
Mutation-based Fault Localization
of Deep Neural Networks

Ali Ghanbari
Dept. of Computer Science

Iowa State University
Ames, Iowa, USA
alig@iastate.edu

Deepak-George Thomas
Dept. of Computer Science

Iowa State University
Ames, Iowa, USA

dgthomas@iastate.edu

Muhammad Arbab Arshad
Dept. of Computer Science

Iowa State University
Ames, Iowa, USA
arbab@iastate.edu

Hridesh Rajan
Dept. of Computer Science

Iowa State University
Ames, Iowa, USA

hridesh@iastate.edu

Abstract—Deep neural networks (DNNs) are susceptible to
bugs, just like other types of software systems. A significant
uptick in using DNN, and its applications in wide-ranging areas,
including safety-critical systems, warrant extensive research on
software engineering tools for improving the reliability of DNN-
based systems. One such tool that has gained significant attention
in the recent years is DNN fault localization. This paper revisits
mutation-based fault localization in the context of DNN models
and proposes a novel technique, named deepmufl, applicable to
a wide range of DNN models. We have implemented deepmufl
and have evaluated its effectiveness using 109 bugs obtained
from StackOverflow. Our results show that deepmufl detects
53/109 of the bugs by ranking the buggy layer in top-1 position,
outperforming state-of-the-art static and dynamic DNN fault
localization systems that are also designed to target the class
of bugs supported by deepmufl. Moreover, we observed that we
can halve the fault localization time for a pre-trained model using
mutation selection, yet losing only 7.55% of the bugs localized in
top-1 position.

Index Terms—Deep Neural Network, Mutation, Fault Local-
ization

I. INTRODUCTION

Software bugs [1] are a common and costly problem in
modern software systems, costing the global economy billions
of dollars annually [2]. Recently, data-driven solutions have
gained significant attention for their ability to efficiently and
cost-effectively solve complex problems. With the advent of
powerful computing hardware and an abundance of data, the
use of deep learning [3], which is based on deep neural
networks (DNNs), has become practical. Despite their increas-
ing popularity and success stories, DNN models, like any
other software, may contain bugs [4], [5], [6], [7], which can
undermine their safety and reliability in various applications.
Detecting DNN bugs is not easier than detecting bugs in
traditional programs, i.e., programs without any data-driven
component in them, as DNNs depend on the properties of the
training data and numerous hyperparameters [8]. Mitigating
DNN bugs has been the subject of fervent research in recent
years, and various techniques have been proposed for test-
ing [9], [10], fault localization [11], [12], and repair [13], [14]
of DNN models.

Fault localization in the context of traditional programs has
been extensively studied [15], with one well-known approach
being mutation-based fault localization (MBFL) [16], [17].

This approach is based on mutation analysis [18], which is
mainly used to assess the quality of a test suite by mea-
suring the ratio of artificially introduced bugs that it can
detect. MBFL improves upon the more traditional, lightweight
spectrum-based fault localization [19], [20], [21], [22], [23],
[24] by uniquely capturing the relationship between individual
statements in the program and the observed failures. While
both spectrum-based fault localization [25], [26] and mutation
analysis [27], [28], [29] have been studied in the context of
DNNs, to the best of our knowledge, MBFL for DNNs has
not been explored by the research community, yet the existing
MBFL approaches are not directly applicable to DNN models.

This paper revisits the idea of MBFL in the context of
DNNs. Specifically, we design, implement, and evaluate a
technique, named deepmufl, to conduct MBFL in pre-trained
DNN models. The basic idea behind deepmufl is derived from
its traditional MBFL counterparts, namely, Metallaxis [30]
and MUSE [17], that are based on measuring the impact of
mutations on passing and failing test cases (see §II for more
details). In summary, given a pre-trained model and a set of
data points, deepmufl separates the data points into two sets
of “passing” and “failing” data points (test cases), depending
on whether the output of the model matches the ground-truth.
deepmufl then localizes the bug in two phases, namely mutation
generation phase and mutation testing/execution phase. In
mutation generation phase, it uses 79 mutators, a.k.a. mutation
operators, to systematically mutate the model, e.g., by replac-
ing activation function of a layer, so as to generate a pool of
mutants, i.e., model variants with seeded bugs. In mutation
testing phase, deepmufl feeds each of the mutants with passing
and failing data points and compares the output to the output
of the original model to record the number of passing and
failing test cases that are impacted by the injected bugs. In
this paper, we study two types of impacts: type 1 impact, à
la MUSE, which tracks only fail to pass and pass to fail, and
type 2 impact, like Metallaxis, which tracks changes in the
actual output values. deepmufl uses these numbers to calculate
suspiciousness values for each layer according to MUSE, as
well as two variants of Metallaxis formulas. The layers are
then sorted in descending order of their suspiciousness values
for the developer to inspect.

We have implemented deepmufl on top of Keras [31], and it

ar
X

iv
:2

30
9.

05
06

7v
1

 [
cs

.S
E

]
 1

0
Se

p
20

23

alig@iastate.edu
dgthomas@iastate.edu
arbab@iastate.edu
hridesh@iastate.edu

supports three types of DNN models for regression, as well as
classification tasks that must be written using Sequential

API of Keras: fully-connected DNN, convolutional neural
network (CNN), and recurrent neural network (RNN). Ex-
tending deepmufl to other libraries, e.g., TensorFlow [32] and
PyTorch [33], as well as potentially to other model archi-
tectures, e.g., functional model architecture in Keras, is a
matter of investing engineering effort on the development of
new mutators tailored to such libraries and models. Since
the current implementation of deepmufl operates on pre-trained
models, its scope is limited to model bugs [7], i.e., bugs related
to activation function, layer properties, model properties, and
bugs due to missing/redundant/wrong layers (see §VI).

We have evaluated deepmufl using a diverse set of 109
Keras bugs obtained from StackOverflow. These bugs are
representatives of the above-mentioned model bugs, in that our
dataset contains examples of each bug sub-category at different
layers of the models suited for different tasks. For example,
concerning the sub-category wrong activation function model
bug, we have bugs in regression and classification fully-
connected DNN, CNN, and RNN models that have wrong
activation function of different types (e.g., ReLU, softmax,
etc.) at different layers. For 53 of the bugs, deepmufl, using its
MUSE configuration, pinpoints the buggy layer by ranking
it in top-1 position. We have compared deepmufl’s effec-
tiveness to that of state-of-the-art static and dynamic DNN
fault localization systems Neuralint [12], DeepLocalize [11],
DeepDiagnosis [8], and UMLAUT [34] that are also designed
to detect model bugs. Our results show that, in our bug dataset,
deepmufl, in its MUSE configuration, is 77% more effective
than DeepDiagnosis, which detects 30 of the bugs.

Despite this advantage of deepmufl in terms of effectiveness,
since it operates on a pre-trained model, it is slower than
state-of-the-art DNN fault localization tools from an end-user’s
perspective. However, this is mitigated, to some extent, by
the fact that similar to traditional programs, one can perform
mutation selection [35] to curtail the mutation testing time: we
observed that by randomly selecting 50% of the mutants for
testing, we can still find 49 of the bugs in top-1 position, yet
we halve the fault localization time after training the model.

In summary, this paper makes the following contributions.

• Technique: We develop MBFL for DNN and implement
it in a novel tool, named deepmufl, that can be uniformly
applied to a wide range of DNN model types.

• Study: We compare deepmufl to state-of-the-art static and
dynamic fault localization approaches and observed:

– In four configurations, deepmufl outperforms other
approaches in terms of the number of bugs that
appear in top-1 position and it detects 21 bugs that
none of the studied techniques were able to detect.

– We can halve the fault localization time for a pre-
trained model by random mutation selection without
significant loss of effectiveness.

• Bug Dataset: We have created the largest curated dataset
of model bugs, comprising 109 Keras models rang-

ing from regression to classification and fully-connected
DNN to CNN and RNN.

Paper organization. In the next section, we review concepts
of DNNs, mutation analysis, and MBFL. In §III, we present a
motivating example and discusses how deepmufl works under
the hood. In §IV, we present technical details of the proposed
approach, before discussing the scope of deepmufl in §V.
In §VI, we present the results of our experiments with deepmufl
and state-of-the-art DNN fault localization tools from different
aspects. We discuss threats to validity in §VII and conclude
the paper in §IX.
Data availability. The source code of deepmufl and the data
associated with our experiments are publicly available [36].

II. BACKGROUND

A. Mutation Analysis

Mutation analysis [18], is a program analysis method for
assessing the quality of the test suite. It involves generating a
pool of program variants, i.e., mutants, by systematically mu-
tating program elements, e.g., replacing an arithmetic operator
with another, and running the test suite against the mutants to
check if the output of the mutated program is different from
that of the original one; if different, the mutant is marked as
killed, otherwise as survived. A mutant might survive because
it is semantically equivalent to the original program, hence
the name equivalent mutant. Test suite quality is assessed by
computing a mutation score for the test suite, which is the ratio
of killed mutants over the non-equivalent survived mutants.
Mutation score indicates how good a test suite is in detecting
real bugs [37]. In addition to its original use, mutation analysis
has been used for many other purposes [38], such as fault
localization [16], [17], automated program repair [39], [40],
test generation [41], [42] and prioritization [43], program
verification [44], [45], etc.

