat of missing contracts
that was implicitly present in the dataset from the second and third authors.
The first author found only a handful of contracts missed by these two labelers.
However, these missing contracts were found by at least one of the two labelers.
Therefore, we did not note any new contracts this way. If one labeler identified
a contract and the other did not, as they performed their labeling using the
proposed taxonomy, this was identified as one of the reasons behind creating
a conflict between the two labelers. We discussed in §2.6 how we resolved the
conflicts in our study.

G As the labeling process is completed, we analyze our labeled dataset.
Additionally, we have created a separately filtered dataset (a subset of the
original) based on the question scores and analyzed questions with a relatively
high score (in the range of 30-339). The intuition behind further separating
these posts is that an author may ask one question, and only a handful of
ML API users might run into it. Then another SO question may be inquired
by someone but up-voted by hundreds of others who have the same problem.
Thus, the intuition behind further separating these filtered posts was to un-
derstand how many ML API users are struggling with each problem. This sep-
arate dataset was compared against the entire dataset to be vigilant about the
representative issues and respective conclusions we draw from the posts in §3.
This subset is selected with the following criteria: select high-quality posts and
keep manual efforts manageable. To that end, to ensure high-quality posts, we
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select posts having better than average scores (avg. 18.9). To keep the manual
effort manageable, we find a trade-off between sample size and its statistical
power. We specifically choose 30 as a cut-off to have reasonable confidence
in this additional study while keeping manual efforts manageable (about 90%
confidence level with a 5% margin of error), resulting in 222 posts. We dis-
carded posts if they did not capture any information regarding correct usage
of ML APIs. Additionally, we grouped the discarded SO posts that we could
not label as containing contracts during the manual curation step. We were
unable to label some posts due to the following reasons: posts asking general
clarification questions, unresolved issues with specific APIs of interest, an API
unidentified in a post, a solution involving tuning, or a dependency between
an unrelated API and a related API. For instance, in some of these posts, the
ML API users is usually curious about performing a task at hand or inter-
library code transformation and refactoring. To illustrate, in one SO post1,
the author is knowledgeable that they can use the summary() API from Keras
to print a model summary. Yet, they want to know how to do the same using
Pytorch. Even if these posts are of interest to ML API users, these do not fall
into the category of contract requirements. In our study, the number of total
unlabelled posts is 1159, and the number of total unlabelled posts with a score
of or higher 30 is 161.

H Finally we present our result in detail in §3. However, we did not add
the statistics for unlabeled posts in RQs, as these posts did not unveil any ML
contracts.

Table 2: Dataset for Empirical Study on ML Contracts

SO # PostsLibrary Criteria 1. Criteria 2. Criteria 3. Criteria 4.
# Contracts

TensorFlow 24368 2205 1400 605 162
Scikit-learn 12506 1641 1127 551 122

Keras 12300 1285 821 333 103
PyTorch 2500 439 313 76 26

Total 51674 5570 3661 1565 413

2.2 Filter Dataset

We processed the collected posts further to enable a classification scheme for
contracts. We followed two main steps to filter these posts. The initial step
is an automatic pre-processing of the collected posts based on the following
criteria: 1. Within these posts, authors asking the question must include some
code snippet(s). We reason that a question post discussing these libraries and
including snippets of code is more likely to have difficulty with API contracts,

1 https://stackoverflow.com/questions/42480111/
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thus may show challenges related to contract violation for relevant APIs. Fur-
thermore, posts with code enable identifying the ML APIs being used. We have
collected a total of 51674 posts with this filtering criteria. 2. We further filter
the posts having a score higher than five based on the guidelines from prior
works Nasehi et al. (2012); Zhang et al. (2018b); Islam et al. (2019, 2020) to
ensure that posts are of high quality. This additional criterion produced a total
of 5570 posts. 3. We considered posts with accepted answers (having a score
higher than five) only, as those answer posts have successfully identified and
resolved the problem faced by the author of the question post. The criterion
for including accepted answers to the dataset follows prior studies Islam et al.
(2019); Zhang et al. (2019); Islam et al. (2020) that have argued that if the
answer of a post is not accepted, then that answer might not have addressed
the issue. This step enabled us to collect 3661 posts in total. The steps up to
this point are automatic. All queries to filter datasets according to this set of
criteria are provided in the figshare repository2.

4. Furthermore, the accepted answers frequently contain code, and we
expect that these code snippets focus on the required contracts for ML APIs.

Additionally, we manually checked if the accepted answer to a post clearly
describes the API contracts using text (without code). If this is true, we also
consider such a post. The question posts in our study provided us with the
contract violations ML software is susceptible to and the accepted answer
posts directed us towards the contracts. Thus, the considered SO posts cap-
ture both contract violations and potential contracts. After these stages, we
curated a total of 1565 posts; the posts specific to each of TensorFlow , Scikit-
learn, Keras, PyTorch contained 605, 551, 333, and 76 posts (Table 2), respec-
tively.

The posts obtained after manual filtering each contain at least one ML
API-related contract but may contain more. Our study observed a blend of
behavioral and temporal contracts for ML APIs. We called this a hybrid cat-
egory in our classification (in §2.3). The posts from where we have extracted
such contracts are the source behind multiple contracts from a single post. If
multiple contracts were present in a single post, we extracted all contracts and
labeled these using our taxonomy. For instance, in one SO post (SO post 6),
it contained two contracts. The API in question is random_shuffle() from
the TensorFlow library. The first extracted contract is to specify the argu-
ment seed with the desired value. The second extracted contract is to call
tf.random_shuffle() and then call tf.reset_default_graph(). And the
random_shuffle() API will ensure a shuffled Tensor if the contract is main-
tained in either of the ways mentioned.

Besides, the SO forum has a general strategy to tackle duplicate questions
with the same (potential) answers. Users can flag a question on SO if it is
analogous to a previously posted question concerning a concept. According
to SO , the reasoning behind marking duplicate questions is that users should
not discuss duplicate questions, but anyone with the same query can refer

2 https://figshare.com/s/c288c02598a417a434df

https://figshare.com/s/c288c02598a417a434df
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to the previously posted discussions. In our study, we have found 359 unique
contracts from a total of 413 contracts reported. SO’s strategy for flagging
duplicating questions has enabled us to collect many unique ML contracts.

We note that the forum may contain other relevant ML API posts but not
included in our dataset if the posts do not contain any contract or match the
filtering criteria mentioned above. We have inspected the impact of imbalance
in our dataset across libraries and address this in §3.5.

Next, we present a classification for ML API contracts and associated root
causes in §2.3. This classification is used to identify and label posts with
ML contracts. §2.5 demonstrates the taxonomy of the effects of these root
causes of contract violations. Finally, we present a classification to identify
locations of ML API contract violation (§2.4) based on ML pipeline stages.

2.3 Classification of ML Contracts and Violation Root Causes

To label the contracts for ML APIs found in our dataset, we developed a
classification scheme that categorizes different types of contracts originating
from these APIs.

As mentioned earlier, the literature mainly discusses two types of contracts:
behavioral and temporal.

Typically, behavioral contracts for APIs consist of assertions that are re-
quired to be true before calling the API (preconditions) and assertions that
must be valid upon exiting the API method (postconditions). In contrast, tem-
poral contracts are those that capture the required order of API calls to ensure
proper behavior. Both types of contracts are also observed in non-ML APIs,
and we build our classification on top of this well-established classification.
Building on an existing classification scheme helped us to not reinvent known
ideas Glaser (1978) related to API contracts. Student authors in this work
used open coding to build the extension appropriate for ML APIs.

