
AspectJML: Modular Specification and
Runtime Checking for Crosscutting Contracts

Henrique Rebêloλ, Gary T. Leavensθ, Mehdi Bagherzadehβ, Hridesh Rajanβ,
Ricardo Limaλ, Daniel Zimmermanδ, Márcio Cornélioλ, and Thomas Thümγ

λUniversidade Federal de Pernambuco, PE, Brazil
{hemr, rmfl, mlc}@cin.ufpe.br

θUniversity of Central Florida, Orlando, FL, USA
leavens@eecs.ucf.edu

β Iowa State University, Ames, IA, USA
{mbagherz, hridesh}@iastate.edu

δUniversity of Washington Tacoma, USA
dmz@acm.org

γUniversity of Magdeburg, Germany
thomas.thuem@ovgu.de

Abstract
Aspect-oriented programming (AOP) is a popular technique for
modularizing crosscutting concerns. In this context, researchers
found that the realization of the design by contract (DbC) iscross-
cutting and fares better when modularized by AOP. However, previ-
ous efforts aimed at supporting crosscutting contract modularly in-
stead hindered it. For example, in AspectJ-style, to reasonabout the
correctness of a method call may require a whole-program analysis
to determine what advice applies and what that advice does inrela-
tion to DbC implementation and checking. Also, when contracts are
separated from classes, a programmer may not know about them
and break them inadvertantly. In this paper we solve these problems
with AspectJML, a new language for specification of crosscutting
contracts for Java code. We also show howAspectJMLsupports the
main DbC principles of modular reasoning and contracts as docu-
mentation.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Programming by contract, Assertion Checkers; F.3.1
[Specifying and Verifying and Reasoning about Programs]: Asser-
tions, Invariant, Pre- and postconditions, Specification techniques

General Terms Design, Languages, Verification

Keywords Design by contract, crosscutting contracts, AOP, JML,
AspectJ, AspectJML

1. Introduction
Design by Contract (DbC), originally conceived by Meyer [30], is
a useful technique for developing a program using specifications.
The key mechanism in DbC is the use of the so-called “contracts”.

[Copyright notice will appear here once ’preprint’ option is removed.]

Writing out these contracts in the form of specifications andverify-
ing them against the actual code either at runtime or compiletime
has a long tradition in the research community [7, 11, 13, 23,25,
44, 50]. The idea of checking contracts at runtime was popularized
by Eiffel [31] in the late 80’s. In addition to Eiffel, there are other
design by contract languages, such as the Java Modeling Language
(JML) [25], Spec# [4], and Code Contracts [13].

It is claimed in the literature [6, 14, 20, 27–29, 40, 41, 45]
that the contracts of a system are de-facto a crosscutting concern
and fare better when modularized with aspect-oriented program-
ming [21] (AOP) mechanisms such as pointcuts and advice [20].
The idea has also been patented [28]. However, Balzer, Eugster, and
Meyer’s study [3] contradicts this intuition by concludingthat the
use of aspects hinders design by contract specification and fails to
achieve the main DbC principles such as documentation and mod-
ular reasoning. Also, they go further and say that “no module in
a system (e.g., class or aspect) can be oblivious of the presence
of contracts” [3, Section 6.3]. According to them, contracts should
appear in the modules themselves and separating such contracts as
aspects contradicts this view [32].

However, plain DbC languages like Eiffel [31], JML [25] also
have problems when dealing with crosscutting contracts. Although
a few mechanisms, such as invariant declarations help avoidscatter-
ing of specifications, the basic pre- and postcondition specification
mechanisms do not prevent scattering of crosscutting contracts. For
example, there is no way in Eiffel or JML to write a single pre-and
postcondition and apply it to several of methods of a particular type.
Instead such a pre- or postcondition must be repeated and scattered
among several methods.

To cope with these problems this paper proposes AspectJML,
a simple and practical aspect-oriented extension to JML. Itsup-
ports the specification of crosscutting contracts for Java code in a
modular way while keeping the benefits of a DbC language, like
documentation and modular reasoning.

In the rest of this paper we discuss these problems and our As-
pectJML solution in detail. We also provide a real case studyto
show the effectiveness of our approach when dealing with cross-
cutting contracts.

1 2013/7/24

JML Contracts

1 class Package {
2 double width, height;
3 //@ invariant this.width > 0 && this.height > 0;
4 double weight;
5 //@ invariant this.weight > 0;
6
7 //@ requires width > 0 && height > 0;
8 //@ requires width * height <= 400; // max dimension
9 //@ ensures this.width == width;

10 //@ ensures this.height == height;
11 //@ signals_only \ nothing;
12 void setSize(double width, double height){
13 this.width = width;
14 this.height = height;
15 }
16
17 //@ requires width > 0 && height > 0;
18 //@ requires width * height <= 400; // max dimension
19 //@ requires this.width != width;
20 //@ requires this.height != height;
21 //@ ensures this.width == width;
22 //@ ensures this.height == height;
23 //@ signals_only \ nothing;
24 void reSize(double width, double height){
25 this.width = width;
26 this.height = height;
27 }
28
29 //@ requires width > 0 && height > 0;
30 //@ requires width * height <= 400; // max dimension
31 //@ signals_only \ nothing;
32 boolean containsSize(double width, double height){
33 if(this.width == width && this.height == height){
34 return true;
35 }
36 else return false;
37 }
38
39 //@ signals_only \ nothing;
40 double getSize(){
41 return this.width * this.height;
42 }
43
44 //@ ...
45 //@ signals_only \ nothing;
46 void setWeight(double weight) {
47 this.weight = weight;
48 }
49 ... // other methods
50 }
51
52 class GiftPackage extends Package {
53 //@ ...
54 //@ signals_only \ nothing;
55 void setWeight(double weight) {
56 ...
57 }
58 ... // other methods
59 }
60
61 class Courier {
62 //@ ...
63 void deliver(Package p, String destination) {
64 ...
65 }
66 }

AspectJ Contracts

67 privileged aspect PackageContracts {
68 pointcut instMeth():
69 execution(! static * Package+. ∗(..));
70
71 pointcut sizeMeths(double w, double h):
72 execution(void Package. ∗Size(double, double))
73 && args(w, h);
74
75 pointcut setOrReSize(double w, double h):
76 execution(void Package.setSize(double, double))
77 || execution(void Package.reSize(double, double))
78 && args(w, h);
79
80 pointcut reSizeMeth(double w, double h):
81 execution(void Package.setSize(double, double))
82 && args(w, h);
83
84 pointcut allMeth(): execution(* Package+. ∗(..));
85
86 before(Package obj): instMeth() && this(obj) {
87 boolean pred = obj.width > 0 && obj.height > 0
88 && obj.weight > 0;
89 Checker.checkInvariant(pred);
90 }
91
92 before(double w, double h): sizeMeths(w, h){
93 boolean pred = w > 0 && h > 0
94 && w * h <= 400; // max dimension
95 Checker.checkPrecondition(pred);
96 }
97
98 before(Package obj, double w, double h):
99 reSizeMeth(w, h) && this(obj){

100 boolean pred = obj.width != w && obj.height != h;
101 Checker.checkPrecondition(pred);
102 }
103
104 after(Package obj, double w, double h) returning():
105 setOrReSize(w, h) && this(obj){
106 boolean pre = obj.width == w
107 && obj.height == h;
108 Checker.checkNormalPostcondition(pred)
109 }
110
111 after() throwing(Exception ex): allMeth() {
112 boolean pred = false;
113 Checker.checkExceptionalPostcondition(pred);
114 }
115
116 after(Point obj): instInv() && this(obj) {
117 boolean pred = obj.width > 0 && obj.height > 0
118 && obj.weight > 0;
119 Checker.checkInvariant(pred);
120 }
121 // other advice for checking contracts
122 }
123
124 aspect GiftPackageContracts { ...}
125
126 aspect CourierContracts { ...}
127
128 aspect Tracing {
129 after() returning(): execution(* Package. ∗(..)) {
130 System.out.println("Exiting"+ thisJoinPoint);
131 }
132 }

Figure 1. The JML and AspectJ contract implementations of the delivery service system [33].

2. The Problems and Their Importance
In this section we discuss the existing problems in modulariz-
ing crosscutting contracts in practice. The first two problems are
AOP/AspectJ [20, 21] based, and the last, but not least, problem is
related to a design by contract language like JML [25].