B. Mutation-based Fault Localization

Mutation-based fault localization (MBFL) uses mutation
analysis to find bugs. In this section, we review two major
approaches to MBFL, namely Metallaxis [30] and MUSE [17].
Both of these approaches are implemented in deepmufl. The
reader is referred to the original papers [30], [17] for examples
explicating the rationale behind each approach.

1) Metallaxis: Metallaxis [30] posits that mutants gener-
ated by mutating the same program element are likely to
exhibit similar behaviors and mutants generated by mutating
different program elements are likely to exhibit different
behaviors. Since a fault itself can also be viewed as a mutant,
it is expected to behave similar to other mutants generated
by mutating that same buggy program element and can be
located by examining the mutants based on this heuristic.
Metallaxis assumes that the mutants impacting the test outputs,
or their error messages, e.g., stack trace, as impacting the tests.
Thus, mutants impacting failing test cases might indicate that
their corresponding code elements is the root cause of the
test failures, while mutants impacting passing test cases might
indicate that their corresponding code elements are correct.

2

Once the number of impacted passing and failing test cases
are calculated, Metallaxis uses a fault localization formula to
calculate suspiciousness values for each element.

Metallaxis fault localization formula can be viewed as an
extension to that of spectrum-based fault localization, by
treating all mutants impacting the tests as covered elements
while the others as uncovered elements. Specifically, the max-
imum suspiciousness value of the mutants of a corresponding
code element is returned as the suspiciousness value of the
code element. More concretely, assuming we are using SBI
formula [46], suspiciousness value for a program element e,
denoted s(e), is calculated as follows.

s(e) = max
m∈M(e)

(
|Tf (m, e)|

|Tf (m, e)|+ |Tp(m, e)|

)
, (1)

where M(e) denotes the set of all mutants targeting program
element e, Tf (m, e) is the set of failing test cases that are
impacted by the mutant m, while Tp(m, e) denotes the set of
passing test cases that are impacted by m. In this definition,
and in the rest of the paper, the notation | · | represents the
size of a set. Alternatively, had we used Ochiai [47], Metallaxis
suspiciousness formula would be modified as follows.

s(e) = max
m∈M(e)

(
|Tf (m, e)|√

(|Tf (m, e)|+ |Tp(m, e)|)|Tf |

)
, (2)

where Tf denotes the set of all failing tests cases.
2) MUSE: MUSE [17] is based on the assumption that

mutating a faulty program element is likely to impact more
failed test cases than passing test cases by “fixing” it, while
mutating a correct program element is likely to impact more
passing test cases than failing test cases by breaking it. The
notion of “impacting test cases” in MUSE, unlike Metallaxis,
is more rigid, in that it refers to making passing test cases
fail, vice versa. Once the number of impacted failing and
passing test cases are identified, suspiciousness values can be
calculated using the following formula.

s(e) =
1

|M(e)|
Σm∈M(e)

(
|Tf (m, e)|

|Tf |
− α

|Tp(m, e)|
|Tp|

)
, (3)

where Tp denotes the set of all passing tests cases and α is a
constant used to balance the two ratios that is defined to be
|F⇝P |
|Tf | × |Tp|

|P⇝F | . In the latter definition, F ⇝ P denotes the
set of failing test cases that pass due to some mutation, while
P ⇝ F denotes the set of passing test cases that fail as a
result of some mutation.

C. Deep Neural Networks

A neural network is intended to compute a function of
the form Rm −→ Rn, where m,n are positive integers. A
neural network is often represented as a weighted directed
acyclic graph arranged in layers of three types, i.e., input
layer, one or more hidden layers, and an output layer. Input
and output layers output linear combination of their inputs,
while hidden layers can be viewed as more complex compu-
tational units, e.g., a non-linear unit, convolutional unit, or a
batch normalization unit. A non-linear unit is composed of

neurons, functions applying a non-linear activation function,
e.g., rectified linear unit (ReLU), tanh, or sigmoid, on the
weighted sum of their inputs. A convolutional layer, calculates
the convolution between the vector of the values obtained from
the previous layer and a learned kernel matrix. Lastly, a batch
normalization layer, normalizes the vector of values obtained
from the previous layer via centering or re-scaling. A neural
network with two or more hidden layers is referred to as a
deep neural network (DNN).

III. MOTIVATING EXAMPLE

In this section, we first describe how deepmufl helps pro-
grammers detect and fix bugs by presenting a hypothetical
use case scenario and then motivate the idea behind deepmufl
by describing the details of how deepmufl works, under the
hood, on the example developed in the use case story.

Courtney is a recent college graduate working as a junior
software engineer at an oil company, which frequently makes
triangular structures, made of epoxy resin, of varying sizes
to be used under the water. The company needs to predict
with at least 60% confidence that a mold of a specific size
will result in an epoxy triangle after it has been dried, and
potentially shrunk, and it does not need to spend time on
cutting and/or sanding the edges. Over time, through trial and
error, the company has collected 1,000 data points of triangle
edge lengths and whether or not a mold of that size resulted in
a perfect triangle. Courtney’s first task is to write a program
that given three positive real numbers a, b, and c, representing
the edge lengths of the triangle mold, determines if the mold
will result in epoxy edges that form a perfect triangle. As a
first attempt, she writes the program shown in Listing 1.

1 # l o a d 994 of t h e d a t a p o i n t s a s X t r a i n and y t r a i n
2 # . . .
3 model = S e q u e n t i a l ()
4 model . add (Dense (2 , a c t i v a t i o n = ’ r e l u ’))
5 model . add (Dense (2 , a c t i v a t i o n = ’ r e l u ’))
6

7 model . compi l e (l o s s = ’ s p a r s e c a t e g o r i c a l c r o s s e n t r o p y ’ ,
8 o p t i m i z e r = ’ adam ’ , m e t r i c s =[’ a c c u r a c y ’])
9 model . f i t (X t r a i n , y t r a i n , epochs =100 , v a l i d a t i o n s p l i t = 0 . 1)

Listing 1: Courtney’s first attempt

The program uses 994 out of 1,000 data points for training
a model. After testing the model on the remaining 6 data
points, she realizes that the model achieves no more than
33% accuracy. Fortunately, Courtney uses an IDE equipped
with a modern DNN fault localization tool, named deepmufl,
which is known to be effective at localizing bugs that
manifest as stuck accuracy/loss. She uses deepmufl, with its
default settings, i.e., Metallaxis with SBI, to find the faulty
part of her program. The tool receives the fitted model in
.h5 format [48] together with a set of testing data points
T and returns a ranked list of model elements; layers, in
this case. After Courtney provides deepmufl with the model
saved in .h5 format and the 6 testing data points that she
had, within a few seconds, the tool returns a list with two
items, namely Layer 2 and Layer 1, corresponding to the
lines 5 and 4, respectively, in Listing 1. Once she navigates

3

Table 1: An example of how deepmufl uses Metallaxis’ default formula to
localize the bug in the model of Listing 1

Layer Neuron Mutant Impact? |Tf (m,e)|
|Tf (m,e)|+|Tp(m,e)| maxT1 T2 T3 T4 T5 T6

L1

N1
M1: weights / 2 • 0

0

M2: bias / 2 • 0
M3: relu → softmax • • 0

N2
M4: weights / 2 • 0
M5: bias / 2 • 0
M6: relu → softmax • • 0

L2

N3
M7: weights / 2 • • • 0.67

1

M8: bias / 2 • • • 0.67
M9: relu → softmax • • • 1

N4
M10: weights / 2 • • • 0.67
M11: bias / 2 • • 0.5
M12: relu → softmax • • • 1

to the details about Layer 2, she receives a ranked list
with 5 elements, i.e., Mutant 12: replaced activation

function ‘relu’ with ‘softmax’, ..., Mutant 10:

divided weights by 2, Mutant 11: divided bias

by 2. By seeing the description of Mutant 12, Courtney
immediately recalls her machine learning class wherein they
were advised that in classification tasks they should use
softmax as the activation function of the last layer. She then
changes the activation function of the last layer at Line
5 of Listing 1 from relu to softmax. By doing so, the
model achieves an accuracy of 67% on the test dataset, and
similarly on a cross-validation, exceeding the expectations of
the company.