Process: Researchers advocate using open coding to create any taxon-
omy Sarker et al. (2000); it is best that the researchers perform the task them-
selves rather than rely on a third party. The authors worked as a group initially
to perform the coding and sampled 10% data to that purpose. This strategy
had several advantages, e.g., a consistent decision to choose between existing
concepts and create a new one; categories became more exact while differences
became more evident than individually proposed taxonomy categories, and it
also provided an opportunity to properly train the two labelers. We used ax-
ial coding Corbin and Strauss (2008), a technique that helps to collapse core
themes involving qualitative data. In other words, it organizes the codes de-
veloped during open coding. This technique is used for cases where conceiving
sub-categories seems necessary for any central component inside the classifi-
cation schema. To elaborate, in our study, as we analyzed and labeled the SO
posts with identified contracts, we looked at how these sub-categories could
be grouped into central categories, so that the central category could encom-
pass a number of different posts. In some cases, these central categories (axes)
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are from the state-of-the-art taxonomy, e.g., data type-related contracts, but
in other cases, a new abstract category seemed appropriate, e.g., selection.
For instance, the codes such as Primitive Type, Built-in Type, etc., are well-
established codes that describe different categories of type-related contracts.
We used axial coding to identify that these contracts can be collapsed into
the sub-core theme of checking Data Type-related contracts. Similarly, we or-
ganized sub-core core categories eventually into core categories. For instance,
Data Type is organized under the core category Single API Method. We fur-
ther use relational and variational sampling Corbin and Strauss (1990) using
SO data to support or contradict the relationship between sub-categories and
core categories. These sampling techniques facilitated explaining relations be-
tween theoretically relevant categories through gathering data (depending on
the frequency of similarity or variation) on each group, e.g., considering con-
ditions, consequences, etc., on a case-by-case basis. For example, we located
instances of the leaf category ML type in our dataset that describes special
type-related contracts that is only present in ML APIs. The multiple samples
we collected indicated that the reason behind this contract violation is the
input of an unacceptable input type, and the effect, if explicitly present in the
samples, is crash. The frequency of such similarity confirmed the relationship
between the category ML type and the category Data Type. This is an example
of relational sampling, precisely.

New Categories: We found four new categories during our initial study
(marked with in Table 3). After the initial study, the labelers individually
studied the rest of the posts and were at liberty to suggest additional categories
if the need arose (detail on labeling in §2.6). The labelers conducted an in-
person meeting under the supervision of a moderator to discuss the suggested
additional categories and these reconciliation effort resulted in one additional
category (marked with in Table 3).

Classification Scheme: Next, we described our obtained classification
schema in detail. Furthermore, all categories included in this classification are
shown in Table 3. At the top level, we presented three central contract com-
ponent levels: contracts involving Single API Method, contracts involving API
Method Order, and contracts that required a Hybrid of preceding categories.
The first fundamental category, Single API Method (SAM), in our classifi-
cation scheme captures preconditions/postconditions involving a single API
method. This core category is based on behavioral contracts. Next, ML APIs
often require particular call orderings to demonstrate normal behavior; we clas-
sify contracts specifying such order as API Method Order (AMO). This
category is based on temporal contracts. Subsequently, we classified these cat-
egories into sub-classes until we could find a leaf category that denoted the
contract of a particular type for ML APIs. For each such class, we explained
the root cause of that contract violation subsequently.
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Table 3: Type of Contracts for ML APIs (Symbols and at the end of leaf components
designate novel categories)

Level 1 Level 2 Level 3
Primitive Type (PT)
Built-in Type (BIT)
Reference Type (RT)Data Type (DT)

ML Type (MT)
Single API Method (SAM)

Intra-argument Contract (IC-1)Boolean Expression Type (BET) Inter-argument Contract (IC-2)
Always (G)API Method Order (AMO) Eventually (F)
SAM-AMO Interdependency (SAI) SAM (Level 3) ∧ AMO(Level 2)

SAM (Level 3)
AMO (Level 2)Hybrid (H) Selection (SL)
Comb. of SAM(Level 3) and AMO(Level 2)

* Green cells indicates the behavioral contract. Blue denotes temporal contract and
Orange cells indicate the hybrid respectively.

2.3.1 Type of Contracts involving Single API Method (SAM)

The first sub-category of Single API Method (SAM) contract concerns type
checking that is required Data Type (DT) of API arguments.

This subclass consists of four types of contract:

Primitive Type (PT): This represents the ML API argument type
can be a primitive type, e.g., float, int, bool, number, None, and the rest.
For instance, in SO post 1, the decode() method from the TensorFlow library
expects a byte string. The root cause of this contract violation is an input
of an unacceptable type.� �
1 hello = tf.constant(’Hello , TensorFlow!’)
2 sess = tf.Session ()
3 print(sess.run(hello))� �

Accepted Answer

Use sess.run(hello).decode() because it is a bytestring, decode method will return the string.

Stack Overflow post 1: Example post with contract� �
1 conv2 = conv2d(conv1 , wts[’conv2 ’])
2 conv2 = maxpool2d(conv2)
3 conv2 = tf.reshape(conv2 , shape =[ -1 ,158*117*64])
4 frame = tf.placeholder(’float ’, [None , 640-10, 465, 3])
5 controls_at_each_frame = tf.placeholder(’float’, [None , 4])
6 conv2 = tf.concat(conv2 , controls_at_each_frame , axis =1)� �

Accepted Answer

conv2 = tf.concat((conv2, controls_at_each_frame), axis=1) ; Note we need two frames that
are required to concatenate within parentheses, as specified

Stack Overflow post 2: Example post with contract
Built-in Type (BIT): The contracts involving more complex built-in types
(such as dict, list, tuple, and array). For example, in SO post 2, concat()

https://stackoverflow.com/questions/40904979/the-print-of-string-constant-is-always-attached-with-b-intensorflow
https://stackoverflow.com/questions/45175469/typeerror-concat-got-multiple-values-for-argument-axis
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from the TensorFlow library expects the first argument to be of array type.
The root cause of this contract violation is an input of unacceptable type.

Reference Type (RT): This category of contracts can involve either inter-
nal class object, i.e., referenced class objects within the API class, or external
class object, i.e., external variable referenced from separate modules of the ML
library. For example, in SO post 3, a contract for the API KerasRegressor()
from Keras is shown. The argument accepts a function, an instance of a class
that implements the call method or None. As the argument build_fn of this
API accepts reference type as one of its expected argument types, we classify
this under the reference type category. The root cause of this contract violation
is that an input of unacceptable type is supplied to the method.� �
1 model = nn_model ()
2 model = KerasRegressor(build_fn=model , nb_epoch =2)� �

Accepted Answer

Herein lies the issue. Rather than passing your nn_model function as the build_fn, you pass an
actual instance of the Keras Sequential model. One of the following three values could be
passed to build_fn:
• A function
• An instance of a class that implements the call method.
• None

Stack Overflow post 3: Example post with contract

ML Type (MT): This final contract component of data type contains ML
types. ML types are a multidimensional array with a uniform type (float16,
float32, complex16, etc.), particularly designed for ML pipelines to achieve
accelerated performance (i.e., ease of use with GPU).
For instance, in SO post 4, an ML Type related contract is captured stating
that the matmul() API from the TensorFlow library requires that both of
the arguments should be a Tensor with one of the following types: float16,
float32, float64, int32, complex64, complex128.� �
1 layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights[’h1’]), _biases[’b1’]))
2 layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1 , _weights[’h2’]), _biases[’b2

’]))
3 return tf.matmul(layer_2 , weights[’out’]) + biases[’out’]� �

Accepted Answer

The tf.matmul() op does not perform automatic type conversions, so both of its inputs must
have the same element type. The error message you are seeing indicates that you have a call
to tf.matmul() where the first argument has type tf.float32, and the second argument has
type tf.float64. You must convert one of the inputs to match the other, for example using
tf.cast(x, tf.float32).

Stack Overflow post 4: Example post with contract
Another example of this type of contract 5 is that the first two arguments for
the fit() API should have the type of a numpy array or a list of numpy

https://stackoverflow.com/questions/39467496/error-when-using-keras-sk-learn-api
https://stackoverflow.com/questions/36210887/how-to-fix-matmul-op-has-type-float64-that-does-not-match-type-float32-typeerror
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arrays. The root cause of this contract violation is an input of unacceptable
type supplied to the method. This post also shows that the API has a supple-
mentary contract concerning argument dependency, as discussed below.� �
1 padded_model.fit(train_X , train_y , epochs =50, verbose =1)� �

Accepted Answer

If train_x and train_y are normal Python lists, they don’t have the attribute .ndim. Only
Numpy arrays have this attribute representing the number of dimensions.

Stack Overflow post 5: Example post with contract

The API method can also involve Boolean assertions related to its argu-
ment values, Boolean Expression Type (BET), instead of only type related
checks. We classify these types of contracts into two subclasses:

Intra-argument contracts (IC-1): IC-1 specifies preconditions related to
a single argument of the API. These contracts may involve both comparisons
and logical combinations.� �

a_shuf = tf.random_shuffle(a)� �
Accepted Answer

That only sets the graph-level random seed. If you execute this snippet several times in a
row, the graph will change, and two shuffle statements will get different operation-level seeds.
To get deterministic a_shuf you can either
• Call tf.reset_default_graph() between invocations or
• Set operation-level seed for shuffle: a_shuf = tf.random_shuffle(a, seed=42)

Stack Overflow post 6: Example post with contract

An example of an IC-1 contract is given in SO post 6, which shows an ML
API users trying to use the TensorFlow API random_shuffle() to shuffle a
Tensor, a, with some set seed value. One of the solutions mentioned in the
accepted answer says that to do that, one should specify the argument seed
with the desired value, e.g., the argument seed gets the value 42. The root
cause of this contract violation is that acceptable input value is not supplied
to (the random_shuffle()) method.

