AspectJML: Modular Specification and
Runtime Checking for Crosscutting Contracts

Henrique Reb&ly, Gary T. Leaverf§ Mehdi Bagherzadeh Hridesh Rajaf,
Ricardo Lima, Daniel Zimmermat, Marcio Cornéli@, and Thomas Thim

AUniversidade Federal de Pernambuco, PE, Brazil
{hemr, rmfl, mic}@cin.ufpe.br
University of Central Florida, Orlando, FL, USA
leavens@eecs.ucf.edu
#lowa State University, Ames, IA, USA
{mbagherz, hridesh}@iastate.edu
°University of Washington Tacoma, USA
dmz@acm.org
7University of Magdeburg, Germany
thomas.thuem@ovgu.de

Abstract

Aspect-oriented programming (AOP) is a popular technicure f
modularizing crosscutting concerns. In this context, aesers
found that the realization of the design by contract (DbQy@ss-
cutting and fares better when modularized by AOP. Howevexip
ous efforts aimed at supporting crosscutting contract raotjuin-
stead hindered it. For example, in AspectJ-style, to reabont the
correctness of a method call may require a whole-progranysisa
to determine what advice applies and what that advice dogdan
tion to DbC implementation and checking. Also, when corntrace

separated from classes, a programmer may not know about the

and break them inadvertantly. In this paper we solve thestdgms
with AspectJML, a new language for specification of crossegt
contracts for Java code. We also show hespectJMLsupports the
main DbC principles of modular reasoning and contracts as-do
mentation.

Categories and Subject Descriptors D.2.4 [Software/Program
Verificatior]: Programming by contract, Assertion Checkers; F.3.1
[Specifying and Verifying and Reasoning about Progiamsser-
tions, Invariant, Pre- and postconditions, Specificatemhhiques

General Terms Design, Languages, Verification

Keywords Design by contract, crosscutting contracts, AOP, JML,
AspectJ, AspectJML

1. Introduction

Design by Contract (DbC), originally conceived by Meyer][36
a useful technique for developing a program using spedificsit
The key mechanism in DbC is the use of the so-called “corgtact

[Copyright notice will appear here once 'preprint’ opticrémoved.]

Writing out these contracts in the form of specifications eefy-
ing them against the actual code either at runtime or contipile
has a long tradition in the research community [7, 11, 13,253,
44, 50]. The idea of checking contracts at runtime was pojzaid
by Eiffel [31] in the late 80’s. In addition to Eiffel, thereeother
design by contract languages, such as the Java Modelingibgeg
(JML) [25], Spec# [4], and Code Contracts [13].

It is claimed in the literature [6, 14, 20, 27-29, 40, 41, 45]
that the contracts of a system are de-facto a crosscuttingeco
and fare better when modularized with aspect-orientedrprog

ing [21] (AOP) mechanisms such as pointcuts and advice [20]

he idea has also been patented [28]. However, Balzer, &vgsid
Meyer’s study [3] contradicts this intuition by concluditizat the
use of aspects hinders design by contract specificationalisdd
achieve the main DbC principles such as documentation ari mo
ular reasoning. Also, they go further and say thad ‘module in
a system (e.g., class or aspect) can be oblivious of the prese
of contract$ [3, Section 6.3]. According to them, contracts should
appear in the modules themselves and separating suchdsrdasa
aspects contradicts this view [32].

However, plain DbC languages like Eiffel [31], JML [25] also
have problems when dealing with crosscutting contracthodigh
a few mechanisms, such as invariant declarations help acaiter-
ing of specifications, the basic pre- and postconditionifipation
mechanisms do not prevent scattering of crosscutting actstrFor
example, there is no way in Eiffel or JML to write a single paed
postcondition and apply it to several of methods of a paldicype.
Instead such a pre- or postcondition must be repeated attdrech
among several methods.

To cope with these problems this paper proposes AspectJML,
a simple and practical aspect-oriented extension to JMEkuji-
ports the specification of crosscutting contracts for Jadedn a
modular way while keeping the benefits of a DbC language, like
documentation and modular reasoning.

In the rest of this paper we discuss these problems and our As-
pectJML solution in detail. We also provide a real case stiady
show the effectiveness of our approach when dealing witesero
cutting contracts.

2013/7/24

JML Contracts

cl ass Package {

doubl e width, height;

/@ invariant this.width > 0 &&
doubl e weight;

/l@ invariant this.weight > 0;

na
na
na
na
na
voi d setSize(doubl e width,

1

2

3 t hi s.height > 0;
4

5

6

7

8

9

10

11

12

13 t hi s.width = width;
14

15

16

17

18

19

20

requi res width > 0 && height > 0;
requi res width * height <= 400;
ensures this.width == width;
ensures this.height == height;
signal s_only \nothing;

doubl e height){

t hi s.height = height;
}

e
e

requires
requires

width > 0 && height > 0;
width * height <= 400;

/l@ requires this.width != width;

/l@ requires this.height = height;
21 /@ ensures this.width == width;
22 /l@ ensures this.height == height;
23 /l@ signals_only \nothing;

24 voi d reSize(doubl e width, doubl e height){

25 t hi s.width = width;

26 t hi s.height = height;

27 }

28

29 /l@ requires width > 0 && height > 0;

30 /l@ requires width =* height <= 400; /1 max di nension

31 /l@ signals_only \nothing;

32 bool ean containsSize(doubl e width, doubl e height){
33 i f (this.width == width && t hi s.height == height){
34 return true;

35

36 el se return false;

37 }

38

39 /l@ signals_only \nothing;
40 doubl e getSize(){

41 return this.width * this.height;
42}

43

44 @

45 e SI Qnal s_only \nothing;
46 voi d setWeight(doubl e weight) {
47 t hi s.weight = weight;

}
49 ... /] other nethods
50 }

52 cl ass GiftPackage
53 /@ ...

54 /l@ signals_only \nothing;

55 voi d setWeight(doubl e weight) {

ext ends Package {

}
58 ... Il other nethods
59 }

61 class Courier {
63 voi d deliver(Package p, String destination) {

65)
66)

/1 max di nension

/1 max di nension

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

AspectJ Contracts

privil eged aspect
poi nt cut instMeth():
execution(! static * Package+. *(..));

PackageContracts {

poi nt cut sizeMeths(doubl e w, double h):
execution(voi d Package. *Size(doubl e,
&& ar gs(w, h);

doubl e))

poi nt cut setOrReSize(double w, double h):
execution(voi d Package.setSize(doubl e,
|| execution(void Package.reSize(doubl e,
&& ar gs(w, h);

doubl e))
doubl e))

poi nt cut reSizeMeth(doubl e w, doubl e h):
execution(voi d Package.setSize(doubl e,
&& ar gs(w, h);

doubl e))

poi nt cut allMeth(): execution(* Package+. *(..));
bef or e(Package obj): instMeth() && t hi s(obj) {
bool ean pred = obj.width > 0 && obj.height > 0

&& obj.weight > 0;

Checker.checkInvariant(pred);

}

bef or e(doubl e w, doubl e h): sizeMeths(w, h){
bool ean pred = w > 0 & h > 0

&& w* h <= 400; // max dinmension
Checker.checkPrecondition(pred);

}

bef or e(Package obj, doubl e w, doubl e h):
reSizeMeth(w, h) && t hi s(obj)}{
bool ean pred = obj.width != w && obj.height != h;
Checker.checkPrecondition(pred);

}

af t er (Package obj, doubl e w, double h)
setOrReSize(w, h) && t hi s(obj){
bool ean pre = objwidth == w
&& obj.height == h;
Checker.checkNormalPostcondition(pred)

returni ng():

}

after() throw ng(Exception ex): allMeth() {
bool ean pred = fal se;
Checker.checkExceptionalPostcondition(pred);

af t er (Point obj): instinv() && t hi s(obj) {
bool ean pred = obj.width > 0 && obj.height > 0
&& obj.weight > 0;

Checker.checklInvariant(pred);

/1 other advice for checking contracts

}

aspect GiftPackageContracts { .
aspect CourierContracts { .
aspect Tracing {

after() returning(): execution(* Package. *(.
System.out.printin("Exiting"+ t hi sJoi nPoi nt);

N A

Figure 1. The JML and AspectJ contract implementations of the deligervice system [33].

2. The Problems and Their Importance

In this section we discuss the existing problems in modzdari

ing crosscutting contracts in practice. The first two proideare
AOP/AspectJ [20, 21] based, and the last, but not least)gmois
related to a design by contract language like JML [25].

2.1 A Running Example

As a running example, Figure 1 illustrates a simple deligamyice
system [33], which manages package delivery. It uses adstra
expressed in JML [25] (lines 1-66) and AspectJ [20] (lines 67

2013/7/24

126). In addition, we also include a tracing crosscuttingoson
modularized with Aspect]J (lines 128-132).