We now describe how deepmufl worked, under the hood, to
detect the bug via Metallaxis’ default formula. Figure 1 depicts
the structure of the model constructed and fitted in Listing 1.
Each edge is annotated with its corresponding weight and the
nodes are annotated with their bias values. The nodes are using
ReLU as the activation function. In this model, the output T
is intended to be greater than the other output if a, b, and c
form a triangle, and ∼T should be greater than or equal to
the other output, otherwise.

a b c

N1 N2

N3 N4

T ~T

1.
02

0.07

-0.76
-1.04

0.86
0.04

1.
07

-1.36 0.6 1.11

bi
as

 =
 -0

.0
2

bi
as

 =
 0

bias = -0.08
bias = -0.05

Layer
L1

Layer
L2

Fig. 1: Model structure
built and fitted in Listing 1

Table 1 shows an example of how
deepmufl localizes the bug in the
model depicted in Figure 1. In the
first two columns, the table lists the
two layers, and within each layer, the
neurons. For each neuron three muta-
tors are applied, i.e., halving weight
values, halving bias value, and re-
placing the activation function. More
mutators are implemented in deepmufl,
but here, for the sake of simplicity, we
only focus on 3 of them and also re-
strict ourselves to only one activation

function replacement, i.e., ReLU vs. softmax.
As we saw in Courtney’s example, she had a test dataset T

with 6 data points which initially resulted in 33% accuracy.
These six data points are denoted T1, ..., T6 in Table 1, where
correctly classified ones are colored green, whereas misclassi-
fied data points are colored rose. deepmufl generates 12 mutants
for the model of Figure 1, namely, M1, ..., M12. Each mutant
is a variant of the original model. For example, M1 is the same
as the model depicted in Figure 1, except the weights of the

Buggy DNN
model

Test data points

Test case
splitter

Passing test cases

Failing test cases

Mutation
generator ...

Pool of mutants

Mutation
executor

(aka tester)

T4

T5

T1
T2

T3

m1 m2 ...

Suspiciousness value
calculator

f(x)

User settings (e.g., fault localization formula,
and delta threshold)

65%

45%

30%

60%

85%

Layer 5

Layer 2

Layer 3

Layer 1

Layer 4

Ranked list of layers & mutation
information

1

2

3

4

Recorded outputs

T1 T2 T3 T4 T5
m1

m2

m3

m4

m5

Mutation execution matrix

Fig. 2: deepmufl architecture. Processes are denoted using solid round rect-
angles, while data and artifacts are represented as dotted round rectangles.
Arrows represent flow of control and information.

incoming edges to neuron N1 are halved, i.e., 0.51, -0.38, and
-0.52 from left to right, while M9 is the same as the model
depicted in Figure 1, except that the activation functions for
N3 and N4 are softmax instead of relu. After generating
the mutants, deepmufl applies each mutant on the inputs T1,
..., T6 and compares the results to that of the original model.
For each data point T1, ..., T6, if the result obtained from
each mutant M1, ..., M12 is different from that of the original
model, we put a bullet point in the corresponding cell. For
example, two bullets points in the row for M3 indicate that
the mutant misclassifies the two data points that used to be
correctly classified, while other data points, i.e., T1, ..., T4, are
misclassified as before. Next, deepmufl uses SBI formula [46]
to calculate suspiciousness values for each mutant m ∈ {M1,
..., M12}, individually. These values are reported under the one
but last column in Table 1. Lastly, deepmufl takes the maximum
of the suspiciousness values of the mutants corresponding to
a layer and takes it as the suspiciousness value of that layer
(c.f. Eq. 1 in §II). In this particular example, layer L1 gets a
suspiciousness value of 0, while L2 gets a suspiciousness value
of 1. Thus, deepmufl ranks L2 before L1 for user inspection
and for each layer it sorts the mutants in descending order of
their suspiciousness values, so that the user will understand
what change impacted most the originally correctly classified
data points. In this case, M12 and M9 wind up at the top of
the list, and as we saw in Courtney’s story, the information
associated with the mutations helped fixing the bug.

IV. PROPOSED APPROACH

Our technique deepmufl comprises four components: (1)
mutation generator, (2) test case splitter, (3) mutation execu-
tor/tester, and (4) suspiciousness calculator. Figure 2 depicts
these components as processes, numbered accordingly, taking

4

inputs and producing outputs. Mutation generator (marked 1⃝
in Figure 2), applies 79 mutators on all the layers of the input
buggy DNN, so as to generate a pool of mutants, i.e., variants
of the original, buggy DNN model with small perturbations,
e.g., replacing activation function of a layer. Test case splitter
(marked 2⃝ in the figure), applies the original buggy DNN on
a given set of test data points, i.e., test cases (or input values)
paired with their expected output values, so as to partition the
set into two subset, namely passing test cases and failing test
cases. Passing test cases are referred to as those input values
for which the expected output matches that of produced by
the original model, whereas failing test cases are referred to
as those input values for which the expected output does not
match that of produced by the model. This component also
stores the output of the original model on each of the test
cases. Next, mutation executor (which is also called mutation
tester, marked 3⃝ in the figure) applies the generated mutants
on each of the passing and failing test cases and the results are
compared to that of the original model recorded in the previous
step. This amounts to a mutation execution matrix that is used
to calculate suspiciousness values for each layer in the model
(marked 4⃝ in the figure). The user may instruct deepmufl to use
a specific fault localization formula, e.g., MUSE or Metallaxis
with SBI or Ochiai, for calculating suspiciousness values. The
layers are then ranked based on the calculated suspiciousness
values for user inspection. The ranked list is accompanied with
the information about the mutations conducted on each layer
to facilitate debugging.

A. Mutation Generator

Mutation generator component receives the original, buggy
DNN model and generates as many variants of the model,
i.e., mutants, as possible, by systematically mutating every
elements of the input model. This component implements 79
mutators. Mutators can be viewed as transformation operators
that when applied to a given element, e.g., a neuron or a layer,
in the model, returns a new variants of the model with that
particular element mutated. Table 2 lists all the mutators im-
plemented in deepmufl, the types of model elements on which
they can operate, and the way each mutator affects the target
element. These mutators are inspired by the ones implemented
in the existing mutation analysis systems, e.g., [27], [28], [29],
[49], [50], [51], [52], [53], to name a few. Ma et al. [29],
and Hu et al. [28], define so-called model-level mutators that
also operate on pre-trained models. Direct reuse of all of
their mutators was not possible, as those mutators depend
on random values which would introduce a source of non-
determinism in deepmufl: mutating the same model element
with random values, e.g., Gaussian fuzzing, as in [29], would
yield a different mutant each time, making deepmufl to produce
different outputs on each run for the same model. In general,
as far as MBFL is concerned, using variable values (whether it
is deteministic or not), instead of the current hard-coded ones,
for mutation of weights would not bring about any benefit, as
the goal here is to break the model in some way and observe
its impact on originally failing and passing test cases.

We argue that not all model bugs could be emulated using
mutators at the level of pre-trained models, e.g., missing batch
normalization, but the mutators listed in Table 2 are sufficient
for emulating a subset of such bugs, e.g., wrong activation
function or missing/redundant layer. Please see §V for a more
detailed discussion on supported bugs.

Mutation generation in deepmufl is done directly on the
trained model and there is no need for retraining the model.
This makes deepmufl quite fast and perhaps more attractive
from a practical point of view. However, this comes with a
risk of not being traceable, i.e., a mutation on pre-trained .h5

model does not directly correspond to a line of source code
for the user to inspect. In the Keras programs that we studied,
this limitation was mitigated by the fact that the models with
Sequential architecture were implemented using a well-
understood structure and mapping layer numbers/identifiers in
deepmufl’s reports to source code was trivial. In a future work,
with the help of simple auto-generated annotations, e.g., for
lexical scoping of the code snippet for model declaration, we
will extend deepmufl to automatically map layer numbers/iden-
tifiers in its reports to actual lines of source code.

Humbatova et al. [27] argue about the importance of muta-
tors emulating real DNN faults. We acknowledge that mutators
emulating real faults would help generating more informative
reports that would also give hints on how to fix the program.
However, unlike mutation analysis, the main objective of an
MBFL technique is to assign suspiciousness values to the
program elements which can, in theory, be done using any kind
of mutator, whether or not it makes sense from the standpoint
of a developer. It is worth noting that the alternative design
decision of using DeepCrime [27] as a mutation generation
engine for deepmufl would result in finding more bugs than
the current version of deepmufl, e.g., bugs related to training
hyper-parameters or training dataset, but such a design is
expected to be impacted by the nondeterminacy inherent in
training process and, given the fact that we do not employ any
training data selection, would be significantly slower due to
numerous re-training. Nevertheless, finding more bugs would
be an incentive for exploring this alternative as a future work.

B. Test Case Splitter

Before we introduce this component, we need to clarify
certain terminology.

Definition 1. A data point in a testing dataset for a DNN
model is defined to be a pair of the form (I,O), where I ∈ Rm

and O ∈ Rn, with m and n being positive integers. In this
paper I is called test case, test input, or input, while O is
called expected output or ground-truth value.