Inter-argument contracts (IC-2): IC-2 contracts involve more than one
argument to an API method, possibly using comparisons or logical expressions.
For example, in SO post 4, the matmul() API from TensorFlow requires that
the type of the second argument should match the type of the first argument.
A comparison expression can express this contract, so it belongs to IC-2. The
root cause of this contract violation is that the (matmul()) API is missing
input value/type dependency between arguments. Another example 7
for this category is nn.softmax_cross_entropy_with_logits(), an API from
TensorFlow , which requires that the logits and labels arguments must have

https://stackoverflow.com/questions/48699954/keras-attributeerror-int-object-has-no-attribute-ndim-when-using-model-fi
https://stackoverflow.com/questions/36096386/tensorflow-set-random-seed-not-working
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the same shape (i.e., [batch_size, num_classes]).� �
1 tf.nn.softmax_cross_entropy_with_logits(
2 logits=b, labels=a).eval(feed_dict ={b:np.array ([[0.45]]) , a:np.array

([[0.2]]) })� �
Accepted Answer

Like they say, you can’t spell "softmax_cross_entropy_with_logits" without "softmax".
Softmax of [0.45] is [1], and log(1) is 0. logits and labels must have the same shape
[batch_size, num_classes] and the same dtype (either float16, float32, or float64).

Stack Overflow post 7: Example post with contract

2.3.2 Type of Contracts involving API Method Order (AMO)

Multiple APIs can be involved in an AMO contract. There are two sub-
categories as follows:

Always (G): Always contracts are AMO contracts that hold at each point of
history. For example, as shown in SO post 8, for TensorFlow , the call to the
method, tf.wholeFileReader() must be followed by another method call,
tf.train.start_queue_runners() to avoid hanging. The root cause of this
contract violation is that the always required order between these calls is not
followed.

� �
1 def read_image(filename_queue):
2 reader = tf.WholeFileReader ()
3 key ,value = reader.read(filename_queue)� �

Accepted Answer

If you’re not using feeding—i.e. using the tf.WholeFileReader as shown in your program—you
will need to call tf.train.start_queue_runners() to get started. Otherwise your program will
hang, waiting for input.

Stack Overflow post 8: Example post with contract� �
1 model = Sequential ()
2 model.add(LSTM (100, input_dim = num_features))
3 model.add(Dense(1, activation=’sigmoid ’))� �

Accepted Answer

The solution to this: you need to enable the LSTM layer to return a sequence instead of only
the last element. Since the Dense layer is not able to handle sequential data you need to apply
it to each sequence element individually which is done by wrapping it in a TimeDistributed
wrapper.

Stack Overflow post 9: Example post with contract

https://stackoverflow.com/questions/42521400/calculating-cross-entropy-in-tensorflow
https://stackoverflow.com/questions/35673874/tensorflow-error-shape-tensorshape-must-have-rank-1
https://stackoverflow.com/questions/41863921/how-can-i-use-categorical-one-hot-labels-for-training-with-keras
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Eventually (F): Eventually contracts are AMO contracts where the ordering
is only required at some point in history. In other words, this specifies that a
required API ordering must be true at some point in this program’s execution
history far enough in the future. For instance, in SO post 9, the author is trying
to solve a sequential classification (input data where order matters) task. In
the model, they used the LSTM() API to return a sequence and then output it
as a Dense() object. The activation function has a one-to-one correspondence
with the type of classification being performed. For that reason, the sigmoid
function is rightly used. However, in the model, they used the LSTM() API
to return a sequence and then output it as a Dense() object. This method
order of APIs demonstrates an incorrect API method order, as the order in
the question post is missing a TimeDistributed() API call.
Note that the code is correct for a many-to-one task in natural language pro-
cessing (NLP). However, in this question, the user asks for a many-to-many
solution, in which case it becomes mandatory to apply TimeDistributed().
Therefore, using the TimeDistributed() API only becomes a requirement
after the LSTM() API is used to return a sequence. The root cause of this
contract violation is that in a state where a call to a method (LSTM()) returns
(a sequence), another call to a method (TimeDistributed()) should have oc-
curred. Thus, in this SO post 9, this eventually contract is violated because
the author did not know that the TimeDistributed() API is a requirement
to be called eventually after the LSTM() API is used to return a sequence.

2.3.3 Type of Contracts involving Hybrid (H) of SAM and AMO

The Hybrid (H) category involves a blend of behavioral and temporal con-
tracts. This category has two subclasses:� �

clf = GridSearchCV(SVC(C=1), tuned_parameters , score_func=auc_score)� �
Accepted Answer

As noted already, for SVM-based Classifiers (as y == np.int*) preprocessing is a must,
otherwise the ML-Estimator’s prediction capability is lost right by skewed features’ influence
onto a decission [sic] function.

Stack Overflow post 10: Example post with contract

SAM-AMO Inter-dependency (SAI): SAI contracts have a dependency
between behavior and method orders. This dependency could be in either
direction, i.e., the program’s state could determine the order of API calls,
or the order of API calls could require that some condition must hold. For
example, in SO post 10, if an ML API users uses the SVM-based classifier
SVC as the estimator parameter for GridSearchCV() with Scikit-learn, then
preprocessing.scale() must precede this call. Since the order of the method

https://stackoverflow.com/questions/17455302/gridsearchcv-extremely-slow-on-small-dataset-in-scikit-learn
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calls GridSearchCV() and preprocessing.scale() APIs is dependent upon
the value given to the parameter of GridSearchCV(), it belongs to the SAI
contract category. The root cause of this contract violation is that the value be-
ing passed to one method call (GridSearchCV()) requires a temporal ordering
between the two (GridSearchCV() and preprocessing.scale()) methods.

The leaf components of this subclass contain all contract cases that we de-
rived individually for the SAM and AMO categories. For example, if an intra-
argument contract, IC-1 of an API determines an always (G), order of two
APIs like the example above then, it belongs to SAM (Level 3) ∧ AMO
(Level 2).
Any dependency between SAM related leaf nodes, e.g., primitive type, built-in
type, ML type, etc. and AMO related leaf nodes, i.e., G and F, belong to this
category.

Selection (SL): The final subclasses in our classification are those contracts
that involve a choice when it comes to enforcing an API related contract. If
the choices only belong to the contract components of SAM or AMO, then
we categorize the contracts into either SAM (Level 3) or AMO (Level
2), respectively. For instance, in SO post 11, the author wants to convert
two numpy arrays to Tensors and uses TensorDataset() from the PyTorch
library. The arguments of this API must either be of Double or Float type.
The API then confirms DoubleTensor conversion upon exiting. Hence, there
are two choices of category SAM (specifically IC-2) to maintain the contract
for this API, and we mark this with SAM (Level 3) category. The root
cause of this contract violation is that the client did not follow one of the two
choices (providing arguments of Double or Float types).� �

train = data_utils.TensorDataset(torch.from_numpy(X).double (), torch.
from_numpy(Y))

train_loader = data_utils.DataLoader(train , batch_size =50, shuffle=True)
for batch_idx , (data , target) in enumerate(train_loader):

data , target = Variable(data), Variable(target)
optimizer.zero_grad ()
output = model(data) # error occurs here� �

Accepted Answer

The numpy arrays are 64-bit floating point and will be converted to torch. DoubleTensor
standardly. Now, if we use them with our model, we’ll need to make sure that your model
parameters are also Double. Or we need to make sure, that your numpy arrays are cast as
Float, because model parameters are standardly cast as float.

Stack Overflow post 11: Example post with contract

Another example can be seen in the SO post 12, where the author of the
post is using the Keras library to create a neural network. Then they want
to initialize and fit the neural network weights and save these weights. Next,
they want to use these saved weights and predict some output values given the
inputs. However, they had issues using the load_weights() API to collect the
saved weights. The answer post explains that as one uses the load_weights()
API, one has to maintain an order between two other related APIs (compile

https://stackoverflow.com/questions/44717100/pytorch-convert-floattensor-into-doubletensor
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and predict). One expected order is calling load_weights(), compile(),
predict(). The order alternative is calling compile(), load_weights(), and
predict() at some point in history. As both choices involve AMO, this belongs
to the AMO (Level 2) category. The root cause of this contract violation is
that the client did not make one of the two choices (maintaining the method
order between the related APIs).� �

model = Sequential ()
...
model.load_weights(’keras_w ’)
y_pred = model.predict(X_nn)� �

Accepted Answer

We need to call model.compile. This can be done either before or after the model.load_weights
call but must be after the model architecture is specified and before the model.predict call.