In JML specifications, preconditions are defined by the kegwo
r equi r es and postconditions bynsur es. IML's (si gnal s_onl y
\ not hi ng) specification denotes an exceptional postcondition
which says that no exception (e.g., runtime exceptionsudexd)
can be thrown. For example, all methods declared in &asisage
are not allowed to throw exceptions. The invariants defimetheé
Package class restricts package’s dimension and weight to be al-
ways greater than zero.

JML’s counterpart in AspectJ is shown on lines 67-126. The
main motivation in applying an AspectJ-like language i< the
can explore some modularization opportunities that, ettser, are
not possible in a DbC language like JML. For instance, in the
PackageContracts ~ aspect, the seconigef or e advice declared
(lines 92-96) checks, the common preconditions, whichastered
in the JML side, for all the methods with the name ending with
Size and also take two arguments wittoubl e type. Similarly,
theaf t er - r et ur ni ng advice(lines 104-109) checks the common
postconditions for botlsetSize andreSize methods. This ad-
vice only enforce the constraints after normal terminatiodML,
the postconditions are called normal postconditions dimegmust
only hold when a method returns normally [25]. A third exaenisl
illustrate in with theaf t er - t hr owi ng advice (lines 111-114). It
forbids any method iRackage or subtypes to throw any exception.
This is illustrated in the JIML counterpart with the scattespecifi-
cation(si gnal s_onl y \ not hi ng). This Second kind of postcon-
dition in JML is called an exceptional postcondition [25].

2.2 The Modular Reasoning Problem

If we consider plain JML/Java without AspectJ, the example i
Figure 1 supports modular reasoning [24, 26, 32, 39]. Fomgka,
suppose one wants to write code that manipulates objecigef t
Package . One could reason aboBfickage objects using just that
type’s contract specifications (lines 1-50) in addition he bnes
inherited from any supertypes [12, 24, 26].

Now let us consider the Java and AspectJ implementatioreof th
delivery service system (without the JML specifications).

Consider now the tracing concern (Figure 1), modularized by
the aspectracing . It prints a message after the succeed execu-
tion of any method ifPackage class when called. For this concern,
different orders of composition with other aspects (thatohcon-
tracts) lead to different behaviors/outputs. As a consecgiethe
af t er-returni ng advice (line 129) could violateackage 's in-
variants and pass undetected if the advice runs after ththseea
(in the PackageContracts ~ aspect) responsible for checking the
Package 's invariant. So, without either documentation or the use
of AspectJ’'sdecl are precedence [20], to enforce a specific or-
der on aspects, make the understanding of which order afispeci
pre- or postcondition would be executed quite difficult or deter-
mined until they are executed [20].

Another problem by the lack of documentation implied by sepa
rating contracts as aspects is discussed by Balzer, Eulkger’'s
work [3]. They argue that as programmers become aware of con-
tracts only when using special tools, like AJDT [22], theg arore
likely to forget adapting the contracts when changing tlass#s.

2.4 Lack of Support for Crosscutting Contract Specification
in DbC Languages

Balzer, Eugster, and Meyer’s study [3] helped crystallizetbink-
ing about the goals of a DbC language, in particular aboupte
tion of such languages that provides good documentatiodutao
reasoning, and non-contract-obliviousness. Thereforggiwant
to avoid the previous two problems discussed above, we aaa us
plain DbC language like JML [25].

Furthermore, let us explain two points about the JML specifi-
cations in Figure 1. The first is that a DbC language like JMh ca
be used to modularize some contracts. For example, theanvar
clauses (declared iRackage) can be viewed as a form of built-in
modularization. That is, instead of writing the same pred post-
conditions for all methods in a class, we just declare a siimgylari-
ant that modularizes those pre- and postconditions. Secpedi-
fication inheritance is another form of modularization. ML] an
overriding method inherits method contracts and invasidram
the methods it overridés

However DbC languages (like JML) do not capture all forms of

As observed, in addition to the classes in the base/Java code crosscutting contract structure [18, 20] that can arisééndpeci-

Figure 1 defines four aspects. Three for contract checkidgoae
for tracing. In plain AspectJ, the advice declarations ggliad
by the compiler without explicit reference to the aspecnfra
module or a client module; so by definition, modular reasgnin
about, for example, th@ackage module does not consider the
advice declared by these four aspects. Hence, the aspextibeh
is only available via non-modular reasoning. That is, in é&p,

a programmer must consider every aspect that refePatkage
class in order to reason about tRackage module. So the an-
swer to the question “What advice/contract applies to théhote
setSize in Package ?” cannot (in general) be answered modu-
larly. Therefore, a programmer cannot study the system amukita
atatime [2, 3, 19, 35, 39, 49].

2.3 Lack of Documentation Problem

In a design by contract language like Eiffel [31], JML [25],
Spec# [4] or Code Contracts [13], the pre- and postcondition
or invariant declarations are typically placed directlydn next
to the code they are specifying. Hence, contracts incregsers
documentation [3, 32, 36]. In AspectJ, however, the adgisiode
(which checks contracts) is separated from the code theisadv
and this forces programmers to consider all aspects in codean-
derstand the correctness of a particular method. In additie
physical separation of contracts can be harmful in the strete
an oblivious programmer can violate a method’s pre- or posic
tions when these are only recorded in aspects [3, 32, 36].

fications. As examples of such cases, consider the JML specifi
tions illustrated on lines 1-66 in Figure 1. In this examplere
are three ways in which crosscutting contracts that are nogigply
modularized with plain JIML constructs:

(1) The preconditions that constrains the input parameterthe
methodssetSize ,reSize , andcontainsSize (in Package)
to be greater than zero and less than or equal to 400 (the
package dimension). The main issue is that we cannot write
them only once and apply to these or others methods that can
have the same design constraint,

(2) The two normal postconditions of the methadsSize and
reSize of Package are the same. They ensure that the
bothwidth andheight fields are equal to the corresponding
method parameters. However, one cannot write just a simple
and local quantified form of these postconditions and apply
them to the constrained methods, and

(3) The exceptional postcondition claysegnal s_onl y\ not hi ng)
has to be explicitly written for all the methods that forbixt e
ceptions to be thrown. This is the case of the declared msthod
in Package and GiftPackage classes. There is no way to
modularize such a JML contract in one single place and apply
to all constrained methods.

1Even though inheritance is not exactly a crosscutting &irad18, 20], a
DbC language avoids repeating contracts for overridinghou.

2013/7/24

2.5 The Dilemma

As observed, the main problem here is a trade-off. If we decid
to use AspectJ to modularize such crosscutting contrdesesult
would be a poor contract documentation and a compromisedimod
lar reasoning of such contracts. If we decide to go back teayde
by contract language, such as JML, we would face the scdttere
nature of common contracts, as explained above. This diemm
leads us to the following research question: Is it possiblbave
the best of both worlds? That is, can we achieve good docunent
tion and modular reasoning, and also specify crosscuttngracts
in a modular way?

In the following, we discuss how our AspectJML DbC language
provides constructs to specify crosscutting contracts rimodular
and convenient way and overcomes the above problems.

3. The AspectJML Language

AspectJML extends JML [25] with support to handle crossagtt
contract concern [29]. It allows programmers to define éofatt
constructs (in addition to those of JML) to modularly spegfe-
and postconditions and check them at certain well-defingat$o
in the execution of a program. We call thisosscutting contract
specificatiormechanism, or XCS for short.

XCS in AspectJML is based on a subset of AspectJ's con-
structs [20] that we include in IML. However, since JML is aida
by contract language tailored for plain Java, we would nged s
cial support to use the traditional AspectJ’s syntax. Taudifiynthe
adoption of AspectJML, the AspectJ constructs we inclualban-
dle crosscutting contracts, are based on the alternativep@aJ
syntax [5].

@spect ()

cl ass Tracing {
@voi nt cut ("execution(
public void trace() {}

* Package. *(.

)

@Af t er Ret ur ni ng("trace()")
public voi d afterReturingAdvice(JoinPoint jp) {
System.out.printin("Exiting"+jp);

Figure 2. The tracing crosscutting concern implementation of Fig-
ure 1 using @AspectJ syntax.

points. In AspectJML, we can compose these Aspect] pomtcut
combined with JML specifications.

The major difference, in relation to plain AspectJ, is thapac-
ified pointcut is always processed when using the AspectJih-c
piler (ajjmic). So, in standard AspectJ, a single point@dldration
does not contribute to the execution flow of a program unlesdev
fine some AspectJ advice that uses such a pointcut. In Adpect]
fortunately, we do not need to define an advice to check afggeeci
tion in a crosscutting fashion. Although it is possible te aslvice
declarations in AspectJML (as we discuss in subsection ®2ylo
not require them. This makes AspectJML simpler and a program
mer only needs to know AspectJ’s pointcut language in aattit
the main JML features.