Given a test dataset, test case splitter component applies the
original model on each of the test cases for the data points and
checks if the model output matches to the expected output. If
the two outputs match, then the corresponding test case will be
marked as passing, otherwise it will be marked as failing. This
component also records the output produced by the original
model to be used during impact analysis, described below.

5

Table 2: Summary of the 79 mutators implemented in deepmufl

Mutator Class Description

MATH WEIGHT
Add/subtract 1 to/from the weights of a given neuron and multi-
ply/divide them to/by 2. Targets Dense and SimpleRNN layers.

MATH WEIGHT CONV
Add/subtract 1 to/from the weights of a convolution layer and
multiply/divide them to/by 2. Targets subclasses of Conv, i.e.,
Conv1D, Conv2D, etc.

MATH ACT WEIGHT
Add/subtract 1 to/from the activation weights of a (rolled) recurrent
layer and multiply/divide them to/by 2. Targets SimpleRNN layers.

MATH LSTM IN WEIGHT
Add/subtract 1 to/from the input weights of an LSTM layer and
multiply/divide them to/by 2. Targets LSTM layers.

MATH LSTM FORGET WEIGHT
Add/subtract 1 to/from the forget weights of an LSTM layer and
multiply/divide them to/by 2. Targets LSTM layers.

MATH LSTM CELL WEIGHT
Add/subtract 1 to/from the cell weights of an LSTM layer and
multiply/divide them to/by 2. Targets LSTM layers.

MATH LSTM OUT WEIGHT
Add/subtract 1 to/from the output weights of an LSTM layer and
multiply/divide them to/by 2. Targets LSTM layers.

MATH BIAS
Add/subtract 1 to/from the bias value of neuron and multiply/divide
them to/by 2. Targets Dense and SimpleRNN layers.

DEL LAYER Deletes a Dense layer.
DUP LAYER Duplicates a Dense layer.

MATH CONV BIAS
Add/subtract 1 to/from the bias value of a convolution layer and
multiply/divide them to/by 2. Target subclasses of Conv.

MATH LSTM IN BIAS
Add/subtract 1 to/from the input bias of an LSTM layer and
multiply/divide them to/by 2. Target LSTM layers.

MATH LSTM FORGET BIAS
Add/subtract 1 to/from the forget bias of an LSTM layer and
multiply/divide them to/by 2. Target LSTM layers.

MATH LSTM CELL BIAS
Add/subtract 1 to/from the cell bias of an LSTM layer and
multiply/divide them to/by 2. Target LSTM layers.

MATH LSTM OUT BIAS
Add/subtract 1 to/from the output bias of an LSTM layer and
multiply/divide them to/by 2. Target LSTM layers.

ACT FUNC REP
Replaces the activation of a neuron with a different one. Targets all
layers with activation function in their configuration, e.g., Dense,
Conv2D, etc.

MATH POOL SZ Increase/decrease pool size by 1, if applicable.
MATH STRIDES Increase/decrease strides by 1, if applicable.

MATH KERNEL SZ Increase/decrease kernel size by 1, if applicable.
MATH FILTERS Increase/decrease filters by 1, if applicable.

PADDING REP
Replace valid padding with same, vice versa. Targets subclasses of
Conv.

REC ACT FUNC REP
Replace the recurrent activation of a layer. Targets SimpleRNN
layers.

C. Mutation Executor (Mutation Tester)

We start describing this component with a definition.

Definition 2. A mutation execution matrix E is a k× l matrix,
where k is the number of generated mutants, while l is the
number of test cases. Each element Ei,j in the matrix is a
member of the set {✓,✗,❍}, wherein ✓ indicates that the
ith mutant impacts jth test case, whereas ✗ indicates that the
mutant does not affect the test case. ❍ denotes a nonviable
mutant, i.e., a mutant that fails when loading or applying it
on a test case. Such mutants might be generated, e.g., due to
creating a shape error [32] after the mutation.

Mutation executor component construct mutation execution
matrix by applying each of the generated mutants (see §IV-A)
on the failing and passing test cases to determine which of
the test cases are impacted by which mutants. The impact of
mutation on test cases is measured using two types of impacts,
i.e., type 1 impact and type 2 impact, defined below.

Definition 3. Given a DNN model M, its mutated version M′,
and a data point (I,O), we define the two types of impacts:

• Type 1: Mutant M′ impacts the test case I if M(I) = O
but M′(I) ̸= O, or M(I) ̸= O but M′(I) = O. In other
words, type 1 impact tracks pass to fail and fail to pass
test cases, à la MUSE [17].

• Type 2: Mutant M′ impacts the test case I if M(I) ̸=
M′(I).

In this definition, M(I) or M′(I) denotes the operation of
applying model M or M′ on the test case I .

It is worth noting that checking for equality of two values
can be tricky for regression models, as those models approxi-
mate the expected values. To work around this problem, deep-
mufl compares values obtained from regression models using a
user-defined delta threshold, i.e., the values are deemed equal
if their absolute difference is no more than a threshold. By
default, deepmufl uses a threshold of 0.001. This is the approach
adopted by well-known testing frameworks for comparing
floating-point values [54], [55]. Also, whether deepmufl uses
type 1 or type 2 impact is a user preference and is determined
alongside the threshold.

D. Suspiciousness Value Calculator

Armed with the above definitions, we can now give concrete
definitions for the terms used in Eq. 1, 2, and 3, specialized
to DNNs.

• Given a model element, i.e., neuron or a layer, e, M(e) is
defined to be the set of all mutants generated by mutating
e. These sets are produced by mutation generator process.

• Assuming that m is a mutant on the element e, Tf (m, e)
(or Tp(m, e)) is defined as the set of failing (or passing)
test cases that are impacted in type 1 or type 2 fashion
by m. More concretely, Tp(m, e) = {t | Em,t = ✓ ∧
t is passing}, similarly Tf (m, e) = {t | Em,t = ✓ ∧
t is failing}. These two sets are defined using a quite
similar notation; the readers are encouraged to review
Definitions 2 and 3 to avoid confusion.

• Tf (or Tp) is the set of originally failing (or passing) test
cases. These sets are constructed by test case splitter.

• F ⇝ P (or P ⇝ F), for a model element e, is defined
as the set of originally failing (or passing) test cases
that turned into passing (or failing) as a result of some
mutation on e. More concretely, assuming the execution
matrix E is constructed using type 1 impact, F ⇝ P is
defined as {t | t is failing ∧ ∃m ∈ M(e) · Em,t = ✓}.
Similarly, P ⇝ F is defined as {t | t is passing ∧ ∃m ∈
M(e) ·Em,t = ✓}. In other words, these sets track all the
failing/passing test cases that are type 1 impacted by some
mutant of a given element. These two sets are defined
using a quite similar notation; the readers are encouraged
to review Definitions 2 and 3 to avoid confusion.

Having specialized definitions for the terms used in the fault
localization formulas described earlier, we are now able to
calculate suspiciousness values for the elements in a DNN
model. Guided by the user preferences, deepmufl calculates all
the values for |Tf (m, e)|, etc., and plugs into the specified
formula to calculate suspiciousness values for the elements.
It is worth noting that if all the mutants generated for a
given element are nonviable, MUSE formula (Eq. 3) and all
the variants of Metallaxis (e.g., Eq. 1), by definition, will
return 0 as the suspiciousness value for the element. Nonviable
mutants do not contribute toward localizing the bug, therefore
they are considered overhead to the fault localization process.
Fortunately, based on our observations in our dataset of buggy
DNNs, nonviable mutants are rare.

6

Equivalent mutants are another source of overhead for
deepmufl. Currently, we do not have any means of detecting
equivalent mutants, but we argue that these mutants do not
impact MBFL results, as they are equivalent to the original
model and do not impact any passing or failing test cases.

V. SUPPORTED DNN BUGS

Due to the complex nature of DNN bugs, and MBFL itself,
we do not hope to give a formal account of what types
of DNN bugs deepmufl is capable of localizing. Instead, we
attempt to provide as accurate description of the supported
bugs as possible and discuss the way such bugs manifest in
DNN programs. The discussion given in this section lever-
ages the characterization of DNN bugs provided by previous
research [7], [4], [6].

As we mentioned earlier, current version of deepmufl
operates on pre-trained Keras Sequential models. This
means that much of the information, such as training hyper-
parameters and whether or not the input data is normalized,
has already been stripped away from the input to deepmufl,
and the current version of the technique is not capable of
detecting any bug related to training process, e.g., training data
and hyper-parameters. Moreover, a pre-trained model does not
contain bugs related to tensor shapes (as otherwise, the training
would fail with shape errors), and since deepmufl does not
receive the source code of the buggy model as input, bugs
related to GPU usage and API misuse are also out of the reach
of the technique, by definition. This leaves us with the so-
called model bugs [7] the extent to which deepmufl is capable
of localizing is explicated below. The four model bug sub-
categories are represented with identifiers SC1, ..., SC4 in the
rest of this paper for ease of reference.