2.1 A Running Example

As a running example, Figure 1 illustrates a simple deliveryservice
system [33], which manages package delivery. It uses contracts
expressed in JML [25] (lines 1-66) and AspectJ [20] (lines 67-

2 2013/7/24

126). In addition, we also include a tracing crosscutting concern
modularized with AspectJ (lines 128-132).

In JML specifications, preconditions are defined by the keyword
requires and postconditions byensures. JML’s (signals_only
\ nothing) specification denotes an exceptional postcondition
which says that no exception (e.g., runtime exceptions included)
can be thrown. For example, all methods declared in classPackage
are not allowed to throw exceptions. The invariants defined in the
Package class restricts package’s dimension and weight to be al-
ways greater than zero.

JML’s counterpart in AspectJ is shown on lines 67-126. The
main motivation in applying an AspectJ-like language is that we
can explore some modularization opportunities that, otherwise, are
not possible in a DbC language like JML. For instance, in the
PackageContracts aspect, the secondbefore advice declared
(lines 92-96) checks, the common preconditions, which is scattered
in the JML side, for all the methods with the name ending with
Size and also take two arguments withdouble type. Similarly,
theafter- returning advice(lines 104-109) checks the common
postconditions for bothsetSize and reSize methods. This ad-
vice only enforce the constraints after normal termination. In JML,
the postconditions are called normal postconditions sincethey must
only hold when a method returns normally [25]. A third example is
illustrate in with theafter- throwing advice (lines 111-114). It
forbids any method inPackage or subtypes to throw any exception.
This is illustrated in the JML counterpart with the scattered specifi-
cation(signals_only \ nothing). This Second kind of postcon-
dition in JML is called an exceptional postcondition [25].

2.2 The Modular Reasoning Problem

If we consider plain JML/Java without AspectJ, the example in
Figure 1 supports modular reasoning [24, 26, 32, 39]. For example,
suppose one wants to write code that manipulates objects of type
Package . One could reason aboutPackage objects using just that
type’s contract specifications (lines 1-50) in addition to the ones
inherited from any supertypes [12, 24, 26].

Now let us consider the Java and AspectJ implementation of the
delivery service system (without the JML specifications).

As observed, in addition to the classes in the base/Java code,
Figure 1 defines four aspects. Three for contract checking and one
for tracing. In plain AspectJ, the advice declarations are applied
by the compiler without explicit reference to the aspect from a
module or a client module; so by definition, modular reasoning
about, for example, thePackage module does not consider the
advice declared by these four aspects. Hence, the aspect behavior
is only available via non-modular reasoning. That is, in AspectJ,
a programmer must consider every aspect that refers toPackage
class in order to reason about thePackage module. So the an-
swer to the question “What advice/contract applies to the method
setSize in Package ?” cannot (in general) be answered modu-
larly. Therefore, a programmer cannot study the system one module
at a time [2, 3, 19, 35, 39, 49].

2.3 Lack of Documentation Problem

In a design by contract language like Eiffel [31], JML [25],
Spec# [4] or Code Contracts [13], the pre- and postconditions
or invariant declarations are typically placed directly inor next
to the code they are specifying. Hence, contracts increase system
documentation [3, 32, 36]. In AspectJ, however, the advising code
(which checks contracts) is separated from the code they advise
and this forces programmers to consider all aspects in orderto un-
derstand the correctness of a particular method. In addition, the
physical separation of contracts can be harmful in the sensethat
an oblivious programmer can violate a method’s pre- or postcondi-
tions when these are only recorded in aspects [3, 32, 36].

Consider now the tracing concern (Figure 1), modularized by
the aspectTracing . It prints a message after the succeed execu-
tion of any method inPackage class when called. For this concern,
different orders of composition with other aspects (that check con-
tracts) lead to different behaviors/outputs. As a consequence, the
after- returning advice (line 129) could violatePackage ’s in-
variants and pass undetected if the advice runs after those advice
(in the PackageContracts aspect) responsible for checking the
Package ’s invariant. So, without either documentation or the use
of AspectJ’sdeclare precedence [20], to enforce a specific or-
der on aspects, make the understanding of which order a specific
pre- or postcondition would be executed quite difficult or not deter-
mined until they are executed [20].

Another problem by the lack of documentation implied by sepa-
rating contracts as aspects is discussed by Balzer, Eugster, Meyer’s
work [3]. They argue that as programmers become aware of con-
tracts only when using special tools, like AJDT [22], they are more
likely to forget adapting the contracts when changing the classes.

2.4 Lack of Support for Crosscutting Contract Specification
in DbC Languages

Balzer, Eugster, and Meyer’s study [3] helped crystallize our think-
ing about the goals of a DbC language, in particular about thepor-
tion of such languages that provides good documentation, modular
reasoning, and non-contract-obliviousness. Therefore, if we want
to avoid the previous two problems discussed above, we can use a
plain DbC language like JML [25].

Furthermore, let us explain two points about the JML specifi-
cations in Figure 1. The first is that a DbC language like JML can
be used to modularize some contracts. For example, the invariant
clauses (declared inPackage) can be viewed as a form of built-in
modularization. That is, instead of writing the same pre- and post-
conditions for all methods in a class, we just declare a single invari-
ant that modularizes those pre- and postconditions. Second, speci-
fication inheritance is another form of modularization. In JML, an
overriding method inherits method contracts and invariants from
the methods it overrides1.

However DbC languages (like JML) do not capture all forms of
crosscutting contract structure [18, 20] that can arise in the speci-
fications. As examples of such cases, consider the JML specifica-
tions illustrated on lines 1-66 in Figure 1. In this example,there
are three ways in which crosscutting contracts that are not properly
modularized with plain JML constructs:

(1) The preconditions that constrains the input parameterson the
methodssetSize , reSize , andcontainsSize (in Package)
to be greater than zero and less than or equal to 400 (the
package dimension). The main issue is that we cannot write
them only once and apply to these or others methods that can
have the same design constraint,

(2) The two normal postconditions of the methodssetSize and
reSize of Package are the same. They ensure that the
both width andheight fields are equal to the corresponding
method parameters. However, one cannot write just a simple
and local quantified form of these postconditions and apply
them to the constrained methods, and

(3) The exceptional postcondition clause(signals_only \ nothing)
has to be explicitly written for all the methods that forbid ex-
ceptions to be thrown. This is the case of the declared methods
in Package and GiftPackage classes. There is no way to
modularize such a JML contract in one single place and apply
to all constrained methods.

1 Even though inheritance is not exactly a crosscutting structure [18, 20], a
DbC language avoids repeating contracts for overriding methods.

3 2013/7/24

2.5 The Dilemma

As observed, the main problem here is a trade-off. If we decide
to use AspectJ to modularize such crosscutting contracts, the result
would be a poor contract documentation and a compromised modu-
lar reasoning of such contracts. If we decide to go back to a design
by contract language, such as JML, we would face the scattered
nature of common contracts, as explained above. This dilemma
leads us to the following research question: Is it possible to have
the best of both worlds? That is, can we achieve good documenta-
tion and modular reasoning, and also specify crosscutting contracts
in a modular way?

In the following, we discuss how our AspectJML DbC language
provides constructs to specify crosscutting contracts in amodular
and convenient way and overcomes the above problems.

3. The AspectJML Language
AspectJML extends JML [25] with support to handle crosscutting
contract concern [29]. It allows programmers to define additional
constructs (in addition to those of JML) to modularly specify pre-
and postconditions and check them at certain well-defined points
in the execution of a program. We call thiscrosscutting contract
specificationmechanism, or XCS for short.

XCS in AspectJML is based on a subset of AspectJ’s con-
structs [20] that we include in JML. However, since JML is a design
by contract language tailored for plain Java, we would need spe-
cial support to use the traditional AspectJ’s syntax. To simplify the
adoption of AspectJML, the AspectJ constructs we include, to han-
dle crosscutting contracts, are based on the alternative @AspectJ
syntax [5].

The @AspectJ (often pronounced as “at AspectJ”) syntax was
conceived due to the merge of the standard AspectJ with As-
pectWerkz [5]. This merge enables crosscutting concern implemen-
tation by using constructs based on metadata annotation facility of
Java 5. The main advantage of this syntactic style is that onecan
compile a program using a plain Java compiler. This implies that
the modularized code using AspectJ works better with conventional
Java IDEs or other tools that do not understand the traditional As-
pectJ syntax. In particular, this applies to the so-called “common”
JML compiler on which ajmlc is based [8, 42, 43].