Stack Overflow post 12: Example post with contract

In comparison, if the choices involve both SAM and AMO, then we categorize
the contract as a combination type contract Comb. of SAM and AMO. For
example, in SO post 6, we observe such a combination. The accepted answer
respondent mentions two alternative ways to maintain correctness when using
the tf.random_shuffle API. The first choice is setting the argument seed for
this API to some desired value. The second is maintaining an order between
invocations of tf.random_shuffle() and tf.reset_default_graph(). Since
the same contract breach can be resolved through either a behavioral or tem-
poral contract that involves tf.random_shuffle() API, there is a selection
involved as to which one to be adopted. Documentation should include all
choices to maintain contracts for an API method. The root cause of this con-
tract violation is that the client did not make one of the two choices (providing
an acceptable seed value or using an acceptable method ordering) for the API
to function properly. Researchers should emphasize the need to be able to ex-
press such requirements to users, who can choose to satisfy the requirements
of a library either by maintaining a temporal order or by some state-based
change. Therefore, the practitioners can design and develop a contract check-
ing mechanism for ML API calling orders to facilitate the end-users.

2.4 Classification of ML Contract Violation Locations

As we investigated the requirements for ML contracts, we also classified the
API locations of the contracts being violated.
We based this classification on prior works Guo, Yufeng (2017); Islam et al.
(2019), and used a similar open coding strategy as we did when conceiving the
classification for contract types. The categories are explained in Table 4.

https://stackoverflow.com/questions/33474424/keras-load-weights-of-a-neural-network-error-when-predicting
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Table 4: Contract Violation Locations

Data Preprocessing These APIs pre-process data before feeding it to
ML models.

Model Construction These APIs are used to build ML models, either from
scratch, by accessing a predefined model, or by compil-
ing constructed models.

Model Evaluation APIs used to estimate the generalization accuracy of a
model.

Model Initialization APIs used for initializing a predefined model, e.g., an
API to load random weights for a model.

Train Describes APIs that determine values for weights and
biases of a model.

Prediction Describes APIs that predict an outcome after training.
Hyper-parameter
Tuning

Describes APIs that change hyper-parameter(s) that
control the learning process.

Load Describes APIs that load or store data from external
storage.

2.5 Classification of Effects

We used a prior work Islam et al. (2019) for classifying the effects to the root
causes discussed in §2.3. It has six categories: bad performance (BP), crash
(C), data corruption (DC), hang (H), incorrect functionality (IF), and memory
out of bound (MOB). We have added one category Unknown (U) besides these
categories to identify cases that remain non-classified. The details about this
classification of effect are discussed in Table 5.

Table 5: Contract Violation Effects

Bad Performance Common effect in ML software; ML API users face model
problems even though they use deep learning APIs correctly
because APIs in these libraries are abstract.

Crash Frequent effect in ML. In fact, any kind of contract violation
can lead to a Crash. A symptom of the crash is that the soft-
ware stops running and prints out an error message.

Data Corruption This happens when the data is corrupted while flowing
through the network, and a user gets unexpected output. This
effect is a consequence of misunderstanding the ML APIs.

Hang Hang is caused when ML software ceases to respond to inputs
due to slow hardware or inappropriate ML algorithm. Software
running for a long period of time without providing the desired
output is considered as a symptom.

Incorrect Functionality It occurs when the software behaves unexpectedly without
any runtime or compile-time error due to the incorrect output
format, model layers not working desirably, etc.

Memory Out of Bound ML software often halts due to the unavailability of the mem-
ory resources for the wrong model structure or not having
enough computing resources to train a model.

Unknown Sometimes the effect of ML contract violation is unknown. We
have added this category for cases that remain non-classified.
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2.6 Labeling

The classification schemes described in §2.3, §2.4, and §2.5 were used to label
all 1565 collected SO posts. First, the second and the third authors with strong
ML background, have familiarized themselves with contract literature. The
authors have all studied key papers in the area of software specification and
design-by-contract methods. Then we trained these two authors to understand
the classification schema with the help of some example posts. In this training
process, the two authors were shown multiple examples for each category in the
classification schema. The examples were demonstrative of where the contract
is broken for an ML API and how the accepted answer describes the correct
usage for that precise API. Then, each rater performed independent labeling
of these posts in two iterative rounds. The 10% sampled data analyzed for
the classification coding scheme and the first iterative round of labeling served
as part of the training process for the labelers. To measure the inter-rater
agreement, we have used Cohen’s Kappa coefficient Viera et al. (2005) as
labeling progressed at 1%, 2%, 5%, 10%, and continued in this fashion. We have
followed the methodology used in prior works Höst et al. (2005); Chatterjee
et al. (2020); Islam et al. (2019, 2020) to reconcile inter-rater disagreements
at fixed intervals. During first iterative round, at 5% and 10%, we report
the Kappa coefficient to be 40% and 51%, respectively. The low value of the
agreement directed the raters to meet more frequently (at each 2%) for a
second iterative round during the first few intervals to clarify the labels that
raters were using for each post. During these meetings, raters discussed the
reasoning behind cases where a strong disagreement occurred in a moderator’s
presence. We continuously checked the Kappa coefficient at these intervals, and
even if the Kappa value fluctuated we reached values over 80% after completing
labeling 22% of the posts for the entire dataset. According to Sim and Wright
(2005), a Kappa coefficient value higher than 0.80 is considered as almost
perfect agreement.

3 Results

The main question we asked is about what contracts are most needed by
ML API users. In this section, we present the quantitative data (e.g., repre-
senting contract violation patterns, root cause, effect, contract comprehension
challenges, etc.) to show the places where immediate support for contracts is
needed. Hence, we analyze the results from our SO study to answer the re-
search questions from §1, report our findings on the original (and the filtered
subset) dataset described in §2.1, and discuss implications and actionable in-
sights.
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3.1 Contract Frequency, Root Cause, and Effect of Contract Violations

In this subsection, we answer RQ1 by presenting the required types of ML
contracts, the root causes of contract violations, and related effects.

3.1.1 Required ML contracts and associated root causes

To explore required ML contracts and the root causes behind contract vio-
lations, we use the leaf contract types from our classification (§2.3) schema.
Table 6 shows the frequency of each type of contract from the classification
found in our dataset. Figure 3 demonstrates the corresponding root causes.
Figure 2 shows the statistical comparison of ML Contracts for two datasets
(all filtered posts and the subset containing posts with scores of 30 or higher).

Finding 1 : Most frequent ML API contracts are:
• constraint check on single arguments of an API.
• order of APIs that become a requirement eventually.

Table 6: Statistics of ML Contracts in SO

ML LibraryContract Types TensorFlow Scikit-learn Keras PyTorch Overall

Primitive Type (PT) 0.63% 1.65% 0.97% 0.00% 0.01%
Built-in Type (BIT) 1.88% 5.79% 1.94% 3.85% 3.18%
Reference Type (RT) 0.63% 2.48% 3.88% 3.85% 2.20%
ML Type (MT) 15.00% 14.05% 16.50% 15.38% 15.16%
Intra-argument Contract (IC-1) 20.63% 33.88% 34.95% 23.08% 28.36%
Inter-argument Contract (IC-2) 3.75% 1.65% 0.97% 3.85% 2.44%
Always (G) 11.25% 7.44% 7.77% 11.54% 9.29%
Eventually (F) 19.38% 15.70% 10.68% 23.08% 16.38%
SAM (Level 3) ∧ AMO (Level 2) 7.50% 8.26% 7.77% 0.00% 7.33%
SAM (Level 3) 4.38% 2.48% 0.97% 3.85% 2.93%
AMO (Level 2) 6.25% 1.65% 5.83% 3.85% 4.65%
Comb. of SAM (Level 3) and AMO (Level 2) 8.75% 4.13% 7.77% 7.69% 7.09%

Required ML Contract. We identify that breaking the contract on the sin-
gle argument of an API (IC-1) and eventually (F) required API method orders
are the most frequent type of contracts violated. We observe that the lack
of domain knowledge, and incomplete error messages are some of the reasons
why ML API users struggle with the IC-1 category. For example, in SO post
6 the author struggled to grasp the difference between graph level seed and
operation level seed when using the tf.random_shuffle API. In addition,
some ML APIs are involved in AMO contracts that require particular method
orders. This required method order is often a source of confusion. For the
posts with score ≥ 30 in PyTorch library (2), all observed contracts belong to
AMO category. However, the number of posts with a score of 30 and higher
and containing a contract from the PyTorch library is very low (3 contracts).
Thus, we refrain from making any additional observations for this case. To
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Fig. 2: Comparison of ML Contract types of all filtered posts (D1) and subset with score
≥ 30 (D2) in ML libraries

analyze further why the required contracts mentioned in this finding are com-
monly violated, we have randomly sampled ML APIs from our dataset and
studied the documentation for these APIs to investigate if the documentation
is complete. We have analyzed API documentation from the Keras and Ten-
sorFlow libraries and observed that many of these incorrect usages of APIs
are not documented, especially the corner cases. As an instance, the function
RELU is a valid activation function for ML layer APIs in TensorFlow . However,
it should not be used if the layer API in question is the output layer of the
model in a multi-label classification.
The SE community can employ existing contract mining approaches Zhong
et al. (2020); Reger et al. (2013); Lemieux et al. (2015); Lemieux (2015); Le
and Lo (2018) to mine these contracts and enhance library documentation.