• SC1: Activation function. These bugs are related to the
use of wrong activation function in a layer. We observed
that deepmufl detects this type of bugs and it also gives
actionable, direct fixes.

• SC2: Model type or properties. These bugs include
wrong weight initialization, wrong network architecture,
wrong model for the task, etc. Through altering the
weights and biases in layers, deepmufl detects weight/bias
initialization bugs and pinpoint the location of the bug,
but the bug report produced by the tool does not provide
helpful information for fixing.

• SC3: Layer properties. These bugs include wrong fil-
ter/kernel/stride size, sub-optimal number of neurons in
a layer, wrong input sample size, etc. deepmufl detects
and pinpoints the bugs related to filter/kernel/stride size
and sub-optimal number of neurons. We observed that,
the former case sometimes produce non-viable mutants.
In the cases where deepmufl produced viable mutants,
effective MBFL takes place and it has been able to
pinpoint the bug location and provide explanation on how
to fix it. In the latter case, deepmufl was able to pinpoint
the bug location, but the bug report does not give helpful
information on how to fix the bugs in this sub-category.

• SC4: Missing/redundant/wrong layer. These bugs in-
clude missing/extra one dense layer, missing dropout
layer, missing normalization layer, etc. By mutating the
layers adjacent to the missing layer, or deleting the re-
dundant layer, deepmufl detects and pinpoints the location
of the missing/culprit layer, and in most of the cases, it
provides useful information on how to fix such bugs.

By manually examining the bug descriptions provided by
the programmers in our dataset of bugs, and also referring to
the previous work on DNN bugs and root cause characteriza-
tion [4], these bugs might manifest as low test accuracy/MSE,
constant validation accuracy/MSE/loss during training, NaN
validation accuracy/MSE/loss during training, dead nodes,
vanishing/exploding gradient, and saturated activation.

At this point, we would like to emphasize that deepmufl is
not intended to repair a model, so if a mutation happens to be
the fix for the buggy model, the model has to be retrained from
scratch so that correct weights and biases will be calculated.

VI. EVALUATION

We evaluate deepmufl and compare it to state-of-the-art
static and dynamic DNN fault localization techniques, by
investigating the following research questions (RQs).

• RQ1 (Effectiveness):
1) How does deepmufl compare to state-of-the-art tools

in terms of the number of bugs detected?
2) How many bugs does deepmufl detect from each sub-

category of model bugs in our dataset and how does
that compare to state-of-the-art tools?

3) What are the overlap of detected bugs among deep-
mufl and other fault localization techniques?

• RQ2 (Efficiency):
1) What is the impact of mutation selection on the

effectiveness and efficiency of deepmufl?
2) How does deepmufl compare to state-of-the-art tools

in terms of end-to-end fault localization time?

A. Dataset of DNN Bugs

To evaluate deepmufl and compare it to state-of-the-art DNN
fault localization techniques, we queried StackOverflow Q&A
website for posts about Keras that had at least one accepted
answer. Details about the SQL query used to obtain the initial
list of posts is available online [36]. The query resulted in
8,412 posts that we manually sieved through to find the
programs with model bugs. Specifically, we kept the bugs that
satisfied the following conditions.

• Implemented using Sequential API of Keras,
• The bug in the program was a model bug supported by

deepmufl as described in §V, and
• The bug either had training datatset available in the post

in some form (e.g., hard-coded, clearly described in the
body of the post, or a link to the actual data was provided)
or we could see the described error using synthetic data
obtained from scikit-learn’s dataset generation API.

7

This resulted in 102 bugs and we paired each bug with a
fix obtained from the accepted answer to the question. We
further added 7 bugs from DeepLocalize dataset [11] that are
also coming from StackOverflow and we paired these bugs
also with their fixes that are obtained from the most up-voted
answer. Thus, we ended up with 109 bugs in total. To the best
of our knowledge, this is the largest dataset of model bugs
obtained from StackOverflow and it overlaps with the existing
DNN bug datasets from previous research [12], [56]. Our bug
dataset contains 85 classifiers (45 fully-connected DNNs, 29
CNNs, and 11 RNNs) and 24 regression models (19 fully-
connected DNNs, 3 CNNs, and 2 RNNs). And each category
has at least one example of model bugs. Therefore, we believe
that our dataset is greatly representative of model bugs, i.e., the
bugs supported by deepmufl (and other tools that support this
type of bugs), as we have examples of each sub-category of
bug in various locations of the models for various regression
and classification tasks.

After loading the training dataset for the bugs, we fitted the
buggy models three times and stored them in .h5 file format
separately. The repetition was conducted to take randomness
in training into account. Randomness in data generation was
mitigated by using deterministic random seeds. For fault
localization purposes, we used the test dataset, and if it was
not available, we used the training dataset itself. When we had
to use synthesized data points, we deterministically splitted the
generated set of data into training and testing datasets.

B. Baseline Approaches and Measures of Effectiveness

In RQ1 and RQ2, we compare five different configurations
of deepmufl to recent static and dynamic DNN fault localization
tools. The five configurations of deepmufl are as follows.

• Metallaxis [30]: In this setting, we use the Metallaxis
formula to calculate suspiciousness values of model ele-
ments. Metallaxis, by default, uses SBI [46] to calculate
suspiciousness values for individual mutants. A recent
study [57] provides empirical evidence on the superiority
of Ochiai [47] over SBI when used within Metallaxis
formula. Thus, we considered the following four combi-
nations: type 1 impact: (1) SBI formula (i.e., Eq. 1); (2)
Ochiai formula (i.e., Eq. 2), and type 2 impact: (3) SBI
formula (i.e., Eq. 1); (4) Ochiai formula (i.e., Eq. 2).

• MUSE [17]: We used the default formula of MUSE to
calculate the suspiciousness of model elements. For this,
only type 1 impact is considered, as the heuristics behind
MUSE are defined based on type 1 impact.

Our technique follows a more traditional way of reporting
root causes for the bugs [30], [17], [57], [19], [22], [21], [15],
in that it reports a list of potential root causes ranked based on
the likelihood of being responsible for the bug. This allows the
users find the bugs faster and spend less time reading through
the fault localization report, which in turn increases practicality
of the technique [58]. We have used top-N , with N = 1,
metric to measure the effectiveness of deepmufl in RQ1 and
RQ2. Specifically, if the numbers of any of the buggy layers
of the bug appeared in the first place in the output of deepmufl,

Table 3: Effectiveness of different deepmufl configurations and four other tools
in detecting bugs from four sub-categories of model bugs

deepmufl configuration / tool SC 1 SC 2 SC 3 SC 4 Total (detected)
Metallaxis SBI + Type 1 31 2 6 3 42

Metallaxis Ochiai + Type 1 36 2 7 2 47
Metallaxis SBI + Type 2 18 2 4 2 26

Metallaxis Ochiai + Type 2 29 2 4 2 37
MUSE 41 3 6 3 53

Neuralint 15 1 4 1 21
DeepLocalize 21 0 4 1 26

DeepDiagnosis 22 2 5 1 30
UMLAUT 18 1 6 0 25

Total (entire dataset) 80 4 17 8

we reported it as detected, otherwise we marked the bug as
not-detected. We emphasize that top-1 metric gives a strong
evidence on the effectiveness of deepmufl, as the developers
usually only inspect top-ranked elements, e.g., over 70% of
the developers only check top-5 ranked elements [59].

Our selection criteria for the studied fault localization tech-
niques are: (1) availability; (2) reproducibility of the results
reported in the original papers, so as to have a level of
confidence on the correctness of the results reported here; and
(3) support for model bugs in our dataset, so that we can make
a meaningful comparison to deepmufl. Below we give a brief
description of each of the selected tools, why we believe they
support model bugs, and how we have interpreted their outputs
in our experiments, i.e., when we regard a bug being detected
by the tool.

1) Neuralint: A static fault localization tool that uses 23
rules to detect faults and design inefficiencies in the model.
Each rule is associated with a set of rules of thumb to fix
the bug that are shown to the user in case the precondition
for any of the rules are satisfied. The five rules described
in Section 4.2.1 of the paper target model bugs. Neuralint
produces outputs of the form [Layer L ==> MSG]∗, where
L is the suspicious layer number, and MSG is a description
of the detected issue and/or suggestion on how to fix the
problem. A bug is deemed detected by this tool if it is located
in the layer mentioned in the output message or the messages
describe any of the root causes of the bug.

2) DeepLocalize: A dynamic fault localization technique
that detects numerical errors during model training. One
of three rules described in Section III.D of the pa-
per checks model bugs related to wrong activation func-
tion. DeepLocalize produces a single message of the form
Batch B Layer L : MSG, where B is the batch number
wherein the symptom is detected and L and MSG are the
same as we described for Neuralint. A bug is deemed detected
if it is located in the layer mentioned in the output message
or the message describes any of the root causes of the bug.