Figure 2 illustrates the @AspectJ version of the tracing cross-
cutting concern previously implemented with the traditional syn-
tax (see Figure 1). Instead of using theaspect keyword, we
use a class annotated with an@Aspect annotation. This tells
AspectJ/ajc compiler to treat the class as an aspect declaration.
Similarly, the @Pointcut annotation marks the empty method
trace as a pointcut declaration. The expression specified in this
pointcut is the same as the one used in the standard AspectJ
syntax. The name of the method serves as the pointcut name.
Finally, the @AfterReturning annotation marks the method
afterReturningAdvice as anafter returning advice.
The body of the method is used to modularize the crosscuttingcon-
cern (the advising code). This code is executed after the matched
join point’s execution returns without throwing an exception.

In the rest of this section, we present the main elements of the
crosscutting contract specification support in our language. The
presentation is informal and running-example-based.

3.1 XCS with Pointcut-Specifications

This is the simplest way to modularize crosscutting contracts at
source code level. Recall that apointcut designatorenables one
to select well-defined points in a program’s execution, which are
known asjoin points [20]. Optionally, a pointcut can also include
some of the values in the execution context of intercepted join

@Aspect()
class Tracing {
@Pointcut("execution(* Package. ∗(..))")
public void trace() {}

@AfterReturning("trace()")
public void afterReturingAdvice(JoinPoint jp) {

System.out.println("Exiting"+jp);
}

}

Figure 2. The tracing crosscutting concern implementation of Fig-
ure 1 using @AspectJ syntax.

points. In AspectJML, we can compose these AspectJ pointcuts
combined with JML specifications.

The major difference, in relation to plain AspectJ, is that aspec-
ified pointcut is always processed when using the AspectJML com-
piler (ajjmlc). So, in standard AspectJ, a single pointcut declaration
does not contribute to the execution flow of a program unless we de-
fine some AspectJ advice that uses such a pointcut. In AspectJML,
fortunately, we do not need to define an advice to check a specifica-
tion in a crosscutting fashion. Although it is possible to use advice
declarations in AspectJML (as we discuss in subsection 3.2), we do
not require them. This makes AspectJML simpler and a program-
mer only needs to know AspectJ’s pointcut language in addition to
the main JML features.

Specifying crosscutting preconditions

Recall our first crosscutting contract scenario described in Sub-
section 2.4. It consists of two preconditions for any method, in
Package class (Figure 1), with name ending withSize that re-
turnsvoid and takes a double argument ofdouble type. For this
scenario, consider the JML annotated pointcut with the following
preconditions:

//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
@Pointcut("execution(* Package. ∗Size(double, double))"+

"&& args(width, height)")
void sizeMeths(double width, double height) {}

The pointcutsizeMeths matches all the executions of size-like
methods of classPackage . As observed, this pointcut is expos-
ing the intercepted method arguments of typedouble. This is
done in @AspectJ by listing the formal parameters in the point-
cut method. Then we bind the parameter names in the pointcut’s
expression (within the annotation@Pointcut) using the argument-
based pointcutargs [20].

The main difference between this pointcut declaration and stan-
dard pointcut declarations in @AspectJ is that we are addingtwo
JML specifications (using therequires clause). In this example
the JML says to check the declared preconditions before the execu-
tions of intercepted methods.

We recommend that the above JML-annotated pointcut is de-
clared in the classPackage . This guideline will ensure that we
keep the modular reasoning and documentation benefits [3] when
reasoning about any method or type’s specifications. (However, be-
cause AspectJML uses AspectJ’s pointcut declarations, a program-
mer could place such pointcuts in any class, if that helped tobetter
modularize other crosscutting specification concerns.)

Specifying crosscutting postconditions

We discuss now how to properly modularize crosscutting postcon-
ditions in AspectJML. In JML, there are two kinds of postcondi-
tions: normal and exceptional postconditions. Normal postcondi-
tions constrain methods that return without throwing an exception.

4 2013/7/24

To illustrate AspectJML’s design, we discuss scenarios (2)and (3)
from Subsection 2.4.

For scenario (2), we use the following specified pointcut:

//@ ensures this.width == width;
//@ ensures this.height == height;
@Pointcut("(execution(* Package.setSize(double, double))"+

"|| execution(* Package.reSize(double, double)))"+
"&& args(width, height)")

void setOrReSize(double width, double height) {}

The above constrains the executions ofsetSize and reSize
methods inPackage to ensure that after their executions, the fields
width andheight have their values equal to the ones passed as
arguments.

To modularize the crosscutting postcondition of scenario (3), we
use the following JML annotated pointcut declaration.

//@ signals_only \ nothing;
@Pointcut("execution(* Package+. ∗(..))")
void allMeth() {}

The above specification forbids the executions of any methodin
Package (or a subtype, such asGiftPackage) to throw an ex-
ception. If any intercepted method ends up by throwing an excep-
tion (even a runtime exception), a JML exceptional postcondition
error is thrown to signal the contract violation. In this pointcut, we
do not expose any intercepted method’s context.

Multiple specifications per pointcut

All the crosscutting contract specifications discussed above con-
sist of only one kind of JML specification per pointcut declara-
tion. However, AspectJML can include more than one kind of
JML specifications in a pointcut declaration. As an example,let
us assume that thePackage type in Figure 1 does not have the
containsSize method along with its JML specifications. In this
scenario, we can write a single pointcut to modularize the recur-
rent pre- and postconditions of methodssetSize and reSize of
Package type. Therefore, instead of having separate JML anno-
tated pointcuts for each crosscutting contract, we specifythem in a
new version of the pointcutsizeMeths :

//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
//@ ensures this.width == width;
//@ ensures this.height == height;
@Pointcut("execution(* Package. ∗Size(double, double))"+

"&& args(width, height)")
void sizeMeths(double width, double height) {}

This pointcut declaration modularly specifies both preconditions
and normal postconditions of the same intercepted size methods
(setSize andreSize) of Package .

Specification of unrelated types

Another issue to consider is whether or not AspectJML can mod-
ularize inter-type2 crosscutting specifications. All the crosscutting
contract specifications we discuss are related to one type (intra-
type) or its subtypes. However, AspectJ can advise methods of dif-
ferent (unrelated) types in a system. This quantification property
of AspectJ is quite useful [51] but can also be problematic from
the point of view of modular reasoning, since one needs to con-
sider all the aspect declarations to understand the overallsystem
behavior [2, 19, 39, 47–49]. Instead of ruling this out, the design of
ApsectJML allows the specifier to use specifications that constrain
unrelated inter-types. This puts the decision about when touse such
features in the hands of the AspectJML user.

2 When we refer to inter-types here is not that AspectJ feature[20] to
add methods or fields with static crosscutting mechanism. Instead we are
referring to unrelated modules in a system. That is, types that are not related
to each other, but can present a common crosscutting contract structure.

As an example, recall our running example in Figure 1. We
know that all the methods declared inPackage and its sub-
type GiftPackage are forbidden to throw exceptions (see the
signals_only specification). Suppose now that the methoddeliver
in type Courier also has this constraint. Note that the type
Courier is not a subtype ofPackage . They are independent
to some extent. In other words, they are only related in the sense
that the methoddeliver depends onPackage type due to the
declaration as a formal parameter. This way, let us also consider
thatCourier has more methods that is not dependent ofPackage
at all. So, consider the following type declaration:
interface CommonSignalsOnly {
class CommonSignalsOnlyXCS {

//@ signals_only \ nothing;
@Pointcut("execution(* CommonSignalsOnly+. ∗(..))")
void allMeth() {}

}
}

This type declaration illustrates how we specify crosscutting con-
tracts for interfaces. As we know, pointcuts are not allowedto be
declared within interfaces. We overcome this problem by adding an
inner class that represents the crosscutting contracts of the outer in-
terface declaration. As a part of our strategy, the pointcutdeclared
in the inner class only refers to the outer interface (see thereference
in the pointcut predicate expression). Now, any type that wants to
forbid its method declarations to throw exceptions only need to im-
plement the interfaceCommonSignalsOnly in our case. Such
an interface acts like a marker interface idiom [17]. This isimpor-
tant to avoid obliviousness and maintain modular reasoning(ac-
cording to our definition).