Specifying crosscutting preconditions

Recall our first crosscutting contract scenario descrile&ub-
section 2.4. It consists of two preconditions for any methiod

The @AspectJ (often pronounced as “at Aspect]”) syntax was Package class (Figure 1), with name ending wiglize that re-

conceived due to the merge of the standard AspectJ with As-

pectWerkz [5]. This merge enables crosscutting concerheimen-
tation by using constructs based on metadata annotatidityfa¢
Java 5. The main advantage of this syntactic style is thatcane
compile a program using a plain Java compiler. This implies t
the modularized code using AspectJ works better with caiwesl
Java IDEs or other tools that do not understand the traditids-
pectJ syntax. In particular, this applies to the so-callgahimon”
JML compiler on which ajmic is based [8, 42, 43].

Figure 2 illustrates the @AspectJ version of the tracingsro
cutting concern previously implemented with the tradiibayn-
tax (see Figure 1). Instead of using thepect keyword, we
use a class annotated with a@hspect annotation. This tells
AspectJ/ajc compiler to treat the class as an aspect déctara
Similarly, the @oi nt cut annotation marks the empty method
trace as a pointcut declaration. The expression specified in this

pointcut is the same as the one used in the standard Aspect)y,
syntax. The name of the method serves as the pointcut name.

Finally, the @\fterReturni ng annotation marks the method
afterReturningAdvice as anafter returning advice.
The body of the method is used to modularize the crosscutting
cern (the advising code). This code is executed after thehadt
join point’s execution returns without throwing an excepti

In the rest of this section, we present the main elementseof th
crosscutting contract specification support in our langudhe
presentation is informal and running-example-based.

3.1 XCS with Pointcut-Specifications

This is the simplest way to modularize crosscutting comsradt
source code level. Recall thatpmintcut designatorenables one
to select well-defined points in a program’s execution, Whace
known asjoin points[20]. Optionally, a pointcut can also include
some of the values in the execution context of interceptéd jo

turnsvoi d and takes a double argumentdafubl e type. For this
scenario, consider the JML annotated pointcut with theofalhg
preconditions:

/l@ requires width > 0 && height > 0;

/l@ requires width =* height <= 400; /1 max di mension
@oi nt cut ("execution(* Package. *Size(double, double))"+
"&& args(width, height)”)

voi d sizeMeths(doubl e width, doubl e height) {}

The pointcutsizeMeths matches all the executions of size-like
methods of clas®ackage . As observed, this pointcut is expos-
ing the intercepted method arguments of tygmibl e. This is
done in @AspectJ by listing the formal parameters in the tpoin
cut method. Then we bind the parameter names in the poigtcut’
expression (within the annotati@oi nt cut) using the argument-
based pointcudr gs [20].

The main difference between this pointcut declaration aag-s
rd pointcut declarations in @Aspect] is that we are aduing
ML specifications (using theequi r es clause). In this example
the JML says to check the declared preconditions beforextraue
tions of intercepted methods.

We recommend that the above JML-annotated pointcut is de-
clared in the clas®ackage . This guideline will ensure that we
keep the modular reasoning and documentation benefits [8hwh
reasoning about any method or type’s specifications. (Hew&e-
cause AspectJML uses AspectJ’s pointcut declarationggrgm-
mer could place such pointcuts in any class, if that helpdzbtter
modularize other crosscutting specification concerns.)

Specifying crosscutting postconditions

We discuss now how to properly modularize crosscuttingquost
ditions in AspectJML. In JML, there are two kinds of postcend
tions: normal and exceptional postconditions. Normal qasdi-
tions constrain methods that return without throwing areetion.

2013/7/24

To illustrate AspectJML's design, we discuss scenarios(2) (3)
from Subsection 2.4.
For scenario (2), we use the following specified pointcut:
//I@ ensures this.width == width;
/l@ ensures this.height == height;
@Poi nt cut ("(execution(* Package.setSize(double, double))"+
"|| execution(* Package.reSize(double, double)))"+
"&& args(width, height)")

voi d setOrReSize(doubl e width, doubl e height) {}

The above constrains the executions sefSize and reSize
methods irPackage to ensure that after their executions, the fields
width andheight have their values equal to the ones passed as
arguments.
To modularize the crosscutting postcondition of scen&jowe
use the following JML annotated pointcut declaration.
/l@ signals_only \nothing;

@oi nt cut ("execution(* Package+. *(..
voi d allMeth() {}

N’

The above specification forbids the executions of any method
Package (or a subtype, such &iftPackage) to throw an ex-
ception. If any intercepted method ends up by throwing argxc
tion (even a runtime exception), a JML exceptional postd@mrd
error is thrown to signal the contract violation. In this pout, we
do not expose any intercepted method’s context.

Multiple specifications per pointcut

All the crosscutting contract specifications discussedvalzmn-
sist of only one kind of JML specification per pointcut deatar
tion. However, AspectJML can include more than one kind of
JML specifications in a pointcut declaration. As an exam{ge,
us assume that thieackage type in Figure 1 does not have the
containsSize method along with its JML specifications. In this
scenario, we can write a single pointcut to modularize theire
rent pre- and postconditions of methagtsSize andreSize of
Package type. Therefore, instead of having separate JML anno-
tated pointcuts for each crosscutting contract, we speléyn in a
new version of the pointcigizeMeths
/l@ requires width > 0 && height > 0;
/l@ requires width =* height <= 400;
/@ ensures this.width == width;
/l@ ensures this.height == height;
@voi nt cut ("execution(+ Package. *Size(double, double))'+
"&& args(width, height)")
voi d sizeMeths(doubl e width,

/'l max di nension

doubl e height) {}

This pointcut declaration modularly specifies both predtioms
and normal postconditions of the same intercepted size adsth
(setSize andreSize) of Package .

Specification of unrelated types

Another issue to consider is whether or not AspectJML can-mod
ularize inter-typé crosscutting specifications. All the crosscutting
contract specifications we discuss are related to one typeadi
type) or its subtypes. However, AspectJ can advise methfodié o
ferent (unrelated) types in a system. This quantificatiarperty

of AspectJ is quite useful [51] but can also be problematenfr
the point of view of modular reasoning, since one needs te con
sider all the aspect declarations to understand the ovgysiem
behavior [2, 19, 39, 47-49]. Instead of ruling this out, tesign of
ApsectIJML allows the specifier to use specifications thastam
unrelated inter-types. This puts the decision about whesésuch
features in the hands of the AspectJML user.

2When we refer to inter-types here is not that Aspect] feal2@d to
add methods or fields with static crosscutting mechanisste&d we are
referring to unrelated modules in a system. That is, typaisdaie not related
to each other, but can present a common crosscutting coatracture.

As an example, recall our running example in Figure 1. We
know that all the methods declared iackage and its sub-
type GiftPackage are forbidden to throw exceptions (see the
si gnal s_onl y specification). Suppose now that the metheliver
in type Courier also has this constraint. Note that the type
Courier is not a subtype oPackage . They are independent
to some extent. In other words, they are only related in tnsese
that the methodieliver ~ depends orPackage type due to the
declaration as a formal parameter. This way, let us alsoidens
thatCourier has more methods that is not dependerraakage
at all. So, consider the following type declaration:

interface CommonsSignalsOnly {

cl ass CommonSignalsOnlyXCS {

/l@ signals_only \nothing;

@oi nt cut ("execution(* CommonSignalsOnly+.

voi d allMeth() {}

}
}

This type declaration illustrates how we specify crossegtton-
tracts for interfaces. As we know, pointcuts are not allowete
declared within interfaces. We overcome this problem byragdn
inner class that represents the crosscutting contracheafuter in-
terface declaration. As a part of our strategy, the poindeatared
in the inner class only refers to the outer interface (seedfezence
in the pointcut predicate expression). Now, any type thatts/&
forbid its method declarations to throw exceptions onlychieeim-
plement the interffac€ommonSignalsOnly in our case. Such
an interface acts like a marker interface idiom [17]. Thisnigor-
tant to avoid obliviousness and maintain modular reasoféuag
cording to our definition).

HED)

Collected XCS examples

All the crosscutting contract specifications used so fahis sec-
tion (discussed as scenarios in Subsection 2.4) with pdsic
specifications are illustrated in Figure 3 (the shadowed ifjas-
trates the XCS in AspectJML's pointcuts and specifications)

3.2 XCS with Pointcut-Advice-Specifications

A second way to specify crosscutting contracts, at the socwde
level is to use aspects and advice declarations in addibigoint-
cuts and JML specifications.