3) DeepDiagnosis: A tool similar to DeepLocalize, but
with more bug pattern rules and a decision procedure to
give actionable fix suggestions to the users based on the
observations. All 8 rules in Table 2 of the paper moni-
tor the symptoms of model bugs. Similar to DeepLocal-
ize, DeepDiagnosis produces a single message of the form
Batch B Layer L : MSG1 [OR MSG2], where B and L
are the same as described in DeepLocalize and MSG1 and

8

MSG2 are two alternative solutions that the tool might suggest
to fix the detected problem. A bug is deemed detected if it is
located in the layer mentioned in the output message or the
message describes any of the root causes of the bug.

4) UMLAUT: A hybrid, i.e., a combination of static and
dynamic, technique that works by applying heuristic static
checks on, and injecting dynamic checks in, the program,
parameters, model structure, and model behavior. Violated
checks raise error flags which are propagated to a web-based
interface that uses visualizations, tutorial explanations, and
code snippets to help users find and fix detected errors in
their code. All three rules described in Section 5.2 of the
paper target model bugs. The tool generates outputs of the
form [< MSG1 > · · · < MSGm >]∗, where m > 0 and
MSGi is a description of the problem detected by the tool.
A bug is deemed detected if any of the messages match the
fix prescribed by the ground-truth.

C. Results

To answer RQ1, we ran deepmufl (using its five configura-
tions) and four other tools on the 109 bugs in our benchmark.
We refer the reader to the repository [36] for the raw data about
which bug is detected by which tool, and here we describe the
summaries and provide insights.

At top-1, deepmufl detects 42, 47, 26, 37, and 53 bugs
using its Metallaxis SBI + Type 1, Metallaxis Ochiai + Type
1, Metallaxis SBI + Type 2, Metallaxis Ochiai + Type 2,
and MUSE, respectively, configurations. Meanwhile Neuralint,
DeepLocalize, DeepDiagnosis, and UMLAUT detect 21, 26,
30, and 25, respectively, bugs. Therefore, as far as the number
of bugs detected by each technique is concerned, MUSE
configuration of deepmufl is the most effective configuration
of deepmufl, significantly outperforming studied techniques,
and Metallaxis Ochiai + Type 2 is the least effective one,
outperformed by DeepDiagnosis. An empirical study [57],
which uses a specific dataset of traditional buggy programs,
concludes that Metallaxis Ochiai + Type 2 is the most effective
configuration for MBFL. Meanwhile, our results for DNNs
corroborates the theoretical results by Shin and Bae [60], i.e.,
we provide empirical evidence that in the context of DNNs
MUSE is the most effective MBFL approach.

Table 3 reports more details and insights on the numbers
discussed above. Specifically, it reports the number of bugs
detected by each configuration of deepmufl an four other
studied tools from each sub-category of model bugs present
in our dataset of bugs. As we can see from the upper half of
the table, MUSE is most effective in detecting bugs related
to activation function (SC1), bugs related to model type/prop-
erties (SC2), and wrong/redundant/missing layer (SC4), while
Metallaxis Ochiai + Type 1 configuration outperforms other
configurations in detecting bugs related to layer properties
(SC3). Similarly, from bottom half of the table, we can see
that other tools are also quite effective in detecting bugs
related to activation function, with DeepDiagnosis being the
most effective one among others. We can also observe that
UMLAUT has been the most effective tool in detecting bugs

Table 4: The fraction of bugs detected by each deepmufl configuration that
are also detected by the other four tools

Neuralint DeepLocalize DeepDiagnosis UMLAUT Combined
Metallaxis SBI 23.81% (10) 19.05% (8) 21.43% (9) 19.05% (8) 59.52% (25)+ Type 1

Metallaxis Ochiai 27.66% (13) 25.53% (12) 21.28% (10) 17.02% (8) 57.45% (27)+ Type 1
Metallaxis SBI 15.38% (4) 15.38% (4) 11.54% (3) 15.38% (4) 46.15% (12)+ Type 2

Metallaxis Ochiai 13.51% (5) 18.92% (7) 21.62% (8) 16.22% (6) 48.65% (18)+ Type 2
MUSE 22.64% (12) 22.64% (12) 28.3% (15) 24.53% (13) 60.38% (32)

related to layer properties. As we can see, MUSE configuration
of deepmufl is consistently more effective than other tools
across all bug sub-categories.

Table 4 provides further insights on the overlap of bugs
detected by each variant of deepmufl and those detected by
the other four tools. Each value in row r and column c of this
table, where 2 ≤ r ≤ 5 and 2 ≤ c ≤ 6, denotes the percentage
of bugs detected by the deepmufl variant corresponding to row
r and tool corresponding to column c. The values inside the
parenthesis are the actual number of bugs. For example, 8
out of 42, i.e., 19.05%, of the bugs detected by Metallaxis
SBI + Type 1 configuration of deepmufl are also detected
by DeepLocalize. The last column of the table reports same
statistics, except for all four of the studied tools combined.
As we can see from the table, 60.38% of the bugs detected
by MUSE configuration of deepmufl are already detected by
one of the four tools, yet it detects 21 (=53-32) bugs that
are not detected by any other tools. This is because deepmufl
approaches fault localization problem from a fundamentally
different aspect giving it more flexibility. Specifically, instead
of looking for conditions that trigger a set of hard-coded rules,
indicating bug patterns, deepmufl breaks the model using a
set of mutators to observe how different mutation impact the
model behavior. Then by leveraging the heuristics underlying
traditional MBFL techniques, it performs fault localization
using the observed impacts on the model behavior. Listing 2
shows an example of a model bug that only deepmufl can detect.

1 # l o a d and s p l i t t h e d a t a s e t
2 # . . .
3 model = S e q u e n t i a l ()
4 model . add (Dense (4 , i n p u t d i m =2 , a c t i v a t i o n = ’ r e l u ’))
5 model . add (Dense (1 , a c t i v a t i o n = ’ r e l u ’))
6 model . compi l e (l o s s = ’ m e a n s q u a r e d e r r o r ’ , o p t i m i z e r = ’ sgd ’ , m e t r i c s =[’

MSE’])
7 model . f i t (X, Y, epochs =500 , b a t c h s i z e =10)

Listing 2: Bug 48251943 in our dataset

The problem with this regression model is that it does not
output negative values, and given the fact that the dataset
contains negative target values, the model achieves high MSE.
Since this model does not result in any numerical errors during
training, DeepLocalize does not issue any warning messages,
and since MSE decreases and the model does not show any
sign of erratic behavior DeepDiagnosis does not detect the
bug. UMLAUT’s messages instruct adding softmax layer and
checking validation accuracy which is clearly not related to the
problem, because the bug is fixed by changing the activation
function of the last layer to tanh and normalizing the output
values. Lastly, Neuralint issues an error message regarding
incorrect loss function which also seems to be a false positive.

9

To answer RQ2, we ran deepmufl and the other four tools
on a Dell workstation with Intel(R) Xeon(R) Gold 6138 CPU
at 2.00 GHz, 330 GB RAM, 128 GB RAM disk, and Ubuntu
18.04.1 LTS and measured the time needed for model training
as well as the MBFL process to complete. We repeated this
process four times, and in each round of deepmufl’s execution,
we randomly selected 100% (i.e., no selection), 75%, 50%, and
25% of the generated mutants for testing. Random mutation
selection is a common method for reducing the overhead of
mutation analysis [61], [35]. During random selection, we
made sure that each layer receives at least one mutants, so
that we do not mask any bug. The last row in Table 5
reports the average timing (of 3 runs) of MBFL in each
round of mutation selection. The table also reports the impact
of mutation selection on the number of bugs detected by
each configuration of deepmufl. As we can see, in MUSE
configuration of deepmufl, by using 50% of the mutants, one
can halve the execution time and still detect 92.45% of the
previously detected bugs. Therefore, mutation selection can be
used as an effective way for curtailing MBFL time in DNNs.

For a fair comparison of deepmufl to state-of-the-art fault
localization tools in terms of efficiency, we need to take into
account the fact that deepmufl requires a pre-trained model
as its input. Thus, as far as the end-to-end fault localization
time from an end-user’s perspective is concerned, we want
to take into consideration the time needed to train the input
model in addition the time needed to run deepmufl. With
training time taken into account, deepmufl takes, on average,
1492.48, 1714.63, 1958.35, and 2192.4 seconds when we
select 25%, 50%, 75%, and 100% of the generated mutants,
respectively. We also emphasize that the time for DeepLocalize
and DeepDiagnosis varied based on whether or not they found
the bug. Given the fact that a user could terminate the fault
localization process after a few epochs when they lose hope in
finding bugs with these two tools, we report two average mea-
surements for DeepLocalize and DeepDiagnosis: (1) average
time irrespective of the fact that the tools succeed in finding
the bug; (2) average time if the tools successfully finds the bug.
Unlike these two tools, the time for Neuralint and UMLAUT
does not change based on the fact that they detect a bug or not.
DeepLocalize takes on average 1244.09 seconds and it takes
on average 57.29 seconds when the tool successfully finds the
bug. These numbers for DeepDiagnosis are 1510.71 and 11.05
seconds, respectively. Meanwhile, Neuralint and UMLAUT
take on average 2.87 seconds and 1302.61 seconds to perform
fault localization.