Collected XCS examples

All the crosscutting contract specifications used so far in this sec-
tion (discussed as scenarios in Subsection 2.4) with pointcuts-
specifications are illustrated in Figure 3 (the shadowed part illus-
trates the XCS in AspectJML’s pointcuts and specifications).

3.2 XCS with Pointcut-Advice-Specifications

A second way to specify crosscutting contracts, at the source code
level is to use aspects and advice declarations in addition to point-
cuts and JML specifications.

In order to exemplify the use of pointcut-advice-specifications,
recall scenario (1) from section 2.4, and consider the modified ver-
sion of thePackage class in Figure 4. We observe an important
difference, in thePackage class, to the previous examples. We can
see an inner aspect namedPackageAspect with apointcut and
before advice declarations. The reason to use an inner aspect is
because we cannot declare AspectJ advice inside classes. Another
observation is that we moved the preconditions to thebefore ad-
vice. The semantics of precondition checking in AspectJML still
remains the same. So, before the executions of the intercepted
join points by the pointcutsizeMeths , we have the preconditions
checked. The main difference is that we have another behavior that
will be executed just before the join point’s executions. This is illus-
trated by thebefore advice that performs a trace implementation
for the intercepted join points.

Therefore, the main advantage of doing this strategy, shownin
Figure 4, is that besides checking the specifications in a crosscut-
ting fashion, we can also define another crosscutting implementa-
tion for the same constrained methods.

One can argue that, based on the given AspectJML specifica-
tion in Figure 4, would be more sensible if we move the specifi-
cations of thebefore advice back to the pointcut definition. Al-
though this makes sense, we are just showing how to provide the
same effect using the JML specification attached to an advicedec-
laration. A scenario, however, that this would make more sense is

5 2013/7/24

1 class Package {
2 double width, height;
3 //@ invariant this.width > 0 && this.height > 0;
4 double weight;
5 //@ invariant this.weight > 0;
6
7 //@ requires width > 0 && height > 0;
8 //@ requires width * height <= 400; // max dimension
9 @Pointcut("execution(* Package. ∗Size(double,double))"+

10 "&& args(width, height)")
11 void sizeMeths(double width, double height) {}
12
13 //@ ensures this.width == width;
14 //@ ensures this.height == height;
15 @Pointcut("(execution(* Package.setSize(double,double))"
16 + "|| execution(* Package.reSize(double, double)))"+
17 "&& args(width, height)")
18 void setOrReSize(double width, double height) {}
19
20 //@ signals_only \ nothing;
21 @Pointcut("execution(* Package+. ∗(..))")
22 void allMeth() {}
24
25 void setSize(double width, double height){ ...}
26
27 //@ requires this.width != width;
28 //@ requires this.height != height;
29 void reSize(double width, double height){ ...}
30
31 boolean containsSize(double width, double height){ ...}
32 double getSize(){ ...}
33
34 //@ ...
35 void setWeight(double weight) { ...}
36 ... // other methods
37 }
38 class GiftPackage extends Package {
39 //@ ...
40 void setWeight(double weight) { ...}
41 ... // other methods
42 }

Figure 3. The crosscutting contract specifications used so far for
the delivery service system [33] with AspectJML.

class Package {
@Aspect()
static class PackageAspect {
@Pointcut("execution(* Package. ∗Size(double,double))"+

"&& args(width, height)")
void sizeMeths(double width, double height) {}

//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
@Before("sizeMeths(width, height)")
public void beforeAdvice(JoinPoint jp, double width,
double height) {

System.out.println("Entering: "+jp);
}

}
// ... other specified methods

}

Figure 4. A crosscutting precondition specification using
pointcuts-advice-specifications.

shown in Figure 5. Since thisbefore advice uses an anonymous
pointcut [20], the only way to constrain the join points withspeci-
fications is by adding them directly to the advice declaration.

It is important to stress that AspectJML does not check such
preconditions within the givenbefore advice. In addition, the
reader should not be confused to think that the above preconditions
are for the given advice. Our approach is for specifying crosscutting
contracts to not specify AspectJ advice directly. Thus all contract

//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
@Before("execution(* Package. ∗Size(double, double))"+

"&& args(width, height)")
public void beforeAdvice(JoinPoint jp, double width,
double height) {

System.out.println("Entering: "+jp);
}

Figure 5. Specifications added to advice with an anonymous
pointcut.

// written by Cathy
public class ClientClass {
public void clientMeth(Package p)

{ p.setSize(0, 1); }
}

Figure 6. Client code, written by “Cathy.”

specifications are for the base code that is advised. Specifying and
checking AspectJ advice is an interesting future work.

3.3 AspectJML Expressiveness

So far we just used theexecution and within pointcut des-
ignators to select join points. This is to be in conformance with
the supplier-side checking adopted by most DbC/runtime assertion
checkers (RAC). That is, such RAC compilers operate by inject-
ing code to check each method’s precondition at the beginning of
its code, and injecting code to check the method’s postcondition at
the end of its code. This checking code is then run from withinthe
method’s body at the supplier side.

AspectJML also includes other primitive pointcut designators
that identify join points in different ways [20]. For instance, we can
use thecall pointcut. This would provide runtime checking at call
site. Code Contracts [13] is an example of a DbC language thatpro-
vides runtime checking at client side. But it supports only precondi-
tion checking. Since JML also supports client-side checking [38],
the call pointcut enables client-side checking for AspectJML in
relation to specified crosscutting contracts.

//@ requires width > 0 && height > 0;
//@ requires width * height <= 400; // max dimension
@Pointcut("(execution(* Package. ∗Size(double, double))"+

"|| call(void Package. ∗Size(double, double)))"
"&& args(width, height)")

void sizeMeths(double width, double height) {}

This is an example of a crosscutting precondition specification, in
AspectJML, that takes into account bothexecution and call
pointcut designators.

AspectJML also supports AspectJ’s control-flow based point-
cuts (e.g.,cflow) [20].

3.4 AspectJML’s Benefits

As mentioned, design by contract is a recurrent concern and several
authors claim that it could be better modularized and handled
by means of aspect-oriented mechanisms like those we find in
AspectJ [6, 14, 20, 27–29, 40, 41, 45]. After that, Balzer, Eugster,
and Meyer’s study [3] raised important issues that argue against the
aspectization of contracts. Issues like documentation andmodular
reasoning are compromised when using an AspectJ-like language.
Indeed, AOP/AspectJ themselves have been focus of a grand debate
including modularity and modular reasoning [2, 19, 39, 47–49].

Enabling modular reasoning

Recall that our notion of modular reasoning means that one can
soundly verify a piece of code in a given module, such as a class,

6 2013/7/24

using only the module’s own specifications, its own implementa-
tion, and the interface specifications of modules that its own imple-
mentation references [12, 24, 26, 32, 39].

With respect to whether or not AspectJML supports modular
reasoning, like a DbC language such as JML, consider the client
code, that we will imagine is written by Cathy, as shown in Fig-
ure 6. To verify the call tosetSize , Cathy must determine what
specifications to use. If she uses the definition of modular reason-
ing, she must use the specifications forsetSize in Package . Let
us assume that she uses the JML specifications of Figure 1. Hence,
she uses:

(1) The pre- and postconditions located at the methodsetSize
(lines 7-11),

(2) The first invariant definition on line 3, that constrains the
Package dimension (width andheight) fields, and

(3) The second invariant (line 5) related to thePackage ’s weight.

Cathy only needs these three specifications when using plain
JML. (Package has no supertype; otherwise, she would also need
to consider specifications inherited from such supertypes.) After
obtaining these specifications, she can see that there is a precondi-
tion violation regarding the width value of0 passed tosetSize (in
Figure 6).

Suppose now Cathy wants to perform again the same modular
reasoning task, but using the AspectJML specifications in Figure 3
instead of the JML ones of Figure 1. In this case she needs to find
the following pieces of checking code:

(1) The first invariant definition on line 3, that constrains the
Package dimension (width andheight) fields,

(2) The second invariant (line 5) related to thePackage ’s weight,

(3) The preconditions of the pointcut (lines 7-8)sizeMeths , since
it intercepts the execution of methodsetSize ,

(4) Similarly the normal postconditions (lines 13-14) located at the
pointcutsetOrReSize , and

(5) The exceptional postcondition (line 20) of pointcutallMeth .