In order to exemplify the use of pointcut-advice-specifimad,
recall scenario (1) from section 2.4, and consider the nextlifer-
sion of thePackage class in Figure 4. We observe an important
difference, in the®ackage class, to the previous examples. We can
see an inner aspect nameackageAspect with apoi nt cut and
bef or e advice declarations. The reason to use an inner aspect is
because we cannot declare AspectJ advice inside classethein
observation is that we moved the preconditions tobisieor e ad-
vice. The semantics of precondition checking in AspectJMIL s
remains the same. So, before the executions of the inteatept
join points by the pointcusizeMeths , we have the preconditions
checked. The main difference is that we have another behtindb
will be executed just before the join point’s executionsisiillus-
trated by thevef or e advice that performs a trace implementation
for the intercepted join points.

Therefore, the main advantage of doing this strategy, stiown
Figure 4, is that besides checking the specifications in sscrd-
ting fashion, we can also define another crosscutting impieai
tion for the same constrained methods.

One can argue that, based on the given AspectJML specifica-
tion in Figure 4, would be more sensible if we move the specifi-
cations of thebef or e advice back to the pointcut definition. Al-
though this makes sense, we are just showing how to provie th
same effect using the JML specification attached to an adigce
laration. A scenario, however, that this would make moressés

2013/7/24

cl ass Package {

doubl e width, height;

/l@ invariant this.width > 0 &&
doubl e weight;

/l@ invariant this.weight > 0;

t hi s.height > 0;

/l@ requires width > 0 && height > 0;

/l@ requires width =* height <= 400; // max di nension
@oi nt cut ("execution(* Package. *Size(double,double))"+
"&& args(width, height)")

voi d sizeMeths(doubl e width, doubl e height) {}

/@ ensures this.width == width;

/l@ ensures this.height == height;

@voi nt cut ("(execution(* Package.setSize(double,double))"
+ "|| execution(* Package.reSize(double, double)))"+
"&& args(width, height)")

voi d setOrReSize(doubl e width, doubl e height) {}
/l@ signals_only \nothing;

@Poi nt cut ("execution(* Package+. *(.
voi d allMeth() {}

)

voi d setSize(doubl e width, doubl e height){ ...}
/l@ requires this.width != width;

/l@ requires this.height != height;

voi d reSize(doubl e width, doubl e height){ ...}

bool ean containsSize(doubl e width, doubl e height){ ...}
doubl e getSize(){ ...}

na ...

voi d setWeight(doubl e weight) { ...}
. /] other methods

cl ass GiftPackage

na ...

voi d setWeight(doubl e weight) { ...}
. /1 other nethods

}

ext ends Package {

Figure 3. The crosscutting contract specifications used so far for
the delivery service system [33] with AspectJML.

cl ass Package {
@spect ()
static class PackageAspect {
@Poi nt cut ("execution(* Package. *Size(double,double))"+
"&& args(width, height)")
voi d sizeMeths(doubl e width, doubl e height) {}
/l@ requires width > 0 && height > 0;
/l@ requires width * height <= 400;
@Bef or e("sizeMeths(width, height)")
public void beforeAdvice(JoinPoint jp,
doubl e height) {
System.out.printin("Entering: "+jp);

}

/1 ... other specified nethods

}

/1 max di mension

doubl e width,

Figure 4. A crosscutting precondition specification using
pointcuts-advice-specifications.

shown in Figure 5. Since thisef or e advice uses an anonymous
pointcut [20], the only way to constrain the join points wiheci-
fications is by adding them directly to the advice declaratio

It is important to stress that AspectJML does not check such
preconditions within the givemef ore advice. In addition, the
reader should not be confused to think that the above préoamsl
are for the given advice. Our approach is for specifyingscating
contracts to not specify AspectJ advice directly. Thus afitract

/l@ requires width > 0 && height > 0;

/l@ requires width = height <= 400; /1 max di nension

@Bef or e("execution(+ Package. *Size(double, double))'+
"&& args(width, height)”)

public void beforeAdvice(JoinPoint jp,
doubl e height) {
System.out.printin("Entering: "+jp);

}

doubl e width,

Figure 5. Specifications added to advice with an anonymous
pointcut.

/1 witten by Cathy

public class ClientClass {

public void clientMeth(Package p)
{ p.setSize(0, 1); }

Figure 6. Client code, written by “Cathy.”

specifications are for the base code that is advised. Spegifyd
checking AspectJ advice is an interesting future work.

3.3 AspectIJML Expressiveness

So far we just used thexecution andwi t hi n pointcut des-
ignators to select join points. This is to be in conformandth w
the supplier-side checking adopted by most DbC/runtimerties
checkers (RAC). That is, such RAC compilers operate by thjec
ing code to check each method’s precondition at the beginoin
its code, and injecting code to check the method’s posttiomdat
the end of its code. This checking code is then run from withe
method’s body at the supplier side.

AspectJML also includes other primitive pointcut designst
that identify join points in different ways [20]. For instza we can
use thecal | pointcut. This would provide runtime checking at call
site. Code Contracts [13] is an example of a DbC languagetbat
vides runtime checking at client side. But it supports ombgondi-
tion checking. Since JML also supports client-side chegk88],
thecal | pointcut enables client-side checking for AspectJML in
relation to specified crosscutting contracts.

/l@ requires width > 0 && height > 0;
/l@ requires width * height <= 400; // max di mension
@oi nt cut ("(execution(* Package. *Size(double, double))'+
"|| call(void Package. *Size(double, double)))"
"&& args(width, height)")
voi d sizeMeths(doubl e width, doubl e height) {}

This is an example of a crosscutting precondition speciéinain
AspectIML, that takes into account botkecuti on andcal |
pointcut designators.

AspectJML also supports AspectJ’'s control-flow based point
cuts (e.g.cf 1 ow) [20].

3.4 AspectIJML's Benefits

As mentioned, design by contract is a recurrent concern eretal
authors claim that it could be better modularized and hahdle
by means of aspect-oriented mechanisms like those we find in
Aspectd [6, 14, 20, 27-29, 40, 41, 45]. After that, Balzeg&er,

and Meyer’s study [3] raised important issues that arguaagtne
aspectization of contracts. Issues like documentationnaodiular
reasoning are compromised when using an AspectJ-like éyegu
Indeed, AOP/Aspect] themselves have been focus of a graatede
including modularity and modular reasoning [2, 19, 39, &j—4

Enabling modular reasoning

Recall that our notion of modular reasoning means that one ca
soundly verify a piece of code in a given module, such as aclas

2013/7/24

using only the module’s own specifications, its own impletaen
tion, and the interface specifications of modules that its maple-
mentation references [12, 24, 26, 32, 39].

With respect to whether or not AspectJML supports modular
reasoning, like a DbC language such as JML, consider thatclie
code, that we will imagine is written by Cathy, as shown in-Fig
ure 6. To verify the call tgetSize , Cathy must determine what
specifications to use. If she uses the definition of modulasar-
ing, she must use the specifications $etSize in Package . Let
us assume that she uses the JML specifications of Figure telHen
she uses:

(1) The pre- and postconditions located at the metbmidize
(lines 7-11),

(2) The first invariant definition on line 3, that constrairse t
Package dimension gidth andheight) fields, and

(3) The second invariant (line 5) related to texkage 's weight.

Cathy only needs these three specifications when using plain

JML. (Package has no supertype; otherwise, she would also need
to consider specifications inherited from such supertyp&er
obtaining these specifications, she can see that there ecarpti-

tion violation regarding the width value ofpassed tgetSize (in
Figure 6).

Suppose now Cathy wants to perform again the same modular

reasoning task, but using the AspectJML specificationsguifei 3
instead of the JML ones of Figure 1. In this case she needsdo fin
the following pieces of checking code:

(1) The first invariant definition on line 3, that constrairee t
Package dimension gidth andheight) fields,

(2) The second invariant (line 5) related to texkage 's weight,

(3) The preconditions of the pointcut (lines 7s®eMeths , since
it intercepts the execution of metheeétSize |,

(4) Similarly the normal postconditions (lines 13-14) ltezhat the
pointcutsetOrReSize , and

(5) The exceptional postcondition (line 20) of pointetiketh

As before, this only involves modular reasoning, and she can

still detect the potential precondition violation relatedackage 's
width. In this case Cathy, needed 7 AspectJML specificattons
reason about the correctness the cadktsize . However, in con-
trast to modular reasoning scenario 1, she needed two mecé sp
fications to complete the reasoning task using AspectJMlaBo
though AspectJML supports modular reasoning, Cathy mistifo
a slightly more indirect process to reason about the coresstof a
call. This confirms that the obliviousness issue presentsipeAtJ-
like languages [15] does not occur in this example. Cathyis-c
pletely aware of the contracts Backage class.