D. Discussion

It is important to note that while deepmufl outperforms
state-of-the-art techniques in terms of the number of bugs
detected in our dataset, it is not meant to replace them.
Our dataset only covers a specific type of bugs, i.e., model
bugs, while other studied techniques push the envelope by
detecting bugs related to factors like learning rate and training
data normalization, which are currently outside of deepmufl’s
reach. We observed that combining all the techniques results

Table 5: The impact of mutation selection on the effectiveness and execution
time of deepmufl

Selected mutants
25% 50% 75% 100%

Metallaxis SBI + Type 1 37 41 42 42
Metallaxis Ochiai + Type 1 40 46 47 47

Metallaxis SBI + Type 2 25 26 26 26
Metallaxis Ochiai + Type 2 34 37 37 37

MUSE 42 49 51 53
Time (s) 340.58 562.72 806.45 1,040.49

in detecting 87 of the bugs in our dataset; exploring ways
to combine various fault localization approaches by picking
the right tool based on the characteristics of the bug is an
interesting topic for future research. Moreover, depending on
the applications and resource constraints, a user might prefer
one tool over another. For example, although Neuralint might
be limited by its static nature, e.g., it might not be able
analyze models that use complex computed values and objects
in their construction, it takes only few seconds for the tool
to conduct fault localization. Thus, in some applications, e.g.,
online integration with IDEs, approaches like that of Neuralint
might be the best choice.

A major source of overhead in an MBFL technique is related
to the sheer number of mutants that the technique generates
and tests [62], [61]. Sufficient mutator selection [63] is referred
to the process of selecting a subset of mutators that achieve the
same (or similar) effect, i.e., same or similar mutation score
and same or similar number of detected bugs, but with smaller
number of mutants generated and tested. For the mutators of
Table 2, so far, we have not conducted any analysis on which
mutators might be redundant, as a reliable mutator selection
requires a larger dataset that we currently lack. We postpone
this study as a future work.

Combining fault localization tools can be conducted with
the goal of improving efficiency. We see the opportunity in
building faster, yet more effective, fault localization tools by
predicting the likely right tool upfront for a given model or
running tools one by one and moving on to the next tool if
we have a level of confidence that the tool will not find the
bug. We postpone this study for a future work.

Lastly, we would like to emphasize that comparisons to the
above-mentioned techniques in a dataset of bugs that deepmufl
supports is fair, as the other tools are also designed to detect
bugs in the category of model bugs. However, making these
tools to perform better than this, would require augmenting
their current rule-base with numerous new rules, yet adding
new rules comes with the obligation of justifying the generality
and rationale behind them, which might be a quite difficult
undertaking. deepmufl, on the other hand, approaches the fault
localization problem differently, allowing for more flexibility
without the need for hard-coded rules.

VII. THREATS TO VALIDITY

As with most empirical evaluations, we do not have a
working definition of representative sample of DNN bugs,
but we made efforts to ensure that the bugs we used in the
evaluation is as representative as possible by making sure

10

that our dataset has diverse examples of bugs from each sub-
category of model bugs.

Many of the bugs obtained from StackOverflow did not
come with accompanying training datasets. To address this
issue, we utilized the dataset generation API provided by
scikit-learn [64] to generate synthetic datasets for re-
gression or classification tasks. We ensured that the errors
described in each StackOverflow post would manifest when
using the synthesized data points and that applying the fix
suggested in the accepted response post would eliminate the
bug. However, it is possible that this change to the training
process may introduce new unknown bugs. To mitigate this
risk, we have made our bug benchmark publicly available [36].

Another potential threat to the validity of our results is the
possibility of bugs in the construction of deepmufl itself, which
could lead to incorrect bug localization. To mitigate this, we
make the source code of deepmufl publicly available for other
researchers to review and validate the tool.

Another threat to the validity of our results is the potential
impact of external factors, such as the stochastic nature of the
training process and the synthesized training/testing datasets,
as well as system load, on our measurements. To address
this, besides using deterministic seeds for dataset generation
and splitting, we repeated our experiments with deepmufl three
times. Similarly, we also ran other dynamic tools three times
to ensure that their results were not affected by random-
ness during training. We did not observe any differences in
effectiveness between the rounds for either deepmufl or the
other studied techniques. Additionally, we repeated the time
measurements for each round, and reported the average timing,
to ensure that our time measurements were not affected by
system load. Furthermore, judging whether or not any of
the tools detect a bug requires manual analysis of textual
description of the bugs and matching it to the tools; output
messages which might be subject to bias. To mitigate this bias,
we have made the output messages by the tools available for
other researchers [36].

Lastly, deepmufl uses a threshold parameter to compare
floating-point values (see §IV-C). In our experiments, we used
the default value of 0.001 and ensured that smaller threshold
values yield the same results.

VIII. RELATED WORK

Neuralint [12] uses graph transformations [65] to abstract
away unnecessary details in the model and check the bug
patterns directly on the graph. While Neuralint is orders of
magnitude faster than deepmufl, it proved to be less effective
than deepmufl in our dataset.

DeepLocalize [11] and DeepDiagnosis [8] intercept the
training process looking for known bug patterns such as
numerical errors. DeepDiagnosis pushes the envelope by im-
plementing a decision tree that gives actionable fix suggestions
based on the detected symptoms. A closely related technique,
UMLAUT [34], works by applying heuristic static checks on,
and injecting dynamic checks in, various parts of the DNN

program. deepmufl outperforms DeepLocalize, DeepDiagnosis,
and UMLAUT in terms of the number of bugs detected.

DeepFD [66] is a recent learning-based fault localization
technique which frames the fault localization as a learning
problem. MODE [25] and DeepFault [26] implement white-
box DNN testing technique which utilizes suspiciousness
values obtained via an implementation of spectrum-based fault
localization to increase the hit spectrum of neurons and iden-
tify suspicious neurons whose weights have not been calibrated
correctly and thus are considered responsible for inadequate
DNN performance. MODE was not publicly available, but
DeepFault was, but unfortunately it was hard-coded to the
examples shipped with its replication package, so we could not
make the tool work without making substantial modifications
to it, not to mention that these techniques work best on ReLU-
based networks and applying them on most of the bugs in our
dataset would not make much sense.

Other related works are as follows. PAFL [67] operates
on RNN models by converting such models into probabilistic
finite automata (PFAs) and localize faulty sequences of state
transitions on PFAs. Sun et al. [68] propose DeepCover, which
uses a variant of spectrum-based fault localization for DNN
explainability.

IX. CONCLUSION

This paper revisits mutation-based fault localization in the
context of DNN and presents a novel DNN fault localization
technique, named deepmufl. The technique is based on the
idea of mutating a pre-trained DNN model and calculating
suspiciousness values according to Metallaxis and MUSE ap-
proaches, Ochiai and SBI formulas, and two types of impacts
of mutations on the results of test data points. deepmufl is com-
pared to state-of-the-art static and dynamic fault localization
systems [11], [8], [34], [12] on a benchmark of 109 model
bugs. In this benchmark, while deepmufl is slower than the
other tools, it proved to be almost two times more effective
than them in terms of the total number of bugs detected and
it detects 21 bugs that none of the studied tools were able to
detect. We further studied the impact of mutation selection on
fault localization time. We observed that we can halve the time
taken to perform fault localization by deepmufl, while losing
only 7.55% of the previously detected bugs.

ACKNOWLEDGMENTS

The authors thank Anonymous ASE 2023 Reviewers for
their valuable feedback. We also thank Mohammad Wardat
for his instructions on querying StackOverflow. This material
is based upon work supported by the National Science Foun-
dation (NSF) under the grant #2127309 to the Computing Re-
search Association for the CIFellows Project. This work is also
partially supported by the NSF grants #2223812, #2120448,
and #1934884. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

11

REFERENCES

[1] IEEE Standard Classification for Software Anomalies, 2010.
[2] A. McPeak, “What’s the true cost of a software bug?” https://smartbear.

com/blog/software-bug-cost/, 2017, accessed 08/10/23.
[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.
[4] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive study

on deep learning bug characteristics,” in ESEC/FSE, 2019, pp. 510–520.
[5] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep neural

networks: Fix patterns and challenges,” in ICSE, 2020, pp. 1135–1146.
[6] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical

study on tensorflow program bugs,” in ISSTA, 2018, pp. 129–140.
[7] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and

P. Tonella, “Taxonomy of real faults in deep learning systems,” in ICSE,
2020, pp. 1110–1121.

[8] M. Wardat, B. D. Cruz, W. Le, and H. Rajan, “Deepdiagnosis: auto-
matically diagnosing faults and recommending actionable fixes in deep
learning programs,” in ICSE. IEEE, 2022, pp. 561–572.