As before, this only involves modular reasoning, and she can
still detect the potential precondition violation relatedto Package ’s
width. In this case Cathy, needed 7 AspectJML specificationsto
reason about the correctness the call tosetSize . However, in con-
trast to modular reasoning scenario 1, she needed two more speci-
fications to complete the reasoning task using AspectJML. So, al-
though AspectJML supports modular reasoning, Cathy must follow
a slightly more indirect process to reason about the correctness of a
call. This confirms that the obliviousness issue present in AspectJ-
like languages [15] does not occur in this example. Cathy is com-
pletely aware of the contracts ofPackage class.

Enabling documentation

Regarding documentation, this example of Cathy’s reasoning
shows that despite the added indirection, reasoning with Aspec-
tJML specifications does not necessarily have a modularity dif-
ference compared to reasoning with JML specifications. Onlythe
location where these specifications can appear can be different, due
to the use of pointcut declarations in AspectJML.

Our conclusion is that an inherent cost of crosscutting contract
modularization and reuse is the cost of some indirection in finding
specifications, which is necessary to avoid scattering (repeated
specifications). But using AspectJML, users also have several new
possibilities for crosscutting contracts.

/** Generated by AspectJML to check the precondition of

* method(s) intercepted by sizeMeths pointcut. */
before (Package object $rac, final double width,

final double height) :
(execution(* p.Package. ∗Size(double, double))
&& this(object $rac) && args(width, height)) {
boolean rac $b = (((width > +0.0D) && (height > +0.0D))

&& ((width * height) <= 400.0D));
JMLChecker.checkPrecondition(rac $b, "errorMsg");

}

Figure 7. Generated before advice to check the crosscutting pre-
conditions ofPackage in Figure 3.

Figure 8. The crosscutting contract structure in thePackage class
using AspectJML/AJDT [22].

3.5 Runtime Assertion Checking

We implemented the AspectJML crosscutting contract specification
technique in our JML/ajmlc compiler [42, 43] which is available
online at:http://www.cin.ufpe.br/ ˜ hemr/JMLAOP/ajmlc.htm .
This is the first RAC to support crosscutting contract specifications.

Compilation strategy

The ajmlc compiler itself was described in a previous work [43].
Unlike the classical JML compiler, jmlc [8, 10], it generates as-
pects to check specifications. It also has various code optimizations
[42] and better error reporting. The main difference of the previ-
ous ajmlc to the new one is the support to AspectJML features like
specified pointcuts. Instead of saying JML/ajmlc, we now sayAs-
pectJML/ajmlc.

Figure 7 shows thebefore advice generated by the ajmlc com-
piler to check the crosscutting preconditions of classPackage de-
fined in Figure 3.3 The variablerac $b denotes the precondition to
be checked. This variable is passed as an argument toJMLChecker -
.checkPrecondition , which checks such preconditions; if it is
not true, then a precondition error is thrown.

Ordering of checks

As ajmlc generates AspectJ aspects to check contracts, it also en-
forces/declares aspect precedence. For instance, if we have advis-
ing code for other crosscutting concerns, it can only be allowed to

3 The ajmlc compiler provides a compilation option that prints all the check-
ing code as aspects instead of weaving them.

7 2013/7/24

Figure 9. An example of a malformed pointcut declaration in
AspectJML.

execute after the preconditions are satisfied; otherwise, aprecondi-
tion violation is thrown.

The postconditions are only checked after all the advising
code’s execution. This order prevents undetected postcondition vio-
lations, which could happen if postconditions were checkedbefore
the execution of the advising code.

Taming obliviousness

In AspectJML specification, it is possible to use crosscutting con-
tract specification mechanisms to write modular specifications.
Since AspectJML uses AspectJ’s pointcut declarations, onecan
argue that a programmer can specify several modules in one single
place. Intuitively, this would affect several modules in the system.
However, AspectJML rule out this possibility, if one tries to write
such pointcuts, they will have not effect. This happens because
AspectJML associates a pointcut with the type in which it was
specified (see the generated code in Figure 7). Hence, only join
points within the given type or its subtypes are allowed. Thecross-
references generated by AspectJML (see Subsection 3.6) canhelp
visualize the intercepted types.

Even though there is no way in AspectJML to specify unrelated
modules anonymously, the declared pointcuts can still be used
within aspect types that can crosscut unrelated types. The main
issue is that the JML specifications have no effect on anonymously
intercepted modules.

Contract violation example in AspectJML

As an example of runtime checking using AspectJML/ajmlc, recall
the client code illustrated in Figure 6. In this scenario, wegot the
following precondition error in the AspectJML RAC:

Exception in thread "main"
org.jmlspecs.ajmlrac.runtime.JMLEntryPreconditionEr ror:
by method Package.setSize regarding code at
File "Package.java", line 13 (Package.java:13), when

’width’ is 0.0

’height’ is 1.0
...

As can be seen, in this error output, the shadowed input parameter
width is displaying0.0 . But the precondition requires a package’s
width to greater than zero. As a result, we get this precondition
violation during runtime checking when calling such clientcode.

3.6 Tool Support

In aspect-oriented programming, development tools like Eclipse/A-
JDT [22], allow programmers to easily browse the crosscutting
structure of their programs. In the same sense, for AspectJML, we
are developing analogous support for browsing crosscutting con-
tract structure. For this end, we use the already provided function-
alities by the Eclipse/AJDT with minor adjustments.

For example, consider the crosscutting contract structureof the
Package class using AspectJML/AJDT [22]. As observed, we can
see the arrows indicating where the crosscutting contractsapply.
In plain AspectJ/AJDT, this example show no crosscutting struc-
ture information. This is because we just have pointcut declarations
without advice. In AspectJ, we need to associate the declared point-
cuts to advice in order to be able to browse the crosscutting struc-
ture of a system. Hence, we have implemented an option in Aspec-
tJML that generates the cross-references information for crosscut-
ting contracts when we have just pointcut declarations.

Figure 9 shows another example where the use of the Aspec-
tJ/AJDT helpers an AspectJML programmer to write a valid point-
cut declaration. As depicted, the AspectJML programmer gotan er-
ror from AJDT because he/she forgot to bind the formal parameters
of the pointcut method declaration with the pointcut expression by
using the argument-based pointcutargs. The well-formed point-
cut can be seen in Figure 8. All the AspectJ/AJDT IDE validation
is inherited by AspectJML.

It is important to stress that the functionalities of AJDT wepro-
vide for AspectJML is just for aid the overall AspectJML approach.
Putting in other words, we do not need any IDE support to rea-
son about JML specifications in a modular way, as previously dis-
cussed. However, we argue that for beginner AspectJML program-
mers, a tool support like AJDT helpers them mastering the useof
the pointcut language. Moreover, by using this tool support, one
does not need to interpret the pointcut expression predicates to see
whether or not it applies to some method. The tool gives us the
complete list of all applicable pointcuts that should be inspected in
relation to their JML specifications.

4. The HealthWatcher Case Study
Our evaluation of the XCS feature of AspectJML involves a
medium-sized case study. The chosen system is a real health web-
based complaint system, called Health Watcher (HW) [16, 46]. The
main purpose of the HW system is to allow citizens to registercom-
plaints regarding health issues. This system was selected because it
has a detailed requirements document available [16]. This require-
ments document describes 13 use cases and forms the basis forour
JML specifications.

We analyzed the crosscutting contract structure of the HW sys-
tem, comparing its specification in JML and AspectJML. Our re-
sults are available online at [37].

4.1 Understanding the Crosscutting Contract Structure

One of the most important steps in the evaluation is to recognize
how the contract structure crosscuts the modules of the HW system.
We now show some of these crosscutting contracts present in HW
using the standard JML specifications.

Crosscutting preconditions

Crosscutting preconditions occur in the HW system’sIFacade
interface. This facade makes available all 13 use cases as methods.
Consider the following code from this interface:

//@ requires code >= 0;
public IteratorDsk searchSpecialitiesByHealthUnit(int code);

//@ requires code >= 0;
public Complaint searchComplaint(int code);

//@ requires code >= 0;
public DiseaseType searchDiseaseType(int code);

//@ requires code >= 0;
public IteratorDsk searchHealthUnitsBySpeciality(int code);

//@ requires healthUnitCode >= 0;
public HealthUnit searchHealthUnit(int healthUnitCode);

8 2013/7/24

These methods comprise all the search-based operations that HW
makes available. The preconditions of these methods are identical,
as each requires that the input parameter, the code to be searched,
is at least zero. However, in plain JML one cannot write a single
precondition for just these 5 search-based methods.