Enabling documentation

Regarding documentation, this example of Cathy's reagpnin
shows that despite the added indirection, reasoning witheés
tJML specifications does not necessarily have a modulaifty d
ference compared to reasoning with JML specifications. @y
location where these specifications can appear can bedtiffetue
to the use of pointcut declarations in AspectIJML.

Our conclusion is that an inherent cost of crosscutting reat
modularization and reuse is the cost of some indirectiomidiriig
specifications, which is necessary to avoid scatteringeg@tsal
specifications). But using AspectJML, users also have atnemw
possibilities for crosscutting contracts.

/+*+ Cenerated by AspectJM. to check the precondition of
* method(s) intercepted by sizeMeths pointcut. */
bef ore (Package object $rac, final double width,
final doubl e height) :
(execution(* p.Package. *Size(doubl e, doubl e))
&& t hi s(object $rac) && ar gs(width, height)) {
bool ean rac $b = (((width > +0.0D) && (height > +0.0D))
&& ((width » height) <= 400.0D));
JMLChecker.checkPrecondition(rac

}

$b, "errorMsg");

Figure 7. Generated before advice to check the crosscutting pre-
conditions ofPackage in Figure 3.

class Package {
double width, height;
// @ invariant this.width > @ && this.height > @;
double weight;
// @ invariant this.weight > @;

//@ requires width > @ && height > @;
//@ requires width * height <= 488; // max dimension
e @Pointcut(“execution(* Package.*Size(double,double))”+
"&& args(width, height)")
wvoid sizeMeths(double width, double height) {}
£ e void setSize(double width, double height){
this.width = width;
this.height = height;
¥
//@ requires this.width != width;
//@ requires this.height != height;
£ e |advised by PackageCrossRef.around(double double): delivery.Package.sizeMeths)
this.width = width;
this.height = height;

}
o

other methods

}

Figure 8. The crosscutting contract structure in theckage class
using AspectJML/AJDT [22].

3.5 Runtime Assertion Checking

We implemented the AspectJML crosscutting contract speatifin
technique in our JML/ajmlc compiler [42, 43] which is avaia
online at:http://www.cin.ufpe.br/ ~hemr/JMLAOP/ajmic.htm

This is the first RAC to support crosscutting contract spegiions.

Compilation strategy

The ajmlc compiler itself was described in a previous worg][4
Unlike the classical JML compiler, jmic [8, 10], it genersitas-
pects to check specifications. It also has various code @ations
[42] and better error reporting. The main difference of thevp
ous ajmlc to the new one is the support to AspectJML featikes |
specified pointcuts. Instead of saying JML/ajmlic, we now Aay
pectIML/ajmlc.

Figure 7 shows theef or e advice generated by the ajmlc com-
piler to check the crosscutting preconditions of claaskage de-
fined in Figure 3 The variablerac $b denotes the precondition to
be checked. This variable is passed as an argumeéntiiohecker -
.checkPrecondition , which checks such preconditions; if it is
not true, then a precondition error is thrown.

Ordering of checks

As ajmlic generates AspectJ aspects to check contractspieal
forces/declares aspect precedence. For instance, if veedtbas-
ing code for other crosscutting concerns, it can only benadtbto

3The ajmlc compiler provides a compilation option that siall the check-
ing code as aspects instead of weaving them.

2013/7/24

class Package {
double width, height;
J/ @ invariant this.width > @ && this.height > @;
double weight;
// @ invariant this.weight > @;

//@ requires width > @ && height > @;

J//@ requires width * height <= 488; // max dimension
=] @Pointcut(“execution(* Package.*Size(double,double)}™)

void sizeMeths(double width, double height) {}

formal unbound in
pointcut

th, double height){

4 L]

Figure 9. An example of a malformed pointcut declaration in
AspectIML.

execute after the preconditions are satisfied; otherwipeg@ondi-
tion violation is thrown.

The postconditions are only checked after all the advising
code’s execution. This order prevents undetected positbamatio-
lations, which could happen if postconditions were chediefdre
the execution of the advising code.

Taming obliviousness

In AspectIJML specification, it is possible to use crossangttion-
tract specification mechanisms to write modular specificati
Since AspectJML uses AspectJ’s pointcut declarations, aame
argue that a programmer can specify several modules in agkesi
place. Intuitively, this would affect several modules ie tystem.
However, AspectJML rule out this possibility, if one trieswrite
such pointcuts, they will have not effect. This happens bsea
AspectJML associates a pointcut with the type in which it was
specified (see the generated code in Figure 7). Hence, oimly jo
points within the given type or its subtypes are allowed. Gitwess-
references generated by AspectJML (see Subsection 3.6)etpn
visualize the intercepted types.

Even though there is no way in AspectJML to specify unrelated
modules anonymously, the declared pointcuts can still e us
within aspect types that can crosscut unrelated types. Tdia m
issue is that the JML specifications have no effect on anongiyio
intercepted modules.

Contract violation example in AspectJML

As an example of runtime checking using AspectJML/ajmicalie
the client code illustrated in Figure 6. In this scenario,geé the
following precondition error in the AspectJML RAC:
Exception in thread "main"
org.jmlspecs.ajmlrac.runtime.JMLEntryPreconditionEr

by method Package.setSize regarding code at
File "Package.java", line 13 (Package.java:13), when

‘'width’ is 0.0
‘height’ is 1.0

ror.

As can be seen, in this error output, the shadowed input pEeam
width is displaying0.0 . But the precondition requires a package’s
width to greater than zero. As a result, we get this precadit
violation during runtime checking when calling such clientle.

3.6 Tool Support

In aspect-oriented programming, development tools likgpEe/A-
JDT [22], allow programmers to easily browse the crossogtti
structure of their programs. In the same sense, for Aspedgtiid
are developing analogous support for browsing crosscutton-
tract structure. For this end, we use the already providadtion-
alities by the Eclipse/AJDT with minor adjustments.

For example, consider the crosscutting contract structitiee
Package class using AspectJML/AJDT [22]. As observed, we can
see the arrows indicating where the crosscutting contiagopdy.

In plain AspectJ/AJDT, this example show no crosscuttimgcst
ture information. This is because we just have pointcutatations
without advice. In AspectJ, we need to associate the detiariat-
cuts to advice in order to be able to browse the crosscutting-s
ture of a system. Hence, we have implemented an option inAAspe
tJML that generates the cross-references informationrfisscut-
ting contracts when we have just pointcut declarations.

Figure 9 shows another example where the use of the Aspec-
tJ/AJIDT helpers an AspectJML programmer to write a valichpoi
cut declaration. As depicted, the AspectJML programmergair-
ror from AJDT because he/she forgot to bind the formal patarse
of the pointcut method declaration with the pointcut expi@s by
using the argument-based pointeutgs. The well-formed point-
cut can be seen in Figure 8. All the AspectJ/AJDT IDE valiofati
is inherited by AspectJML.

Itis important to stress that the functionalities of AJDT pre-
vide for AspectJML is just for aid the overall AspectJML apach.
Putting in other words, we do not need any IDE support to rea-
son about JML specifications in a modular way, as previoussly d
cussed. However, we argue that for beginner AspectJML progr
mers, a tool support like AJDT helpers them mastering theofise
the pointcut language. Moreover, by using this tool suppame
does not need to interpret the pointcut expression predicatsee
whether or not it applies to some method. The tool gives us the
complete list of all applicable pointcuts that should bepetted in
relation to their JML specifications.

4. The HealthWatcher Case Study

Our evaluation of the XCS feature of AspectJML involves a
medium-sized case study. The chosen system is a real hegtith w
based complaint system, called Health Watcher (HW) [16, Bi6é
main purpose of the HW system is to allow citizens to registen-
plaints regarding health issues. This system was seleetalibe it
has a detailed requirements document available [16]. Bujsire-
ments document describes 13 use cases and forms the basis for
JML specifications.

We analyzed the crosscutting contract structure of the H8Y sy
tem, comparing its specification in JML and AspectJML. Our re
sults are available online at [37].

4.1 Understanding the Crosscutting Contract Structure

One of the most important steps in the evaluation is to reizegn
how the contract structure crosscuts the modules of the Hitésy.
We now show some of these crosscutting contracts presentvin H
using the standard JML specifications.

Crosscutting preconditions

Crosscutting preconditions occur in the HW systen¥acade
interface. This facade makes available all 13 use casestagdse
Consider the following code from this interface:

/l@ requires code >= O;

publ i ¢ IteratorDsk searchSpecialitiesByHealthUnit(int code);
/l@ requires code >= 0;

publ i ¢ Complaint searchComplaint(int code);

/l@ requires code >= 0;

publ i ¢ DiseaseType searchDiseaseType(i nt code);

/l@ requires code >= O;

publ i ¢ lteratorDsk searchHealthUnitsBySpeciality(int code);

/l@ requires healthUnitCode >= 0;

publ i ¢ HealthUnit searchHealthUnit(i nt healthUnitCode);

2013/7/24

These methods comprise all the search-based operatiand\tha
makes available. The preconditions of these methods anti¢dé
as each requires that the input parameter, the code to behedar
is at least zero. However, in plain JML one cannot write alsing
precondition for just these 5 search-based methods.