[9] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in SOSP, 2017, pp. 1–18.

[10] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in ICSE, 2019, pp. 1039–1049.

[11] M. Wardat, W. Le, and H. Rajan, “Deeplocalize: fault localization for
deep neural networks,” in ICSE, 2021, pp. 251–262.

[12] A. Nikanjam, H. B. Braiek, M. M. Morovati, and F. Khomh, “Automatic
fault detection for deep learning programs using graph transformations,”
TOSEM, vol. 31, no. 1, pp. 1–27, 2021.

[13] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. S. Păsăreanu, “Nn
repair: Constraint-based repair of neural network classifiers,” in CAV,
2021, pp. 3–25.

[14] X. Zhang, J. Zhai, S. Ma, and C. Shen, “Autotrainer: An automatic
dnn training problem detection and repair system,” in ICSE, 2021, pp.
359–371.

[15] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” TSE, vol. 42, no. 8, pp. 707–740, 2016.

[16] M. Papadakis and Y. Le Traon, “Using mutants to locate” unknown”
faults,” in ICST, 2012, pp. 691–700.

[17] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in ICST, 2014, pp. 153–162.

[18] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
pp. 34–41, 1978.

[19] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in TAICPART-MUTATION, 2007, pp.
89–98.

[20] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight Bug Localization
with AMPLE,” in ISAADD, 2005, pp. 99–104.

[21] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” in ICSE, 2002, pp. 467–477.

[22] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” TOSEM, vol. 20, no. 3, pp. 1–32, 2011.

[23] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in SBSE, 2012, pp. 244–258.

[24] X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, “Provably
optimal and human-competitive results in sbse for spectrum based fault
localisation,” in SBSE, 2013, pp. 224–238.

[25] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: automated
neural network model debugging via state differential analysis and input
selection,” in ESEC/FSE, 2018, pp. 175–186.

[26] H. F. Eniser, S. Gerasimou, and A. Sen, “Deepfault: Fault localization
for deep neural networks,” in FASE, 2019, pp. 171–191.

[27] N. Humbatova, G. Jahangirova, and P. Tonella, “Deepcrime: mutation
testing of deep learning systems based on real faults,” in ISSTA, 2021,
pp. 67–78.

[28] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++: A
mutation testing framework for deep learning systems,” in ASE, 2019,
pp. 1158–1161.

[29] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep learning
systems,” in ISSRE, 2018, pp. 100–111.

[30] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” STVR, vol. 25, no. 5-7, pp. 605–628, 2015.

[31] F. Chollet et al., “Keras,” https://keras.io, 2015.

[32] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in OSDI, 2016, p. 265–283.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in NIPS, 2019, pp. 8024–8035.

[34] E. Schoop, F. Huang, and B. Hartmann, “Umlaut: Debugging deep
learning programs using program structure and model behavior,” in CHI,
2021, pp. 1–16.

[35] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing:
An empirical study,” JSS, pp. 185–196, 1995.

[36] A. Ghanbari, D.-G. Thomas, M. A. Arshad, and H. Rajan, “Mutation-
based fault localization of deep neural networks,” https://github.com/
ali-ghanbari/deepmufl-ase-2023, 2023.

[37] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in ICSE, 2005, pp. 402–411.

[38] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Mutation testing advances: an analysis and survey,” in Advances in
Computers, 2019, vol. 112, pp. 275–378.

[39] V. Debroy and W. E. Wong, “Using mutation to automatically suggest
fixes for faulty programs,” in ICST, 2010, pp. 65–74.

[40] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via
bytecode mutation,” in ISSTA, 2019, pp. 19–30.

[41] G. Fraser and A. Arcuri, “Achieving scalable mutation-based generation
of whole test suites,” ESE, pp. 783–812, 2015.

[42] F. C. M. Souza, M. Papadakis, Y. Le Traon, and M. E. Delamaro, “Strong
mutation-based test data generation using hill climbing,” in IWSBST,
2016, pp. 45–54.

[43] D. Shin, S. Yoo, M. Papadakis, and D.-H. Bae, “Empirical evaluation
of mutation-based test case prioritization techniques,” STVR, p. e1695,
2019.

[44] J. P. Galeotti, C. A. Furia, E. May, G. Fraser, and A. Zeller, “Inferring
loop invariants by mutation, dynamic analysis, and static checking,” TSE,
pp. 1019–1037, 2015.

[45] A. Groce, I. Ahmed, C. Jensen, and P. E. McKenney, “How verified is
my code? falsification-driven verification (t),” in ASE, 2015, pp. 737–
748.

[46] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” ACM SIGPLAN Notices, vol. 40, no. 6, pp.
15–26, 2005.

[47] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of
similarity coefficients for software fault localization,” in PRDC, 2006,
pp. 39–46.

[48] Wikipedia contributors, “Hierarchical data format — Wikipedia, the free
encyclopedia,” 2022, accessed 08/10/23.

[49] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit:
a practical mutation testing tool for java,” in ISSTA, 2016, pp. 449–452.

[50] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[51] R. Just, F. Schweiggert, and G. M. Kapfhammer, “Major: An efficient
and extensible tool for mutation analysis in a java compiler,” in ASE,
2011, pp. 612–615.

[52] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class
mutation system,” STVR, pp. 97–133, 2005.

[53] D. Schuler and A. Zeller, “Javalanche: Efficient mutation testing for
java,” in ESEC/FSE, 2009, pp. 297–298.

[54] “Junit,” http://junit.org/, 2019, accessed 08/10/23.
[55] “Testng documentation,” https://testng.org/doc/documentation-main.

html, 2017, accessed 08/10/23.
[56] M. M. Morovati, A. Nikanjam, F. Khomh, Z. Ming et al., “Bugs in

machine learning-based systems: A faultload benchmark,” arXiv, 2022.
[57] X. Li and L. Zhang, “Transforming programs and tests in tandem for

fault localization,” Proceedings of the ACM on Programming Languages,
vol. 1, no. OOPSLA, pp. 1–30, 2017.

[58] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in ISSTA, 2011, pp. 199–209.

[59] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in ISSTA, 2016, pp. 165–176.

[60] D. Shin and D.-H. Bae, “A theoretical framework for understanding
mutation-based testing methods,” in ICST, 2016, pp. 299–308.

12

https://smartbear.com/blog/software-bug-cost/
https://smartbear.com/blog/software-bug-cost/
https://keras.io
https://github.com/ali-ghanbari/deepmufl-ase-2023
https://github.com/ali-ghanbari/deepmufl-ase-2023
http://junit.org/
https://testng.org/doc/documentation-main.html
https://testng.org/doc/documentation-main.html

[61] A. V. Pizzoleto, F. C. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro,
“A systematic literature review of techniques and metrics to reduce the
cost of mutation testing,” Journal of Systems and Software, vol. 157, p.
110388, 2019.

[62] J. Zhang, “Scalability studies on selective mutation testing,” in ICSE,
vol. 2, 2015, pp. 851–854.

[63] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, “An experimental
evaluation of data flow and mutation testing,” Software: Practice and
Experience, vol. 26, no. 2, pp. 165–176, 1996.

[64] scikit-learn Contributors, “scikit-learn: Machine learning
in python,” 2020, accessed 08/10/23. [Online]. Available:
https://scikit-learn.org/stable/

[65] R. Heckel, “Graph transformation in a nutshell,” ENTCS, vol.
148, no. 1, pp. 187–198, 2006.

[66] J. Cao, M. Li, X. Chen, M. Wen, Y. Tian, B. Wu, and S.-C.
Cheung, “Deepfd: Automated fault diagnosis and localization
for deep learning programs,” in ICSE, 2022, p. 573–585.

[67] Y. Ishimoto, M. Kondo, N. Ubayashi, and Y. Kamei, “Pafl:
Probabilistic automaton-based fault localization for recurrent
neural networks,” IST, vol. 155, p. 107117, 2023.

[68] Y. Sun, H. Chockler, X. Huang, and D. Kroening, “Explaining
image classifiers using statistical fault localization,” in ECCV,
2020, pp. 391–406.

13

https://scikit-learn.org/stable/

	Introduction
	Background
	Mutation Analysis
	Mutation-based Fault Localization
	Metallaxis
	MUSE

	Deep Neural Networks

	Motivating Example
	Proposed Approach
	Mutation Generator
	Test Case Splitter
	Mutation Executor (Mutation Tester)
	Suspiciousness Value Calculator

	Supported DNN Bugs
	Evaluation
	Dataset of DNN Bugs
	Baseline Approaches and Measures of Effectiveness
	Neuralint
	DeepLocalize
	DeepDiagnosis
	UMLAUT

	Results
	Discussion

	Threats to Validity
	Related Work
	Conclusion
	References