Crosscutting postconditions

Still considering the HW’s facade interfaceIFacade , let us focus
now on crosscutting postconditions. First, we analyze the crosscut-
ting contract structure for normal postconditions:

//@ ensures \ result != null;
public IteratorDsk searchSpecialitiesByHealthUnit(int code);

//@ ensures \ result != null;
public IteratorDsk searchHealthUnitsBySpeciality(int code);

//@ ensures \ result != null;
public IteratorDsk getSpecialityList()

//@ ensures \ result != null;
public IteratorDsk getDiseaseTypeList()

//@ ensures \ result != null;
public IteratorDsk getHealthUnitList()

//@ ensures \ result != null;
public IteratorDsk getPartialHealthUnitList()

//@ ensures \ result != null;
public IteratorDsk getComplaintList()

As observed, all the methods inIFacade that returnsIteratorDsk
should return a non-null object reference. In standard JML,there
are other two ways to express this constraint [9]. The first one con-
siders the non-null semantics for object references. In this case we
do not need to write out such normal postconditions to handlenon-
null. However, we can deactivate this option in JML if there are
more situations in the system that could be null. In this scenario,
whenever we find a method that should return non-null, we still
need to write these normal postconditions. So, by assuming that
we are not using the non-null semantics of JML as default, these
postconditions become redundant. The second is to use the JML
type modifiernon_null; however, even this would lead to some
(smaller) amount of repeated postconditions.

In relation to exceptional postconditions ofIFacade interface,
we found an interesting crosscutting structure scenario. Consider
the following code:

//@ signals_only java.rmi.RemoteException;
public void updateComplaint(Complaint q) throws

java.rmi.RemoteException, ...;

//@ signals_only java.rmi.RemoteException;
public IteratorDsk getDiseaseTypeList() throws

java.rmi.RemoteException, ...;

//@ signals_only java.rmi.RemoteException;
public IteratorDsk getHealthUnitList() throws

java.rmi.RemoteException, ...;

//@ signals_only java.rmi.RemoteException;
public int insertComplaint(Complaint complaint) throws

java.rmi.RemoteException, ...;

... // all facade methods contain this constraint

As can be seen, theseIFacade methods can throw the Java RMI
exceptionRemoteException (see the methods throws clause).
This exception is used as a part of the Java RMI API used by HW
system. Even though we list only four methods, all the methods
contained in theIFacade interface contain this exception in their
throws clause. Because of that, thesignals_only clause shown
needs to be repeated for all methods inIFacade interface. How-

ever, in JML one cannot write a singlesignals_only clause to
constrain all such methods in this way.

Another example of exceptional postconditions is given by
the search-based methods discussed previously. All these search-
based methods should have asignals_only clause that al-
lows theObjectNotFoundException to be thrown. As with the
RemoteException , one cannot write this specification once and
apply to all search-based methods.

4.2 Modularizing Crosscutting Contracts in HW

To restructure/modularize the crosscutting contracts of the HW sys-
tem, we use the XCS mechanisms of AspectJML. By doing this, we
avoid repeated specifications, which shown an improvement over
standard DbC mechanisms. In the following we show the details of
how AspectJML achieves a better separation of the contract con-
cern for this example.

Specifying crosscutting preconditions

In relation to the crosscutting preconditions of HW we discussed,
we can proper modularize them with the following JML annotated
pointcut in AspectJML:

//@ requires code >= 0;
@Pointcut("execution(* IFacade.search ∗(int))"+

"&& args(code)")
void searchMeths(int code) {}

With this pointcut specification, we are able to locate the precon-
dition for all the search-based methods. To select the search-based
methods, we use a property-based pointcut [20], which matches
join points by using wildcarding. Therefore, our pointcut matches
any method starting withsearch and takes anint parameter type.
So, before the executions of such intercepted methods, the precon-
dition that constrains the code argument to be at least zero is en-
forced during runtime; if it does not hold, then one gets a precon-
dition violation error.

Specifying crosscutting postconditions

Let us now consider the modularization of the two kinds of cross-
cutting postconditions we discussed. For normal postconditions,
please consider the following code in AspectJML:

//@ ensures \ result != null;
@Pointcut("execution(IteratorDsk IFacade. ∗(..))")
void nonNullReturnMeths() {}

With this pointcut specification, we are able to explicitly mod-
ularize the non-null constraint. The pointcut expression we use
matches any method with any list of parameters but must return
type IteratorDsk .

We now show the AspectJML code responsible for modulariz-
ing the exceptional postconditions we previously discussed. Con-
sider the following JML annotated pointcuts expressed in Aspec-
tJML:

//@ signals_only java.rmi.RemoteException;
@Pointcut("execution(* IFacade. ∗(..))")
void remoteExceptionalMeths() {}

//@ signals_only ObjectNotFoundException;
@Pointcut("execution(* IFacade.search ∗(..))")
void objectNotFoundExceptionalMeths() {}

These two specified pointcuts in AspectJML are responsible for
modularizing the exceptional postconditions for methods that are
allowed to throwRemoteException and those that can throw
ObjectNotFoundException , respectively. The first pointcut ap-
plies the specification for all methods inIFacade , whereas the sec-
ond one intercepts just the search-based methods.

9 2013/7/24

4.3 Reasoning About Change

As observed, the main benefit of AspectJML is to allow the mod-
ular specification of crosscutting contracts in an explicitand ex-
pressive way. The key mechanism is the quantification property in-
herited from AspectJ [20]. Besides the documentation and modu-
larization of crosscutting contracts achieved by using AspectJML,
another immediate benefit one can have by using our approach is
during software maintenance.

For instance, if we add a new exception that can be thrown
by all IFacade methods, instead of (re)writing asignals_only
clause, we can add this exception to thesignals_only list of the
shown pointcutremoteExceptionalMeths . This pointcut can be
reused whenever we want to apply constraints to methods already
intercepted by the pointcut.

Another maintenance benefit is during system evolution. On one
hand, we are adding more methods in theIFacade interface to
comprise system’s new use cases. On the other hand, for the new
added methods we do not need to explicitly apply existing con-
straints to them. In other words, the modularized contractsthat
apply to all methods also automatically applied to the new added
ones, with no cost. Finally, even if the crosscutting contracts are
well documented by using JML specifications, the AJDT tool helps
programmers to visualize the overall crosscutting contract struc-
ture. Just after a method is declared, we can see which crosscutting
contracts are applying to it through the cross-references feature of
AJDT [22].

5. Discussion
This section discusses some issues involving AspectJML specifi-
cation language, such as limitation, compatibility, open issues, and
related work.

5.1 A Limitation of AspectJML

Even though AspectJML gives us the benefit of modularity when
handling crosscutting contracts, we still have some situations that
AspectJML cannot currently deal with.

In order to exemplify the main drawback, consider the following
JML/Java code:

//@ requires x > 0;
public void m(int x){}

//@ requires x > 0;
//@ requires y > 0;
public void n(int x, int y){}

//@ requires y > 0;
public void o(double x, int y, double z){}

//@ requires z > 0;
public void p(double y, int z){}

In this code, we can observe that all formal parameters involv-
ing the Java primitiveint types should be greater than zero (see
the preconditions). In JML, we cannot write this precondition only
once and apply for allint arguments for the above methods. Un-
fortunately, this also cannot be done with AspectJML. The reason
is that we cannot write a pointcut that matches all methods with
int types in any position and associate a bound variable that can
be used in the precondition. This is a limitation of AspectJ’s point-
cut mechanism, so there is fix the problem even with AspectJ.

5.2 AspectJML compatibility

One of the goals of this work is to support a substantial user com-
munity. To make this concrete, we have chosen to design crosscut-
ting contract specification in AspectJML as a compatible extension
to JML using AspectJ’s pointcut language. This takes advantage

of AspectJ’s familiarity among programmers. Our goal is to make
programming and specifying with AspectJML feel like a natural
extension of programming and specifying with Java and JML. The
AspectJML/ajmlc compiler has the following properties:

• all legal JML annotated Java programs are legal AspectJML
programs,

• all legal AspectJ programs are legal AspectJML programs,

• all legal Java programs are legal AspectJML programs, and

• all legal AspectJML programs run on standard Java virtual
machines.