Finding 2 : ML APIs require ML type checking contracts and show
inter-dependency between behavioral and temporal contracts.

We have observed ML type checking (MT) is the next major category, consid-
ering all posts. For instance, in one SO post3, the ML API users is trying to
use a predefined model through a TensorFlow API seq2seq(). This API es-
sentially consists of two recurrent neural networks. The encoder part processes
the input and the decoder generates the output. To capture this, seq2seq()
contains two arguments encode_inputs and decode_inputs. The contract re-
quirement for these arguments according to the accepted answer is that if the

3 https://stackoverflow.com/questions/33762831/
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Fig. 3: Distribution of root causes behind ML contract violations

input has some shape [n], then both of the arguments are required to have a
shape of [batch_size × n]. We also note that, the ML-type checking error
is more common (for the posts with score ≥ 30) in the Scikit-learn library
compared to other libraries. This is one of the key findings that is different
when we compared the original curated dataset and the filtered dataset with
posts scored 30 or higher. This observation can be attributed to the fact that
the other studied ML libraries incorporate some type checking system, un-
like Scikit-learn. As a result, a TensorFlow or a Keras or a PyTorch program
is less likely to contain type errors. For instance, we have described that in the
SO post 4, the matmul() API from the TensorFlow library requires that both
of the arguments assume that the same Tensor types will be provided by the
caller of the API. Therefore, supplying anything other than the allowed type
will cause a type error and the program to crash. In contrast, Scikit-learn does
not require its program to be strongly typed and relies on Python’s default
type system. This situation highlights the need for type regulation in the ML
framework. A runtime assertion checking tool could help catch such contract
violations; such a tool could be built, for example, by enhancing an off-the-
shelf (e.g., PyContracts Graham et al. (2010)) tool that can detect violations
of the ML-type contracts we propose. We note that some of the type issues
may be caused by the dynamically typed nature of the programming language,
Python, and are out of the scope for this paper.
Additionally, we see that one other new category (dependency between be-
havioral and temporal contracts) in our classification is required for signifi-
cant number of APIs. Contract languages and type checking tools Lehtosalo
(2012); Seshia et al. (2018); Jothimurugan et al. (2019) should add sufficient
expressiveness for these additional types of contracts seen in ML APIs.
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We note that the behavioral contracts reported in this study are largely
preconditions. However, we found some postconditions as well. For instance,
in SO post4, the author is using the tensorflow.session() method to
return a Session object. A Session is a class that is used to run TensorFlow
operations. Then calling the run() method on this Session object allows
evaluation of the Tensor. In the example post cited above, the Tensor is a
constant String. It is supplied as the value used for the argument Fetches.
We know that any value in a Tensor holds the same data type with a known
(or partially known) shape. In this example, the value returned by run() has
the same shape as the Fetches argument. Now one can decode this output
data as needed. The contract we see in this SO post is a postcondition. The
contract for the tf.io.decode_raw() API is "returns a binary string (python
2), byte string (python 3)" upon exiting the API call.

Finding 3 : Unacceptable input value is the most common root
cause.

Primary Root Cause. We identify that supplying unacceptable input values
to APIs is the primary root cause behind contract violation in ML. The ML
API users fail to recognize acceptable input values often for several reasons,
e.g., misunderstanding a hyper-parameter setting. The undesired input values
found in our study can be utilized as test cases in ML systems and avoid some
of these contract breaches.

3.1.2 Effects of Contract Violations

To realize the effects of the contract violations, we have used the classification
of effects from a prior work Islam et al. (2019) mentioned in §2.5. Figure 4
illustrates the distribution of contract violation effects across libraries.

Finding 4 : On average, 56.93% of the contract violations for the
ML libraries leads to a crash.

Crash (C). The majority of contract violations for ML APIs lead to a crash
in the software and we observe the range within 42.31%-66.02%. This result
varies only for PyTorch with post score ≥ 30. Scikit-learn has the most
examples of contract violations that have lead to crashes among the chosen
libraries. As an instance, in SO post 4, violating the inter-argument contract
(IC-2), would result in a crash for the program. Researchers might build a
new automated repair tool inspired by existing repair tools Le Goues et al.
(2012); Mechtaev et al. (2016); Pei et al. (2014); Long and Rinard (2015). In
this regard, mined contracts could be utilized that lead to crashes and act as
a preemptive measure for the code.

4 https://stackoverflow.com/questions/40904979/
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Fig. 4: Distribution of ML contract violation effects

Finding 5 : Incorrect functionality has a different frequency pattern
in Keras.

Incorrect Functionality (IF). The next frequent (15.33% on average) effect
that we observed in terms of contract violation is causing incorrect functional-
ity in ML software. ML API users apprehend the deviant behavior either from
experience or through the logical organization of the ML model.
However, the library Keras shows a lower percentage. This divergence in fre-
quency can be explained by the fact that Keras is a high-level deep learning li-
brary; thereby hiding many complicated implementation details which reduces
the chance of running into IF. Since the compiler cannot catch incorrect func-
tionality, our dataset can become a benchmark through contract annotation
to detect this effect. Expert ML API users can further rank these particular
contract violations (e.g., scary, troubling, concern) to provide a hint of severity
for these IFs as many bug detection tools (such as Bugram Wang et al. (2016),
Salento Murali et al. (2017)) do.

Finding 6 : Contract violation-effect distribution is similar across
libraries.

Contract violation-effect correlation. To determine the effect of break-
ing a contract, we used the information explicitly available in the SO post
we labeled. Even so, we hypothesize that by observing the type of contract
violation, it is possible to make an informed guess on the corresponding effect.
For instance, Islam et al. reported that the violation of type or shape usually



What Kinds of Contracts Do ML APIs Need? 25

results in a crash during runtime Islam et al. (2019). One SO post 5 author
was not sure how to use the API DataLoader() from the PyTorch library.
The answer post lists that the API in question requires that the argument
type should be a subclass of Dataset class. Even though it was not explicitly
described on the post, such a type checking contract violation would result in
a crash. Python being a loosely typed language, type mismatch may go un-
noticed during compilation. it usually crashes for mismatches in the expected
type or shapes Islam et al. (2019).
To test this hypothesis on learning from other ML libraries regarding violation-
effect correlation, we obtained the conditional probabilities,

Pr(E = effecti | V = violationj)

which describe how likely a certain effect (effecti) follow given a contract viola-
tion (violationj). Then, we utilized the Jensen–Shannon divergence (JSD) En-
dres and Schindelin (2003) measure to compute the distance between two
probability distributions, E and V . The divergence ranges from 0 to 1, where
0 indicates perfect similarity, and 1 indicates no similarity.
In our experiment, we observed that the violation-wise effect distribution is
similar across chosen libraries. The result shows that eventually (F) required
method order, ML type checking (MT), and intra-argument contracts (IC-1)
demonstrated a divergence score of 0.08, 0.11, and 0.14, respectively, with 10%
support, indicating a similar effect distribution across libraries. This experi-
ment agrees with our hypothesis. Therefore, the SE community can learn from
contract violations of the same category for ML libraries and estimate unex-
pected behaviors of other ML libraries with similar effects in code. Further-
more, this experiment also shows an application of the proposed classification
schema.

Finding 7 : Error messages thrown for breaching an ML contract
are not often adequate at present.