Crosscutting postconditions

Still considering the HW'’s facade interfatieacade |, let us focus
now on crosscutting postconditions. First, we analyze thescut-
ting contract structure for normal postconditions:

/@ ensures \result != null;

publ i ¢ lteratorDsk searchSpecialitiesByHealthUnit(int code);
/@ ensures \result != null;
publ i ¢ IteratorDsk searchHealthUnitsBySpeciality(int code);

/@ ensures \result != null;
publ i ¢ IteratorDsk getSpecialityList()

/@ ensures \result != null;
publ i ¢ lteratorDsk getDiseaseTypeList()

/@ ensures \result != null;
publ i ¢ IteratorDsk getHealthUnitList()

/@ ensures \result != null;
publ i ¢ lteratorDsk getPartialHealthUnitList()

/@ ensures \result != null;
publ i c lteratorDsk getComplaintList()

As observed, all the methodsliFacade that returnsteratorDsk
should return a non-null object reference. In standard Jttiere
are other two ways to express this constraint [9]. The first@m-
siders the non-null semantics for object references. hdase we
do not need to write out such normal postconditions to hamaite
null. However, we can deactivate this option in JML if there a
more situations in the system that could be null. In this aden
whenever we find a method that should return non-null, wé stil
need to write these normal postconditions. So, by assunmag t
we are not using the non-null semantics of JML as defaulsehe
postconditions become redundant. The second is to use the JM
type modifiernon_nul I ; however, even this would lead to some
(smaller) amount of repeated postconditions.

In relation to exceptional postconditions i6hcade interface,
we found an interesting crosscutting structure scenaramsicler
the following code:

/l@ signal s_only java.rmi.RemoteException;
public void updateCompIamt(Complamt q)
java.rmi.RemoteException, o

t hr ows

/l@ signal s_only java.rmi.RemoteException;
public IteratorDsk getDlseaseTypeLlst()
java.rmi.RemoteException,

t hr ows

/l@ signal s_only java.rmi.RemoteException;
public IteratorDsk getHeaIthUnltLlst()
java.rmi.RemoteException,

throws

/l@ signal s_only java.rmi.RemoteException;
pubI icint |nsertCompIalnt(CompIalnt complaint)
java.rmi.RemoteException, 5

throws

. I/ all facade nmethods contain this constraint

As can be seen, the$igacade methods can throw the Java RMI
exceptionRemoteException (see the methods throws clause).
This exception is used as a part of the Java RMI API used by HW
system. Even though we list only four methods, all the method
contained in theFacade interface contain this exception in their
throws clause. Because of that, thiegnal s_onl y clause shown
needs to be repeated for all methoddracade interface. How-

ever, in JML one cannot write a singée gnal s_onl y clause to
constrain all such methods in this way.

Another example of exceptional postconditions is given by
the search-based methods discussed previously. All ttezsets
based methods should havesagnal s_only clause that al-
lows theObjectNotFoundException to be thrown. As with the
RemoteException , one cannot write this specification once and
apply to all search-based methods.

4.2 Modularizing Crosscutting Contracts in HW

To restructure/modularize the crosscutting contracte@HW sys-
tem, we use the XCS mechanisms of AspectJML. By doing this, we
avoid repeated specifications, which shown an improvemesit o
standard DbC mechanisms. In the following we show the detdil
how AspectJML achieves a better separation of the conti@et ¢
cern for this example.

Specifying crosscutting preconditions

In relation to the crosscutting preconditions of HW we dised,
we can proper modularize them with the following JML annedat
pointcut in AspectJML:

/l@ requires code >= 0;

@poi nt cut ("execution(* |Facade.search
"&& args(code)")
voi d searchMeths(

*(int))"+
int code) {}

With this pointcut specification, we are able to locate thecpn-
dition for all the search-based methods. To select the sdzased
methods, we use a property-based pointcut [20], which neatch
join points by using wildcarding. Therefore, our pointcuateches
any method starting witbearch and takes annt parameter type.
So, before the executions of such intercepted methods révemp-
dition that constrains the code argument to be at least zeen-i
forced during runtime; if it does not hold, then one gets apne
dition violation error.

Specifying crosscutting postconditions

Let us now consider the modularization of the two kinds ofssro
cutting postconditions we discussed. For normal postciomdi,
please consider the following code in AspectJML:

/l@ ensures \result != null;
@voi nt cut ("execution(lteratorDsk IFacade.
voi d nonNullReturnMeths() {}

)

With this pointcut specification, we are able to explicitlyoda
ularize the non-null constraint. The pointcut expressian wse
matches any method with any list of parameters but mustmetur
typelteratorDsk

We now show the AspectJML code responsible for modulariz-
ing the exceptional postconditions we previously discds&on-
sider the following JML annotated pointcuts expressed ipeks
tIML:

/l@ signal s_only java.rmi.RemoteException;
@voi nt cut ("execution(* |Facade. *(..))")
voi d remoteExceptionalMeths() {}

/l@ signal s_only ObjectNotFoundException;
@poi nt cut ("execution(* |Facade.search
voi d objectNotFoundExceptionalMeths() {}

HE)D)

These two specified pointcuts in AspectJML are responsitie f
modularizing the exceptional postconditions for methdus are
allowed to throwRemoteException and those that can throw
ObjectNotFoundException , respectively. The first pointcut ap-
plies the specification for all methodslfacade , whereas the sec-
ond one intercepts just the search-based methods.

2013/7/24

4.3 Reasoning About Change

As observed, the main benefit of AspectJML is to allow the mod-
ular specification of crosscutting contracts in an explaitl ex-
pressive way. The key mechanism is the quantification ptoper
herited from AspectJ [20]. Besides the documentation andumo
larization of crosscutting contracts achieved by usinge&spvL,
another immediate benefit one can have by using our apprsach i
during software maintenance.

For instance, if we add a new exception that can be thrown
by all IFacade methods, instead of (re)writingsa gnal s_onl y
clause, we can add this exception to henal s_onl y list of the
shown pointcutemoteExceptionalMeths . This pointcut can be
reused whenever we want to apply constraints to methodadsire
intercepted by the pointcut.

Another maintenance benefit is during system evolution. @n o
hand, we are adding more methods in thecade interface to
comprise system’s new use cases. On the other hand, for the ne
added methods we do not need to explicitly apply existing- con
straints to them. In other words, the modularized contréuas
apply to all methods also automatically applied to the nededd
ones, with no cost. Finally, even if the crosscutting carttare
well documented by using JML specifications, the AJDT todpse
programmers to visualize the overall crosscutting conhtséic-
ture. Just after a method is declared, we can see which attisgc
contracts are applying to it through the cross-refereneatife of
AJDT [22].

5. Discussion

This section discusses some issues involving AspectJMLtifspe
cation language, such as limitation, compatibility, opgsues, and
related work.

5.1 A Limitation of AspectJML

Even though AspectJML gives us the benefit of modularity when
handling crosscutting contracts, we still have some danatthat
AspectJML cannot currently deal with.

In order to exemplify the main drawback, consider the foltayv
JML/Java code:

/l@ requires x > 0;
public void m(int x){}

/l@ requires x > 0;
/l@ requires y > 0;
public void n(int x

int y)

/l@ requires y > 0;

public void o(double x, int y, double z){}

/l@ requires z > 0;

public void p(double vy, int z){}

In this code, we can observe that all formal parameters vavol
ing the Java primitiveé nt types should be greater than zero (see
the preconditions). In JML, we cannot write this precorafitonly
once and apply for allnt arguments for the above methods. Un-
fortunately, this also cannot be done with AspectIJML. Thrasom

is that we cannot write a pointcut that matches all methodh wi

i nt types in any position and associate a bound variable that can
be used in the precondition. This is a limitation of Aspecfbint-

cut mechanism, so there is fix the problem even with AspectJ.

5.2 AspectJML compatibility

One of the goals of this work is to support a substantial user-c
munity. To make this concrete, we have chosen to designarbss
ting contract specification in AspectJML as a compatibleesiton
to JML using AspectJ’s pointcut language. This takes adgmt

10

of AspectJ’s familiarity among programmers. Our goal is take
programming and specifying with AspectJML feel like a natur
extension of programming and specifying with Java and JMie T
AspectJML/ajmlc compiler has the following properties:

e all legal JML annotated Java programs are legal AspectJML
programs,

¢ all legal AspectJ programs are legal AspectJML programs,
e all legal Java programs are legal AspectJML programs, and

e all legal AspectJML programs run on standard Java virtual
machines.