5.3 JML Versus AspectJ

In this paper, we discussed the main problems of dealing withcon-
tracts expressed in both JML and AspectJ. Indeed, this comparison
was suggested by Kiczales and Mezini [22]. They asked researchers
to explore what issues are better specified as contract/behavioral
specifications and what issues are better addressed directly in point-
cuts. In this context, AspectJML goes beyond their questionin the
sense that it combines both pointcuts and contracts. We showed that
DbC is better used with a design by contract language, but forsit-
uation involving scattering of contracts it can be advantageous to
provide a form of specified pointcuts that allows crosscutting con-
tract specifications.

5.4 Open Issues

Our evaluation of AspectJML is limited to two systems, the deliv-
ery service system [33] and the Health Watcher [46]. Although we
know of no scaling issues, larger-scale validation is stillneeded to
analyze more carefully the benefits and drawbacks of AspectJML.
Library specification and runtime checking studies are another in-
teresting area for future work.

Another open issue, which we intend to address in future ver-
sions of AspectJML, is related to the pointcut parameters and meth-
ods with common argument types (see Subsection 5.1).

Two more important open issues that could be explored in
AspectJML are related to specification and modular reasoning of
AspectJ programs [40]. These are interesting points since we can
also program in AspectJ using AspectJML.

5.5 Other forms of Aspectized DbC

As discussed throughout the paper, there are several works in the
literature that argue in favor of implementing DbC with AOP [14,
20, 28, 41]. Kiczales opened this research avenue by showinga
simple precondition constraint implementation in one of his first
papers on AOP [20]. After that, other authors explored how to
implement and separate the DbC concern with AOP [14, 20, 28,
40, 41]. All these works offer common templates and guidelines
for DbC aspectization.

However, Balzer, Eugster, and Meyer argued that DbC aspecti-
zation is more harmful than good [3], since one loses all the key
properties of a DbC language: documentation, specificationinheri-
tance, and modular reasoning. Indeed, they argue that aspect inter-
action can make even worse the understanding of how contracts are
checked, and in what order they are checked.

We go beyond these works by showing how to combine the
best design features of a design by contract language like JML and
the quantification benefits of AOP such as AspectJ. As a resultwe
conceive the AspectJML specification language that is suitable for
specifying crosscutting contracts. In AspectJML, one can specify
crosscutting contracts in a modular way while preserving key DbC
principles such as documentation and modular reasoning. Tradeoffs
among different notions of modularity can be made by the Aspec-
tJML user.

10 2013/7/24

The work of Bagherzadehet al. [2] contains “translucid” con-
tracts that are grey-box specifications of the behavior of advice. Al-
though which advice applies is unspecified, the specification allows
modular verification of programs with advice, since all advice must
satisfy the specifications given. The grey-box parts of translucid
contracts are able to precisely specify control effects, for example
specifying that a particular method must be called a certainnum-
ber of times, and under certain conditions, which is not possible
with AspectJ or AspectJML.Ptolemyx [1] is an exception-aware
extension to Ptolemy/translucid contracts [2]. As with AspectJML,
Ptolemyx supports specification and modular reasoning about ex-
ceptional behaviors. The main difference is that AspectJMLis used
to specify and reason about Java code. On the other hand, Ptolemyx
is used to specify and reason about event announcement and han-
dling.

Pipa [52] is a design by contract language tailored for AspectJ.
As with AspectJML, Pipa is an extension to JML. However, Pipa
uses the same approach as JML to specify AspectJ programs, with
just a few new constructs. AspectJML uses JML in addition to
AspectJ’s pointcut designators to specify crosscutting contracts.

There are several other interface technologies that are related to
ours [19, 34, 48]. However, none of them can modularize crosscut-
ting contracts and keep DbC benefits such as documentation. None
of these checks contracts of base code.

6. Summary
AspectJML is an aspect-oriented extension to JML that enables the
explicit specification of crosscutting contracts for Java code. It uses
a mechanism called crosscutting contract specification (XCS). With
XCS, AspectJML supports specification and runtime checkingfor
crosscutting contracts in a modular way.

Using AspectJML, allows programmers to enable modular rea-
soning in presence of crosscutting contracts, and to recover the
main DbC benefits such as documentation. Also, AspectJML gives
programmers limited control over modularity respecting specifica-
tions. An AspectJML programmer cannot implicitly add contracts
to unrelated modules. Therefore, using AspectJML, programmers
get modular reasoning benefits at any time.

Acknowledgements

We thank Eric Eide, Eric Bodden, Mario Südholt, Arndt Von Staa,
David Lorenz and Mehmet Aksit for fruitful discussions (we had
during the AOSD 2011, more specifically at the Miss 2011 work-
shop) about design by contract modularization in general.

Special thanks to Mira Mezini, Ralf Lämmel, Yuanfang Cai,
and Shuvendu Lahiri for detailed discussions and for comments on
earlier versions of this paper.

References
[1] M. Bagherzadeh, H. Rajan, and A. Darvish. On exceptions,events and

observer chains. InProceedings of the 12th annual international con-
ference on Aspect-oriented software development, AOSD ’13, pages
185–196, New York, NY, USA, 2013. ACM.

[2] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney. Translu-
cid contracts: Expressive specification and modular verification for
aspect-oriented interfaces. InProceedings of the tenth international
conference on Aspect-oriented software development, AOSD ’11,
pages 141–152, New York, NY, USA, Mar. 2011. ACM.

[3] S. Balzer, P. T. Eugster, and B. Meyer. Can Aspects Implement
Contracts. InIn: Proceedings of RISE 2005 (Rapid Implementation
of Engineering Techniques, pages 13–15, September 2005.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: an overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors,Post Conference Proceedings of CASSIS:
Construction and Analysis of Safe, Secure and Interoperable Smart
devices, Marseille, volume 3362 ofLNCS. Springer-Verlag, 2005.

[5] J. Boner. Aspectwerks. http://aspectwerkz.codehaus.org/.

[6] L. C. Briand, W. J. Dzidek, and Y. Labiche. InstrumentingCon-
tracts with Aspect-Oriented Programming to Increase Observability
and Support Debugging. InICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM’05), pages
687–690, Washington, DC, USA, 2005. IEEE Computer Society.

[7] L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis
contracts to improve the testability of object-oriented code. Softw.
Pract. Exper., 33:637–672, June 2003.

[8] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML tools and
applications.International Journal on Software Tools for Technology
Transfer (STTT), 7(3):212–232, June 2005.

[9] P. Chalin and P. R. James. Non-null references by defaultin java:
alleviating the nullity annotation burden. InProceedings of the 21st
European conference on Object-Oriented Programming, ECOOP’07,
pages 227–247, Berlin, Heidelberg, 2007. Springer-Verlag.

[10] Y. Cheon and G. T. Leavens. A runtime assertion checker for the Java
Modeling Language (JML). In H. R. Arabnia and Y. Mun, editors,
Proceedings of the International Conference on Software Engineering
Research and Practice (SERP ’02), Las Vegas, Nevada, USA, June 24-
27, 2002, pages 322–328. CSREA Press, June 2002.

[11] L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime
assertion checking in software development.SIGSOFT Softw. Eng.
Notes, 31:25–37, May 2006.

[12] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through
specification inheritance. InProceedings of the 18th International
Conference on Software Engineering, Berlin, Germany, pages 258–
267. IEEE Computer Society Press, Mar. 1996. A corrected version is
ISU CS TR #95-20c,http://tinyurl.com/s2krg .

[13] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract lan-
guages. InProceedings of the 2010 ACM Symposium on Applied Com-
puting, SAC ’10, pages 2103–2110, New York, NY, USA, 2010. ACM.

[14] Y. A. Feldman et al. Jose: Aspects for Design by Contract80-89. IEEE
SEFM, 0:80–89, 2006.

[15] R. E. Filman and D. P. Friedman. Aspect-Oriented Programming is
Quantification and Obliviousness. Technical report, 2000.

[16] P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Gar-
cia, N. Cacho, C. Sant’Anna, S. Soares, P. Borba, U. Kulesza,and
A. Rashid. On the impact of aspectual decompositions on design
stability: An empirical study. InProceedings of the 21st European
conference on Object-Oriented Programming, LNCS, pages 176–200.
Springer-Verlag, 2007.