Error message. In case of system failure, the crash or error message helps
API users debug the code and identify the root cause. In the SO post 13,
the author had received the error message in the listing below when they
tried to load weight on a predefined model. It could be an exhausting task
to understand the problem by only examining the error message. The answer
to this post registers that the error occurs as the ML API users missed
redefining the model architecture before loading weights. We find an error
message inadequate if the error message is present in the author’s post,
and the response demonstrates that the error message presented does not
reflect the incorrect usage for the API in question. Additionally, since domain
experts can explain these challenging ML contracts (see §3.3), such extracted
contracts can be encoded in a contract-checking tool. Such a tool, as a result,

5 https://stackoverflow.com/questions/44429199/
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can enable improved debugging mechanisms for ML software developers.� �
IndexError Traceback (most recent call last)
<ipython -input -101- ec968f9e95c5 > in <module >()

1 model2 = Sequential ()
--> 2 model2.load_weights("/Users/Desktop/SquareSpace/weights.hdf5") ...
IndexError: list index out of range� �
Stack Overflow post 13: Example post demonstrating inadequate error message

In our study, we found only a handful of contract violations that re-
quire runtime checks. For example, if overfitting happens during training,
regularization-related APIs are necessary for the ML model stack. Addition-
ally, we have found cases where runtime checks against the state alone are
insufficient without more context. For example, in Keras, it is required to
call BatchNormalization() between the linear and non-linear layer APIs in
the model to achieve better performance. Thus, in this case, the presence of
temporal history and an assertion check is required. For such kinds of ML
contracts, we can extend the traditional design-by-contract approach Meyer
(1992) to assert those contracts during runtime and utilize the contract vi-
olation message accordingly to inform the correct usage of ML APIs to the
users.
In summary, we observed that the majority of the ML contracts are similar
to traditional contracts, and Finding 1 indicates this. The contracts involving
ML type checking and dependency between behavioral and temporal contracts
are specific and needed by ML software. Interestingly, we report there are con-
tracts that can be formalized as in traditional contracts, however, the contract
violation effect is often different, e.g., bad performance, incorrect functional-
ity, etc.; i.e., issues about performance and accuracy are more common in ML
software.

3.2 Common Patterns for Contracts

This section highlights common patterns of contracts in the dataset, i.e., we
analyze the common patterns of ML contract violations observed in our study.
In section §3.1, we noted that IC-1, F, MT are the most frequently occurring
patterns across libraries. These contracts are atomic in the sense that there
is no dependency between behavioral and temporal contracts in these. We
further investigated more complex contract patterns, including combinations
of two or more atomic contracts, when answering RQ2. These types of patterns
belong to the high-level category hybrid in our classification schema. Recall
that hybrid contracts contain combinations, choices, or dependencies between
the behavioral and temporal contracts.

Finding 8 : Eventually (F) related hybrid contracts are one of the
most common patterns across ML libraries.

https://stackoverflow.com/questions/35074549/how-to-load-a-model-from-an-hdf5-file-in-keras
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Fig. 5: Patterns of ML Contracts

Patterns involving <F>. Our result shows that F contracts (about the
method orderings at a certain point in history) are the places ML API users
struggle most, compared to G (always orderings); see Figure 5. For instance,
we described that in SO post 10, the parameter choice for the GridsearchCV()
API dictates whether it must be preceded by preprocessing.scale() API.
In contrast, it is not always obvious for patterns involving F, e.g., ML API
users sometimes use a pooling layer after a convolution layer to downsample
the feature collected in the previous layer. Thus, this order is not mandatory
for all program points. But, if the order is used6, then the API user should
make sure the parameter strides of tf.nn.conv2d() is compatible with the
ksize and strides parameters of the pooling layer (e.g., tf.nn.max_pool())
in TensorFlow . Violations of such hybrid patterns can be found using unit
tests that capture variants of these patterns and testers should be aware of
capturing these variants.

3.3 Difficulty in Contract Comprehension

In this section, we analyzed when the challenges are observed behind under-
standing ML contracts. Discovering categories of ML contracts is challenging
because a significant number of SO posts do not contain contracts with ac-
cepted answers. Furthermore, the SO reputation of the user giving an answer
does not necessarily determine whether an answer reveals a challenging ML
contract. To discover the correlation between ML contracts and user expertise
in terms of the contract violation issue and to answer RQ3, we have con-
ducted an experiment that discerns respondent reliability and resolving time.
We gather evidence from various perspectives described below to develop an

6 https://stackoverflow.com/questions/34092850/
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educated guess. Prior work Zhang et al. (2019) analyzes the scores of SO post
to comprehend the types of deep learning questions are more difficult.
Inspired by that study, we have leveraged the SO reputation score to deter-
mine the overall expertise of a user. In our study, we slightly adapted the SO
reputation score, and named it the reliability score. The reputation metric is
often used to measure a user’s expertise level on SO , because it summarizes
the overall impression of that user’s SO activity. We observe that a user can
earn a reputation for various topics unrelated to ML-related skill sets. As a
result, this metric poses a significant threat when we want to assess the ex-
pertise of a user in resolving ML contracts specifically. The Reliability score
tries to mitigate this threat to an extent. Moreover, our adapted metric incor-
porates the number of accepted answers into account for higher confidence in
the metric.
As an example, let us say, we are interested to know if a particular user from
an SO post7 is an expert in Keras. While the user has a high reputation score
(26,164), they only have a score of 6 when filtered through the Keras tag
from answering two questions. This indicates that this user has accumulated
most of his reputation from other areas. So, to measure the expertise level
of a user, we consider their score only on relevant tags. Since we have only
included posts having accepted answers for this study, we refined this score to
prioritize users having more accepted answers, which we call their reliability
score, measured as follows:

reliabilityScore = totalScore× (totalAcceptedAnswer+C)
(totalAnswer+C) .

Since a user may have no accepted answers, which would reduce their reliability
score to 0; we add an equal constant value, C > 0 to both numerator and
denominator of accepted answer percentage of the reliability score to prioritize
among authors who do not have accepted answers. Here, we have used 1 as the
value of C in the study. For example, suppose two users A and B have obtained
a total score of 1200 and 80 respectively by answering an equal number of
questions without any accepted answers. In this case, the reliability score would
be zero, had it not been for the normalization constant, and both the authors
would be rated equally. As author A has achieved a significantly higher score
compared to author B for the same number of questions answered, adding
C to the accepted answer fraction adds priority to the author with a higher
answer score.
The dataset includes average resolve time for each type of contract, considering
the time required to get accepted answers from the study and reliability score
for these respondents.
We fitted the dataset in a linear regression model first. However, it violated
multiple assumptions such as linearity and normality assumptions of residuals
of linear regression. Therefore, we choose the kernel ridge regression technique,
a non-parametric (without any underlying assumptions about distributions of

7 https://stackoverflow.com/users/5098368/
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Table 7: Expected reliability score of respondents to comprehend different contracts

Library ML Contract (Leaf) Reliability
Score

Average Resolve
Time (h)

Average
Elapsed Time
(h)

First Answer
Accepted (%)

TensorFlow

IC-1 5.26 265.33 238.62 79
MT 5.76 71.03 14.55 64
SAM(Level3)∧AMO(Level2) 4.51 136.65 20.25 67
F 6.38 821.93 519.05 77
G 10.16 320.48 174.77 61

Scikit-learn

IC-1 8.16 562.52 503.27 71
MT 10.88 788.50 252.18 59
F 8.15 47.85 0.28 71

Keras

IC-1 4.68 235.23 3.65 86
MT 5.18 19.88 11.10 82
F 8.20 1079.88 513.60 62

PyTorch

IC-1 6.60 84.38 0.00 100
MT 4.83 25.45 0.00 100
F 8.77 97.58 0.00 83

the dataset), and non-linear technique Murphy (2012). We used radial basis
function (RBF) as a kernel for fitting nonlinearity of the dataset and a gamma
value of 0.1 chosen through trial-and-error analysis. Since, in our dataset, we
only included the accepted answers, the regression model predicts a minimum
expected level of a user to solve the problem successfully. To that end, we use
leaf contracts as features and the reliability scores as a target variable. Con-
sidering that features are categorical data, we converted them into a one-hot
encoded vector to feed into the model. Table 7 shows the expected reliability
scores and average resolve time for a SO post respondent to comprehend differ-
ent contracts for all ML libraries. For example, to respond to an intra-argument
contract (IC-1) from the TensorFlow library, a respondent’s expected reliabil-
ity score is 5.26, and the average resolve time is 265.33 hours. Additionally,
reliability scores are comparable for respondents within a library. Contract
components with a support of less than 10% are excluded from consideration.

Finding 9 : For ML libraries, F contracts require a higher level of
expertise and a longer average time to resolve.