5.3 JML Versus AspectJ

In this paper, we discussed the main problems of dealing eaith
tracts expressed in both JML and AspectJ. Indeed, this cosogpa
was suggested by Kiczales and Mezini [22]. They asked relsees
to explore what issues are better specified as contract/toehb
specifications and what issues are better addressed direpdint-
cuts. In this context, AspectJML goes beyond their questidhe
sense that it combines both pointcuts and contracts. Weeshtivat
DbC is better used with a design by contract language, bugifor
uation involving scattering of contracts it can be advaetas to
provide a form of specified pointcuts that allows crossogttion-
tract specifications.

5.4 Open Issues

Our evaluation of AspectJML is limited to two systems, thévde
ery service system [33] and the Health Watcher [46]. AltHoug
know of no scaling issues, larger-scale validation is sgkded to
analyze more carefully the benefits and drawbacks of Ashkct]
Library specification and runtime checking studies are fzeroin-
teresting area for future work.

Another open issue, which we intend to address in future ver-
sions of AspectJML, is related to the pointcut parametedsaeth-
ods with common argument types (see Subsection 5.1).

Two more important open issues that could be explored in
AspectIJML are related to specification and modular reagoofn
AspectJ programs [40]. These are interesting points sireeamn
also program in AspectJ using AspectJML.

5.5 Other forms of Aspectized DbC

As discussed throughout the paper, there are several wortke i
literature that argue in favor of implementing DbC with AOR}|

20, 28, 41]. Kiczales opened this research avenue by shosving
simple precondition constraint implementation in one af fiist
papers on AOP [20]. After that, other authors explored how to
implement and separate the DbC concern with AOP [14, 20, 28,
40, 41]. All these works offer common templates and guidslin
for DbC aspectization.

However, Balzer, Eugster, and Meyer argued that DbC aspecti
zation is more harmful than good [3], since one loses all #e k
properties of a DbC language: documentation, specificatioeri-
tance, and modular reasoning. Indeed, they argue thattdepere
action can make even worse the understanding of how cositreet
checked, and in what order they are checked.

We go beyond these works by showing how to combine the
best design features of a design by contract language likeaid
the quantification benefits of AOP such as AspectJ. As a result
conceive the AspectJML specification language that is Islaitéor
specifying crosscutting contracts. In AspectJML, one gaecsy
crosscutting contracts in a modular way while preservingkeC
principles such as documentation and modular reasoniagebifs
among different notions of modularity can be made by the Aspe
tJML user.

2013/7/24

The work of Bagherzadeét al. [2] contains “translucid” con-
tracts that are grey-box specifications of the behavior vicad Al-
though which advice applies is unspecified, the specifinatiows
modular verification of programs with advice, since all @agvinust
satisfy the specifications given. The grey-box parts of diarid
contracts are able to precisely specify control effectsef@ample
specifying that a particular method must be called a ceriam-
ber of times, and under certain conditions, which is not ibtess
with Aspectd or AspectIMLPtolemy,, [1] is an exception-aware
extension to Ptolemy/translucid contracts [2]. As with AsidML,
Ptolemy. supports specification and modular reasoning about ex-
ceptional behaviors. The main difference is that Aspectiised
to specify and reason about Java code. On the other handnBtol
is used to specify and reason about event announcement and ha
dling.

Pipa [52] is a design by contract language tailored for Aspec
As with AspectJML, Pipa is an extension to JML. However, Pipa
uses the same approach as JML to specify AspectJ prograths, wi
just a few new constructs. AspectJML uses JML in addition to
AspectJ’'s pointcut designators to specify crosscuttingreats.

There are several other interface technologies that aatereto
ours [19, 34, 48]. However, none of them can modularize crdss
ting contracts and keep DbC benefits such as documentatmre N
of these checks contracts of base code.

6. Summary

AspectJML is an aspect-oriented extension to JML that exsatble
explicit specification of crosscutting contracts for Javde It uses
amechanism called crosscutting contract specificatior§)X@/ith
XCS, AspectIML supports specification and runtime checkang
crosscutting contracts in a modular way.

Using AspectJML, allows programmers to enable modular rea-
soning in presence of crosscutting contracts, and to rediee
main DbC benefits such as documentation. Also, AspectIJMésgiv
programmers limited control over modularity respectingcfica-
tions. An AspectJML programmer cannot implicitly add caewts
to unrelated modules. Therefore, using AspectJML, progrars
get modular reasoning benefits at any time.

Acknowledgements

We thank Eric Eide, Eric Bodden, Mario Sudholt, Arndt Vora&t
David Lorenz and Mehmet Aksit for fruitful discussions (wach
during the AOSD 2011, more specifically at the Miss 2011 work-
shop) about design by contract modularization in general.

Special thanks to Mira Mezini, Ralf Lammel, Yuanfang Cai,
and Shuvendu Lahiri for detailed discussions and for contsnem
earlier versions of this paper.

References

[1] M. Bagherzadeh, H. Rajan, and A. Darvish. On exceptiemsnts and
observer chains. IRroceedings of the 12th annual international con-
ference on Aspect-oriented software developma®SD 13, pages
185-196, New York, NY, USA, 2013. ACM.

M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Moonegndlu-
cid contracts: Expressive specification and modular vetifia for
aspect-oriented interfaces. Rroceedings of the tenth international
conference on Aspect-oriented software developmA@iSD 11,
pages 141-152, New York, NY, USA, Mar. 2011. ACM.

S. Balzer, P. T. Eugster, and B. Meyer. Can Aspects Implgm
Contracts. Inin: Proceedings of RISE 2005 (Rapid Implementation
of Engineering Techniquepages 13-15, September 2005.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# pesgming
system: an overview. In G. Barthe, L. Burdy, M. Huisman, Jl-4net,

and T. Muntean, editorsRost Conference Proceedings of CASSIS:
Construction and Analysis of Safe, Secure and Interoper&vhart

devices, Marseillevolume 3362 oL NCS Springer-Verlag, 2005.

(2]

3

—

[4

[l

11

[5] J. Boner. Aspectwerks. http://aspectwerkz.codeluags.

[6] L. C. Briand, W. J. Dzidek, and Y. Labiche. Instrumenti@pn-
tracts with Aspect-Oriented Programming to Increase Qlabdity
and Support Debugging. l€SM '05: Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICHY)'pages
687—690, Washington, DC, USA, 2005. IEEE Computer Society.

L. C. Briand, Y. Labiche, and H. Sun. Investigating the as$ analysis
contracts to improve the testability of object-orientedl&o Softw.
Pract. Exper, 33:637—672, June 2003.

L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T
Leavens, K. R. M. Leino, and E. Poll. An overview of JML toolsda
applications.International Journal on Software Tools for Technology
Transfer (STTT,)7(3):212-232, June 2005.

P. Chalin and P. R. James. Non-null references by defauykva:
alleviating the nullity annotation burden. PFroceedings of the 21st
European conference on Object-Oriented ProgrammiEgOOP’07,
pages 227-247, Berlin, Heidelberg, 2007. Springer-Verlag

Y. Cheon and G. T. Leavens. A runtime assertion cheakette Java
Modeling Language (JML). In H. R. Arabnia and Y. Mun, editors
Proceedings of the International Conference on Softwagirt&ering
Research and Practice (SERP '02), Las Vegas, Nevada, U8& 23
27,2002 pages 322—-328. CSREA Press, June 2002.

L. A. Clarke and D. S. Rosenblum. A historical perspeetn runtime
assertion checking in software developmei8IGSOFT Softw. Eng.
Notes 31:25-37, May 2006.

K. K. Dhara and G. T. Leavens. Forcing behavioral suiniyphrough
specification inheritance. |Rroceedings of the 18th International
Conference on Software Engineering, Berlin, Germamgges 258—
267. IEEE Computer Society Press, Mar. 1996. A correctesiveiis
ISU CS TR #95-20chttp://tinyurl.com/s2krg

[13] M. Fahndrich, M. Barnett, and F. Logozzo. Embeddedti@m lan-
guages. IrProceedings of the 2010 ACM Symposium on Applied Com-
puting SAC '10, pages 2103-2110, New York, NY, USA, 2010. ACM.

[14] Y. A. Feldman et al. Jose: Aspects for Design by Con8@&9.|[EEE
SEFM 0:80-89, 2006.

[15] R. E. Filman and D. P. Friedman. Aspect-Oriented Pnogning is
Quantification and Obliviousness. Technical report, 2000.