[17] S. Hanenberg and R. Unland. AspectJ idioms for aspect-oriented
software construction. InEuroPlop’03, 2003.

[18] J. Hannemann and G. Kiczales. Design pattern implementation in Java
and AspectJ. InProceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
OOPSLA ’02, pages 161–173, New York, NY, USA, 2002. ACM.

[19] M. Inostroza, E. Tanter, and E. Bodden. Join point interfaces for
modular reasoning in aspect-oriented programs. InProceedings of the
19th ACM SIGSOFT symposium and the 13th European conferenceon
Foundations of software engineering, ESEC/FSE ’11, pages 508–511,
New York, NY, USA, 2011. ACM.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. Getting tarted with AspectJ.Commun. ACM, 44:59–65, October
2001.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Aksit
and S. Matsuoka, editors,ECOOP’97 Object-Oriented Programming,
volume 1241 ofLecture Notes in Computer Science, pages 220–242.
Springer Berlin / Heidelberg, 1997.

[22] G. Kiczales and M. Mezini. Aspect-oriented programming and modu-
lar reasoning. InProceedings of the 27th international conference on
Software engineering, ICSE ’05, pages 49–58, New York, NY, USA,
2005. ACM.

11 2013/7/24

[23] Y. Le Traon, B. Baudry, and J.-M. Jezequel. Design by contract to
improve software vigilance.IEEE Trans. Softw. Eng., 32(8):571–586,
Aug. 2006.

[24] G. T. Leavens. JML’s rich, inherited specifications forbehavioral sub-
types. In Z. Liu and H. Jifeng, editors,Formal Methods and Soft-
ware Engineering: 8th International Conference on Formal Engineer-
ing Methods (ICFEM), volume 4260 ofLecture Notes in Computer
Science, pages 2–34, New York, NY, Nov. 2006. Springer-Verlag.

[25] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:
A behavioral interface specification language for Java.ACM SIGSOFT
Software Engineering Notes, 2006.

[26] G. T. Leavens and D. A. Naumann. Behavioral subtyping, specifica-
tion inheritance, and modular reasoning. Technical ReportCS-TR-13-
03a, Computer Science, University of Central Florida, Orlando, FL,
32816, July 2013.

[27] M. Lippert and C. V. Lopes. A study on exception detection and
handling using aspect-oriented programming. InProceedings of the
22nd international conference on Software engineering, ICSE ’00,
pages 418–427, New York, NY, USA, 2000. ACM.

[28] C. V. Lopes, M. Lippert, and E. A. Hilsdale. Design By Contract with
Aspect-Oriented Programming. InU.S. Patent No. 06,442,750, issued
August 27, 2002.

[29] M. Marin, L. Moonen, and A. van Deursen. A Classificationof
Crosscutting Concerns. InICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance, pages 673–676,
Washington, DC, USA, 2005. IEEE Computer Society.

[30] B. Meyer. Applying “design by contract”.Computer, 25(10):40–51,
1992.

[31] B. Meyer. Eiffel: The Language. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[32] B. Meyer. Object-Oriented Software Construction. Prentice-Hall,
PTR, 2nd edition, 2000.

[33] R. Mitchell, J. McKim, and B. Meyer.Design by contract, by example.
Addison Wesley Longman Publishing Co., Inc., Redwood City,CA,
USA, 2002.

[34] A. C. Neto, A. Marques, R. Gheyi, P. Borba, and F. Castor.A
Design Rule Language for Aspect-Oriented Programming. InSBLP
’09: Proceedings of the 2009 Brazilian Symposium on Programming
Languages, pages 131–144. Brazilian Computer Society, 2009.

[35] D. L. Parnas. On the criteria to be used in decomposing systems into
modules.Commun. ACM, 15:1053–1058, December 1972.

[36] D. L. Parnas. Precise Documentation: The Key to Better Software. In
S. Nanz, editor,The Future of Software Engineering, pages 125–148.
Springer Berlin Heidelberg, 2011.

[37] H. Rebêlo, G. T. Leavens, M. Bagherzadeh, H. Rajan, R. Lima,
D. Zimmerman, M. Cornélio, and T. Thüm. Aspectjml: Expressive
specification and runtime checking for crosscutting contracts. 2013.
Available from:
http://cin.ufpe.br/ ˜ hemr/modularity14 .

[38] H. Rebêlo, G. T. Leavens, and R. Lima. Modular enforcement of su-
pertype abstraction and information hiding with client-side checking.
Technical Report CS-TR-12-03, 4000 Central Florida Blvd.,Orlando,
Florida, 32816-2362, Jan. 2012.

[39] H. Rebelo, G. T. Leavens, R. M. F. Lima, P. Borba, and M. Ribeiro.
Modular aspect-oriented design rule enforcement with XPIDRs. In
Proceedings of the 12th workshop on Foundations of aspect-oriented
languages, FOAL ’13, pages 13–18, New York, NY, USA, 2013.
ACM.

[40] H. Rebêlo, R. Lima, U. Kulesza, C. Sant’Anna, Y. Cai, R.Coelho, and
M. Ribeiro. Quantifying the Effects of Aspectual Decompositions on
Design By Contract Modularization: A Maintenance Study.Interna-
tional Journal of Software Engineering and Knowledge Engineering,
2013.

[41] H. Rebêlo, R. Lima, and G. T. Leavens. Modular Contracts with Pro-
cedures, Annotations, Pointcuts and Advice. InSBLP ’11: Proceed-
ings of the 2011 Brazilian Symposium on Programming Languages.
Brazilian Computer Society, 2011.

[42] H. Rebêlo, R. Lima, G. T. Leavens, M. Cornélio, A. Mota, and
C. Oliveira. Optimizing generated aspect-oriented assertion check-
ing code for JML using program transformations: An empirical study.
Science of Computer Programming, 78(8):1137 – 1156, 2013.

[43] H. Rebêlo, S. Soares, R. Lima, L. Ferreira, and M. Corn´elio. Imple-
menting Java modeling language contracts with AspectJ. InProceed-
ings of the 2008 ACM symposium on Applied computing, SAC ’08.
ACM, 2008.

[44] D. S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Trans. Softw. Eng., 21(1):19–31, Jan. 1995.

[45] T. Skotiniotis and D. H. Lorenz. Cona: aspects for contracts and con-
tracts for aspects. InCompanion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and
applications, OOPSLA ’04, pages 196–197, New York, NY, USA,
2004. ACM.

[46] S. Soares, E. Laureano, and P. Borba. Implementing distribution and
persistence aspects with AspectJ. InProceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’02, pages 174–190, New York,
NY, USA, 2002. ACM.

[47] F. Steimann. The Paradoxical Success of Aspect-Oriented Program-
ming. In OOPSLA 2006: Proceedings of the 21st International Con-
ference on Object-oriented Programming Systems, Languages, and
Applications, ACM SIGPLAN Notices, pages 481–497, New York,
NY, Oct. 2006. ACM.

[48] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner. Types and modu-
larity for implicit invocation with implicit announcement. ACM Trans.
Softw. Eng. Methodol., 20(1):1:1–1:43, July 2010.

[49] K. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai, M.Shonle,
and N. Tewari. Modular aspect-oriented design with XPIs.ACM
Transactions on Software Engineering and Methodology, 20(2):5:1–
5:42, Sept. 2010.

[50] T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and G. Saake. Applying
design by contract to feature-oriented programming. InProceedings
of the 15th international conference on Fundamental Approaches to
Software Engineering, FASE’12, pages 255–269, Berlin, Heidelberg,
2012. Springer-Verlag.

[51] M. T. Valente, C. Couto, J. Faria, and S. Soares. On the benefits of
quantification in AspectJ systems.Journal of the Brazilian Computer
Society, 16(2):133–146, 2010.

[52] J. Zhao and M. Rinard. Pipa: a behavioral interface specification lan-
guage for AspectJ. InProceedings of the 6th international conference
on Fundamental approaches to software engineering, FASE’03, pages
150–165, Berlin, Heidelberg, 2003. Springer-Verlag.

A. Online Appendix
We invite researchers to replicate our case study. Source code of
the JML and AspectJML versions of the running example and HW
systems, and other resources are available at [37].

12 2013/7/24