A general observation is that F contracts have respondents with comparatively
higher reliability scores, ranging from 6.38 to 8.77, compared to other types
of contracts. Consequently, the average resolve time for these ranges from
47 to 1080 hours (approximately). We reason that this difficulty is because
F contracts are not as evident as G contracts, since F contracts must only
eventually hold before the program terminates. From our dataset, it is possible
to provide a benchmark for experts who can resolve F contract violations. This
benchmark could be used by the SO forum, for example, to recommend new
ML-related posts to specific experts. Furthermore, F contracts often rely on
an implicit assumption; a significant research direction could be automating
ML program repair tools such as DLFix Li et al. (2020) to resolve this contract
violation.
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Finding 10 : For Scikit-learn, ML API users mostly struggle with
comprehending ML type checking.

Surprisingly, we found that for Scikit-learn, ML API users mostly struggle
with type checking contracts. The reliability score for this case is 10.88, and
the average resolve time is 788.50 hours. We realize that Scikit-learn provides
off-the-shelf ML algorithms for supervised and unsupervised learning, whereas,
the other DNN libraries we have chosen allow API users to implement these
deep learning algorithms and neural networks. Therefore, deep neural net-
work (DNN) ML API users have some level of expertise towards ML type
checking compared to the API users who use higher-level ML libraries such as
Scikit-learn. Additionally, the DNN libraries in our study have typing rules to
address type checking issues as discussed in §3.1. There are contract-checking
tools (e.g., PyContracts Graham et al. (2010)) that can check simple non-ML
contracts. So, we recommend writing a similar extension tool that supports
scipy, CSR matrix type checking, etc. Scikit-learn users can avoid type errors
using such an extension tool. Additionally, such extensions can enforce these
contracts through static or dynamic analysis. To further verify our findings,
we obtain two more measures: the average elapsed time between the post time
of first response and the response that is accepted, and the percentage of time
the first answer is accepted. We annotate this as average elapsed time, and the
first answer accepted in Table 7. A low rate of the first answer marked as ac-
cepted and higher elapsed time would generally indicate a difficulty in contract
comprehension. We found that this additional evidence also confirms our find-
ing that F contracts are usually harder to comprehend. We notice a relatively
lower rate for accepting the first answer and higher elapsed time between a
successful resolution and an initial attempt for the findings presented.

3.4 Localizing Contract Violations to Pipeline Stages

This section groups APIs into categories depending on the ML pipeline stage
(described in §2.4) to explore RQ4. Islam et al. (2019) report that even for a
subclass of ML contract violations that leads to bugs, bug localization is very
challenging. This motivated us to study the stage of the APIs. Our goal was to
identify the pipeline stages where contracts are frequently violated. Figure 6
depicts the distribution of the locations where the ML API contract violation
occurred.

Finding 11 : A significant chunk of the ML contract violation
occurred during data preprocessing and model construction stages.

Model Construction and Data Preprocessing. We observe that 30.1%
of contract violations occur during the model construction stage (across all
SO posts for all libraries). As an example, the SO post 14 using Keras
failed to use a softmax activation in the final layer but chooses the value
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categorical_crossentropy as the loss function afterward. Here both the
APIs involved, Dense and Compile, are from the model construction stage. In
this case, the lack of contract checks results in the error propagating to the
training and the prediction stages.

Accepted Answer

Your network will not work because of activation: with categorical_crossentropy you
need to have a softmax activation:

Stack Overflow post 14: Example post demonstrating contract violation in early
ML pipeline stage
For Scikit-learn and PyTorch, we observe that 22.22% and 22.73% of errors
occur respectively at the data pre-processing stage. Although it is one of the
earliest stages in the ML pipeline, this trend is unique for these two libraries.

30.1%

15.9%

15.2%

13.7%

10.5%

7.6%

4.6%

Model
Construction

Model
Evaluation

Model
Initialization

Prediction

Train

Data 
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Load

Hyper-parameter Tuning

2.4%

Fig. 6: Distribution of ML contract violation stages from SO posts

We observe that APIs from early pipeline stages are more susceptible to con-
tract violations. This observation is crucial because ML pipelines often have
inherent dependencies between pipeline stages. Violating contracts for APIs
from early pipeline stages can lead to errors propagating to subsequent stages.
We speculate from our data that further investigation in this area is needed.
For instance, a possible future direction could be designing a verification sys-
tem (as in prior work Sankaran et al. (2017); Dvijotham et al. (2019)) with
ML contract knowledge. Contracts could explain cases where a bug in the
ML system is caused by an API that has a location early in the pipeline com-

https://stackoverflow.com/questions/46204569/how-to-handle-variable-sized-input-in-cnn-with-keras
https://stackoverflow.com/questions/46204569/how-to-handle-variable-sized-input-in-cnn-with-keras
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pared to where the error is registered. Catching the errors early in an ML
system can enable better performance and help reduce costs.

Finding 12 : Training and model evaluation related APIs are the suc-
ceeding common locations that lead to contract violations across ML li-
braries.

Train and Model Evaluation. Training is one of the stages across all li-
braries that are prone to contract violation. 15.2% of the contract violations
occur in APIs designed to train models. One of the primary reasons behind this
is that current ML API documentation is insufficient on the topic of effects of
optional parameters on the model’s accuracy rate. Contracts can document the
appropriate relationship in regard to accuracy for such optional parameters in
ML APIs found in our study. As an instance, one SO post8 author talks about
using the Scikit-learn API linear_model.SGDClassifier,partial_fit()
due to dealing with the large size of training data. However, the ML API
user was unaware that the required contract is to shuffle the data provided
as the arguments for this API. User’s unawareness here can be considered
towards insufficient documentation. Additionally, we observe a rate of 15.9%
in terms of model evaluation stage related contract violations. Training and
model evaluation stages are significantly important since, together, they can
explain the trustworthiness of the model.

Finding 13 : Model initialization as contract violation stage is mostly
prevalent in DNN libraries.

Model Initialization. Model initialization is the stage where DNN APIs are
susceptible to violating contracts. The contract violations at this stage gen-
erally show a correlation towards the crash and bad performance effects. An
example of model initialization stage discussed in one SO post9, the argument
for keras.backend.set_session API should be a TensorFlow session. We
group this example under the model initialization stage since the API in ques-
tion sets up the environment. Automated tools (e.g., Auto-Net Mendoza et al.
(2019)) that can build DNNs without human interventions can make use of
API contracts from this stage to perform better and avoid crashes.

3.5 Threats to Validity

Internal threats. The first internal threat to the validity of our results is
the classification scheme we used to identify ML contracts. To alleviate this
threat, we have prepared the classification on top of well-established contract
categories Pradel and Gross (2009); Khairunnesa et al. (2017); Leavens et al.

8 https://stackoverflow.com/questions/24617356/
9 https://stackoverflow.com/questions/47167630/
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(2006). We have followed an open coding scheme only to add categories novel
and ML-specific. The group effort to create the categories helped to make
consistent choices.
To avoid the internal threat of bias in labeling attempts after training, the
labelers performed an independent study, and the Kappa coefficient was
used to measure inter-rater agreement. A moderator was present during the
reconciliation of disagreements between raters.

External threats. The first external threat to validity is the reliability of the
dataset we have used to conduct the empirical study. There are two sources
of this threat: data source and data quality. For the data source, we have col-
lected our data from a popular Q&A forum for software developers, StackOver-
flow (SO). SO , as a forum, maintains a strict moderation policy, promotes a
peer-reviewing mechanism, and incorporates a reward system for encouraging
quality answers from the developers10. Moreover, the latest software devel-
oper survey on the usage of SO forum reveals that its users come from all
walks of managerial hierarchy, countries, experiences, age groups, expertise,
races, etc11. As such, a huge user base, an abundance of topics, and a way to
benchmark the quality of the contents make SO a frequent source in many SE
studies Zhang et al. (2018a); Cai et al. (2019); Aghajani et al. (2019); Beyer
and Pinzger (2014); Barua et al. (2012); Rosen and Shihab (2015); Cummaudo
et al. (2020). Therefore, SO represents real-world ML developers (ML API
users) and their concerns well and makes an ideal candidate for our study.
Next, to ensure good quality posts, we have gathered SO posts that have a
high enough score Islam et al. (2019) in terms of questions and includes an
accepted answer.
We have collected SO posts from four top ML libraries; however, the num-
ber of posts that we collected varies by the library. To measure the impact of
this imbalance in the dataset, we have performed a two-tail test (inequality
test) on the contract types for each library. Here, based on the t-Stat, and
t-Critical-two-tail values, 0.178 < 3.182, the observed difference between the
sample means is small enough to say that the average number of contracts
obtained from the four different ML libraries do not differ significantly. This
result indicates that even though the dataset seems unbalanced in terms of
the posts’ frequency, the contract distribution is not unbalanced to a statisti-
cally significant extent. Additionally, prior works have Treude and Robillard
(2016); Ellmann (2017) recognized SO as an important source to extract doc-
umentation for other domains. Multiple factors have enhanced the collected
SO post used in this study compared to these prior related works. For ex-
ample, the SO posts collected were from the years 2008 and 2021 and thus
contained more recent posts than those used for the paper’s submission. We
also added some additional filtering criteria that suited the paper’s main goal,
e.g., the accepted answer post has a score higher than five and was required