[16] P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, Gar-
cia, N. Cacho, C. Sant’Anna, S. Soares, P. Borba, U. Kulemzd,
A. Rashid. On the impact of aspectual decompositions ongdesi
stability: An empirical study. IrProceedings of the 21st European
conference on Object-Oriented Programmib§!CS, pages 176-200.
Springer-Verlag, 2007.

[17] S. Hanenberg and R. Unland. Aspect] idioms for aspeéetied
software construction. IEuroPlop’03 2003.

[18] J. Hannemann and G. Kiczales. Design pattern impleatientin Java
and AspectJ. IiProceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, anticappns
OOPSLA '02, pages 161-173, New York, NY, USA, 2002. ACM.

[19] M. Inostroza, E. Tanter, and E. Bodden. Join point iaiggs for
modular reasoning in aspect-oriented program®rbteedings of the
19th ACM SIGSOFT symposium and the 13th European confecence
Foundations of software engineeringSEC/FSE '11, pages 508-511,
New York, NY, USA, 2011. ACM.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, JrRand W. Gris-
wold. Getting tarted with AspectCommun. ACV44:59-65, October
2001.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. lppk-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In Aksit
and S. Matsuoka, editorECOOP’97 Object-Oriented Programming
volume 1241 ofLecture Notes in Computer Sciengages 220-242.
Springer Berlin / Heidelberg, 1997.

[22] G. Kiczales and M. Mezini. Aspect-oriented programgiand modu-
lar reasoning. IProceedings of the 27th international conference on
Software engineeringCSE '05, pages 49-58, New York, NY, USA,
2005. ACM.

[7

—

[8

—_

El

[10]

[11]

[12]

2013/7/24

[23] Y. Le Traon, B. Baudry, and J.-M. Jezequel. Design byt to
improve software vigilancelEEE Trans. Softw. Eng32(8):571-586,
Aug. 2006.

[24] G.T. Leavens. JML's rich, inherited specifications i@havioral sub-
types. In Z. Liu and H. Jifeng, editor§ormal Methods and Soft-
ware Engineering: 8th International Conference on Formabpkeer-
ing Methods (ICFEM) volume 4260 ofLecture Notes in Computer
Sciencepages 2-34, New York, NY, Nov. 2006. Springer-Verlag.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary dasof JML:
A behavioral interface specification language for J&@M SIGSOFT
Software Engineering Note2006.

G. T. Leavens and D. A. Naumann. Behavioral subtypipgcHica-
tion inheritance, and modular reasoning. Technical REPSHTR-13-
03a, Computer Science, University of Central Florida, Gata FL,
32816, July 2013.

M. Lippert and C. V. Lopes. A study on exception detectiand

handling using aspect-oriented programming.Phoceedings of the
22nd international conference on Software engineerit@SE '00,

pages 418-427, New York, NY, USA, 2000. ACM.

[28] C. V. Lopes, M. Lippert, and E. A. Hilsdale. Design By Gatt with
Aspect-Oriented Programming. LhS. Patent No. 06,442,758sued
August 27, 2002.

[29] M. Marin, L. Moonen, and A. van Deursen. A Classificatiof
Crosscutting Concerns. ICSM '05: Proceedings of the 21st IEEE
International Conference on Software Maintengnpages 673—-676,
Washington, DC, USA, 2005. IEEE Computer Society.

[30] B. Meyer. Applying “design by contract’Computer 25(10):40-51,
1992.

[25]

[26]

[27]

[31] B. Meyer. Eiffel: The Language Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[32] B. Meyer. Object-Oriented Software ConstructionPrentice-Hall,
PTR, 2nd edition, 2000.

[33] R. Mitchell, J. McKim, and B. MeyeiDesign by contract, by example
Addison Wesley Longman Publishing Co., Inc., Redwood G,
USA, 2002.

[34] A. C. Neto, A. Marques, R. Gheyi, P. Borba, and F. Castak
Design Rule Language for Aspect-Oriented ProgrammingSBhP
'09: Proceedings of the 2009 Brazilian Symposium on Prognamy
Languagespages 131-144. Brazilian Computer Society, 2009.

[35] D. L. Parnas. On the criteria to be used in decomposistesys into
modules.Commun. ACM15:1053-1058, December 1972.

[36] D. L. Parnas. Precise Documentation: The Key to Bettétw&re. In
S. Nanz, editorThe Future of Software Engineeringages 125-148.
Springer Berlin Heidelberg, 2011.

H. Rebélo, G. T. Leavens, M. Bagherzadeh, H. Rajan, Raal.
D. Zimmerman, M. Cornélio, and T. Thim. Aspectjml: Exmigs
specification and runtime checking for crosscutting catsra 2013.
Available from:

http://cin.ufpe.br/ ~hemr/modularity14

H. Rebélo, G. T. Leavens, and R. Lima. Modular enforeatof su-
pertype abstraction and information hiding with clierdesichecking.
Technical Report CS-TR-12-03, 4000 Central Florida Bl@tlando,
Florida, 32816-2362, Jan. 2012.

H. Rebelo, G. T. Leavens, R. M. F. Lima, P. Borba, and MdRb.
Modular aspect-oriented design rule enforcement with X®D In
Proceedings of the 12th workshop on Foundations of asp@éstted
languages FOAL '13, pages 13-18, New York, NY, USA, 2013.
ACM.

[37]

(38]

[39]

12

[40] H. Rebélo, R. Lima, U. Kulesza, C. Sant’Anna, Y. CaiGelho, and
M. Ribeiro. Quantifying the Effects of Aspectual Decomjiasis on
Design By Contract Modularization: A Maintenance Studiyterna-
tional Journal of Software Engineering and Knowledge Ergiing
2013.

H. Rebélo, R. Lima, and G. T. Leavens. Modular Consagith Pro-
cedures, Annotations, Pointcuts and Advice.SBLP '11: Proceed-
ings of the 2011 Brazilian Symposium on Programming Langsiag
Brazilian Computer Society, 2011.

H. Rebélo, R. Lima, G. T. Leavens, M. Cornélio, A. Mptand
C. Oliveira. Optimizing generated aspect-oriented assertheck-
ing code for JML using program transformations: An empirgtady.
Science of Computer ProgrammingB(8):1137 — 1156, 2013.

H. Rebélo, S. Soares, R. Lima, L. Ferreira, and M. @i’ Imple-
menting Java modeling language contracts with AspectProceed-
ings of the 2008 ACM symposium on Applied comput®§C '08.
ACM, 2008.

[44] D. S. Rosenblum. A practical approach to programminthasser-
tions. IEEE Trans. Softw. Eng21(1):19-31, Jan. 1995.

[45] T. Skotiniotis and D. H. Lorenz. Cona: aspects for cactis and con-
tracts for aspects. I€@ompanion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, kgeg) and
applications OOPSLA '04, pages 196-197, New York, NY, USA,
2004. ACM.

[46] S. Soares, E. Laureano, and P. Borba. Implementinghiisibn and
persistence aspects with AspectJ. Aroceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systéan-
guages, and application®OPSLA '02, pages 174-190, New York,
NY, USA, 2002. ACM.

[47] F. Steimann. The Paradoxical Success of Aspect-QuieRrogram-
ming. INOOPSLA 2006: Proceedings of the 21st International Con-
ference on Object-oriented Programming Systems, Langiaayed
Applications ACM SIGPLAN Notices, pages 481-497, New York,
NY, Oct. 2006. ACM.

[48] F. Steimann, T. Pawlitzki, S. Apel, and C. Kastner. &g@nd modu-
larity for implicit invocation with implicit announcemenfCM Trans.
Softw. Eng. Methodql20(1):1:1-1:43, July 2010.

[49] K. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai, Nhonle,
and N. Tewari. Modular aspect-oriented design with XPK&CM
Transactions on Software Engineering and Methodqgl@§(2):5:1—
5:42, Sept. 2010.

[50] T. Thim, I. Schaefer, M. Kuhlemann, S. Apel, and G. Sa#pplying
design by contract to feature-oriented programmingPloceedings
of the 15th international conference on Fundamental Apghea to
Software Engineering=FASE’12, pages 255-269, Berlin, Heidelberg,
2012. Springer-Verlag.

[51] M. T. Valente, C. Couto, J. Faria, and S. Soares. On tmefite of
quantification in AspectJ systemdournal of the Brazilian Computer
Society 16(2):133-146, 2010.

[52] J. Zhao and M. Rinard. Pipa: a behavioral interface ifipation lan-
guage for AspectJ. IRroceedings of the 6th international conference
on Fundamental approaches to software engineeifgSE’'03, pages
150-165, Berlin, Heidelberg, 2003. Springer-Verlag.

[41]

[42]

[43]

A. Online Appendix

We invite researchers to replicate our case study. Sourde cb
the JML and AspectJML versions of the running example and HW
systems, and other resources are available at [37].

2013/7/24