10 https://stackoverflow.com/help/reputation
11 https://survey.stackoverflow.co/2022/
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to contain code snippets or description that potentially describes a contract.
We furthermore note that we closely followed the guidelines from prior works
to conduct our study; however, there must have been some common SO posts
that these previous works have studied.
Next, the nature of the methodology requires extensive manual work; thus, the
number of libraries we could study is another closely related external threat. To
lessen this threat, we have studied the highly-discussed four ML libraries based
on SO trends since 2008. We have also observed that the number of curated
posts for other ML libraries are less significant compared to the libraries that
we have studied. For example, the libraries apache-spark-mllib and weka have
only fourteen and two posts, respectively, for which contracts are relevant.
Furthermore, the SO posts are mostly about contract violations, and the an-
swer posts talk about the needed contracts posing another external threat.
If certain contracts (or violations) are not present in the dataset, our study
will not find them. In essence, this is an out-of-the-vocabulary problem that
is common in data mining techniques. Another possible external threat source
is the need for validating findings with surveys and software developer inter-
views. While additional validations could raise confidence in the results, it is
mitigated by the strict filtering criteria we use. We only look at the answers
where at least five more users agree with the answers than those that disagree
(which have been used in the past as a measure of the reliability of the an-
swer Islam et al. (2019)). Moreover, we ensure that the only accepted answers
by the questioner are studied. Thus, our filtering ensures that the derived con-
tracts reflect a consensus among the questioner, the responder (via acceptance
tag), and at least five users (minimum answer score pf 5).
Finally, we must also consider ML API users expertise in our dataset as a
threat to external validity. We have used a reliability score to mitigate this
threat. Instead of using the general expertise of a software developer, the
reliability score measures expertise on ML libraries. In short, the expertise of
an user counts if they have earned the reputation from answering ML library
related questions.

4 Related Work

No previous empirical studies have investigated the requirements for ML API
contracts, but some prior work studied related issues.
Studies of Bugs in ML Programs. Zhang et al. (2018b) and Islam et al.
(2019) have studied bugs for different DNN libraries using two sources: Github
and SO . They have studied frequent bugs found in DNN libraries, root causes,
and effects of these bugs. Humbatova et al. (2020) presented a broad taxon-
omy of faults that occur in ML systems. To that end, they have surveyed
ML developers in addition to studying code from Github and SO . Their tax-
onomy contains a category API that broadly categorizes usage faults of ML
APIs. However, this category is too general to apprehend different types of
API contracts. A recent work by Islam et al. (2020) studied the challenges
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DNN developers face as they debug and subsequently examined the adopted
bug fix patterns. Thung et al. (2012) performed an empirical study on general
ML libraries. In addition to this, the study by Jia et al. (2020) examines the
bugs found in TensorFlow programs. However, all of these prior works only
present a classification for bugs; they do not identify the types of contracts that
would prevent such bugs. In contrast, we focus on the contracts that the APIs
from these libraries require and present a classification to identify different
types of contracts. Contracts differ from bug patterns in that contracts do not
just document incorrectness; they capture conditions needed to ensure correct
behavior. Contracts can also be used to assign blame: if the client violates the
contract for an API, then the client is to blame for incorrectness/bug in the
software. On the other hand, if the client satisfies its part of an API contract,
but the API does not satisfy its part, then the API’s implementation itself is
buggy.
Classification of Contracts. The notion of contracts for APIs is well-
established. Essentially two kinds of contracts, behavioral and temporal, are
most often discussed in the literature Pradel and Gross (2009); Păsăreanu and
Rungta (2010); Nguyen et al. (2014); Khairunnesa et al. (2017); Gruska et al.
(2010); Nguyen et al. (2009); Wasylkowski et al. (2007). These two classes are
behavioral and temporal contracts. In our work, we build upon these classes
of contracts and explored their application to ML library APIs. Building on
an existing classification scheme helped us not to reinvent known ideas Glaser
(1978) related to API contracts. We also highlighted the new categories of
specifications that are different than the non-ML APIs.
A recent study Leavens et al. (2022) points out the lessons we have learned in
the course of the JML projects. It helps to design specification languages and
tools for object-oriented languages such as Java and other languages. However,
this work does not provide insight into the classes of contracts that Machine
learning APIs require and their similarity and dissimilarity to traditional con-
tracts that our work focuses on. Another research Pandita et al. (2012) pro-
poses a technique to infer formal contracts from the natural language text of
API documents. Such methodology will not suffice for ML APIs as we illus-
trate that most ML software exhibits crashes, and includes bad performance
and incorrect functionality not obtained in the API documentation. Hence,
we studied SO posts and characterized the types of ML contracts. Recently,
Xie et al. (2022) proposed a technique to extract DL-specific input constraints
from API documentation and to test APIs guided by such input constraints.
However, our study pointed out that there are other kinds of contracts specific
to ML, such as temporal contracts found in model architecture or other inter
and intra-argument contracts, which could still be investigated further in the
ML domain.
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5 Conclusion and Future Work

ML has been applied in many software systems, including critical systems.
However, like non-ML software, ML software can also be buggy. The pres-
ence of bugs gives rise to the problem of improving the reliability of software
that uses ML libraries. ML software can suffer degradation of reliability in a
statistical sense that may not cause obvious failures, thus detecting improper
use of ML APIs can help improve its reliability. This motivated us to per-
form a comprehensive study to understand the types of contracts needed for
ML APIs. Our study provides a taxonomy for ML API contracts and for vio-
lation location of these contracts. In this study, the question posts provided us
with the ML API contract violations and the accepted answer posts contained
the contracts. The frequent contract violations by the ML API users indicates
the type of contracts that require immediate support. We have extracted 413
informal ML API contracts. End-users, including people teaching the applica-
tion of ML libraries, can directly use the informal contracts from our study,
as informal API documentation. The SO questions indicate a need for such
contracts. Additionally, language designers can use these informal contracts as
examples. The extracted contracts are labeled with the taxonomy presented
in this paper. To help ML API users, libraries can be released with contracts
enforced leveraging this taxonomy.
Our study has presented several key insights. First, many required contracts
for ML libraries are not different than traditional contracts. However, ML API
users struggle to maintain these contracts due to lack of domain knowledge,
incomplete or ambiguous documentation, etc. Second, there are distinct ML-
specific contracts, e.g., ML type checking. Additionally, ML APIs demonstrate
a coupling between behavioral contracts and temporal contracts. Moreover,
the uniqueness of these contracts allow the client to choose either temporal
ordering or a state change. Third, ML API users struggle with maintaining
temporal method orders (especially “eventually” constraints) for ML APIs.
Fourth, ML API users often fail to satisfy input-related contracts of ML APIs,
making input violations the most frequent root cause of contract violations
in ML APIs. Fifth, when the ML contract violations lead to system failures,
the error messages are often inadequate. Finally, a high percentage of contract
violation occurs at early ML pipeline stages. In essence, the contract violation
in an ML API that is used in early pipeline stages may delegate the effect
in subsequent pipelines. The ML APIs from model construction, data prepro-
cessing, etc. can benefit more from supporting contract checking compared to
ML APIs that are used in later pipeline stages.
From this study, we envision several future directions. The classification de-
scribed in our study could be used to design ML contract specification and
verification tools. Such tools could help avoid or detect API-related bugs in ML
programs or certify that an ML program is correct. An understanding of con-
tract violations’ root causes and effects described in this paper could enable
better debugging mechanisms and help detect contract violations. Compre-
hending the difficulty of resolving certain ML contract violations can help in
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designing a recommendation system for ML API users. For instance, a recom-
mendation system to automatically assign difficult contract violation related
questions to expert users can be designed. Finally, understanding why ML
API users make contract violations can help the designers of ML libraries to
develop APIs that are easier to use and less prone to error.
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